Data Analysis with MapReduce

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu
Motivation: Large Scale Data Processing

• Want to process many terabytes of raw data
 —documents found by a web crawl
 —web request logs

• Produce various kinds of derived data
 —inverted indices
 – e.g. mapping from words to locations in documents
 —representations of graph structure of documents
 —summaries of number of pages crawled per host
 —most frequent queries in a given day
 —...
Problem Characteristics

• Input data is large

• Need to parallelize computation so it takes reasonable time
 —often need thousands of CPUs
What Application Developers Want

- Automatic parallelization & distribution of computation
- Fault tolerance
- Clean and simple programming abstraction
 - parallel programming for the masses …
- Monitoring and status tools
 - monitor computation progress
 - adjust resource provisioning, if necessary
Solution: MapReduce Programming Model

- Inspired by map and reduce primitives in Lisp
 - mapping a function \(f \) over a sequence \(x \ y \ z \) yields \(f(x) f(y) f(z) \)
 - reduce function combines sequence of elements using a binary op

- Many data analysis computations can be expressed as
 - applying a map operation to each logical input record
 - produce a set of intermediate (key, value) pairs
 - applying a reduce to all intermediate pairs with same key

- Simple programming model using an application framework
 - user supplies map and reduce operators
 - messy implementation details handled by the framework
 - parallelization
 - fault tolerance
 - data distribution
 - load balance
Example: Count Word Occurrences

Pseudo Code

```java
map(String input_key, String value):
    // input_key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String output_key, Iterator values):
    // output_key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParsesInt(v);
    Emit(AsString(result));
```

Supports lists of values too large to fit in memory.
Applying the Framework

• Fill in a MapReduce specification object with
 — names of input and output files
 — map and reduce operators
 — optional tuning parameters

• Invoke the MapReduce framework to initiate the computation
 — pass the specification object as an argument
Benefits of the MapReduce Framework

• Functional model
 —simple and powerful interface
 —automatic parallelization and distribution of computations
 —enables re-execution for fault tolerance

• Implementation achieves high performance
What about Data Types?

- Conceptually, map and reduce have associated types
 - map \((k_1, v_1) \rightarrow \text{list}(k_2, v_2)\)
 - reduce\((k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)\)

- Input keys and values
 - drawn from a different domain than output keys and values

- Intermediate keys and values
 - drawn from the same domain as output keys and values

- Google MapReduce C++ implementation
 - passes strings to all user defined functions: simple and uniform
 - have user convert between strings and appropriate types
Example: Count Word Occurrences

Pseudo Code

map(String input_key, String value):

// input_key: document name
// value: document contents

for each word w in value:
 EmitIntermediate(w, "1");

reduce(String output_key, Iterator values):

// output_key: a word
// values: a list of counts

int result = 0;
for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));
What about Data Types?

• Conceptually, map and reduce have associated types
 —map \((k_1, v_1) \rightarrow \text{list}(k_2, v_2)\)
 —reduce\((k_2, \text{list}(v_2)) \rightarrow \text{list}(v_2)\)

• Input keys and values
 —drawn from a different domain than output keys and values

• Intermediate keys and values
 —drawn from the same domain as output keys and values

• Google MapReduce C++ implementation
 —passes strings to all user defined functions: simple and uniform
 —have user convert between strings and appropriate types
Example: Count Word Occurrences

Pseudo Code

map(String input_key, String value):
 // input_key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String output_key, Iterator values):
 // output_key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v); // Interpret values as integers
 Emit(AsString(result));
MapReduce Examples - I

- Distributed “grep” (pattern search)
 - **map**: emits a line if it matches a supplied pattern
 - **reduce**: identity function - copies intermediate data to the output

- Count of URL access frequency
 - **map**: processes logs of web page requests, outputs a sequence of <URL, 1> tuples
 - **reduce**: adds together all values for the same URL and emits a <URL, total count> pair

- Reverse web-link graph
 - **map**: outputs <target, source> pairs for each link to a target URL found in a page named source
 - **reduce**: concatenates the list of all source URLs associated with a given target URL
 - emits the pair: <target, list of sources> (an adjacency list representation of the graph)
MapReduce Examples - II

• Term-vector per host

 summarize the most important words that occur in a document or a set of documents as a list of <word, frequency> pairs

 —map: emits a <hostname, term vector> pair for each input document
 - hostname is extracted from the URL of the document
 —reduce: passed all per-document term vectors for a given host
 - adds term vectors together
 - throws away infrequent terms, emits a <hostname, term vector> pair

• Inverted Index

 —map: parses each document, emits a sequence of <word, document ID> pairs
 —reduce: accepts all pairs for a given word, sorts the corresponding document IDs, emits a <word, list(document IDs)>
 - set of all output pairs forms a simple inverted index
 - easy to augment this to keep track of word positions
MapReduce Examples - III

• Distributed sort
 — map: extracts key from each record; emits a <key, record> pair
 — reduce: emits all pairs unchanged

 — resulting pairs will be in sorted order
 — this property depends upon partitioning facilities and ordering properties guaranteed by the MapReduce framework
Implementation Considerations

- Many different implementations are possible
- Right choice depends on environment, e.g.
 - small shared memory machine
 - large NUMA multiprocessor
 - larger collection of networked machines
 - dual-processor x86, Linux, 2-4GB memory
 - commodity network: 100Mb/1Gb Ethernet per machine
 - much less than full bisection bandwidth
 - thousands of machines: failure common
 - storage:
 - inexpensive disks attached directly to machines
 - distributed file system to manage data on these disks
 replication provides availability and reliability on unreliable h/w
Execution Overview

1. **Initiation**
 - MapReduce library splits input files into M pieces typically 16-64 MB per piece (controllable by a parameter)
 - starts up copies of the program on a cluster (1 master + workers)

2. **Master assigns** M map tasks and R reduce tasks to workers

3. **Worker assigned a map task** reads contents of input split
 - parses key/value pairs out of input data and passes them to map
 - intermediate key/value pairs produced by map: buffer in memory

4. Periodically write pairs to local disk; partition into R regions; pass locations of buffered pairs to master for reducers

5. **Reduce worker uses** RPC to read intermediate data from remote disks; sort pairs by key

6. **Iterate over sorted intermediate data; call reduce; append output to final output file for this reduce partition**

7. **When all is complete, notify user program**
• For each map and reduce task, store
 —state (idle, in-progress, completed)
 —identity of worker machine (for non-idle tasks)
• For each completed map task
 —store locations and sizes of R intermediate files produced by map
 —information updated as map tasks complete
 —pushed incrementally to workers that have in-progress reduce tasks
Logical Overview of Execution

Data store 1 → map → ... → Data store n

(key 1, values...) (key 2, values...) (key 3, values...) (key 1, values...) (key 2, values...) (key 3, values...)

== Barrier == : Aggregates intermediate values by output key

key 1, intermediate values → reduce → final key 1 values

key 2, intermediate values → reduce → final key 2 values

key 3, intermediate values → reduce → final key 3 values
Logical Execution

Figure credit: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0007.html
Execution Realization

Figure credit: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0008.html
Execution Timeline

- Many more tasks than machines
- Pipeline data movement with map execution

Figure credit: http://labs.google.com/papers/mapreduce-osdi04-slides/index-auto-0009.html
Fault Tolerance: Worker Failure

• Detecting failure
 — master pings worker periodically
 — if no answer after a while, master marks worker as failed

• Coping with failure
 — any map tasks for worker reset to idle state; may be rescheduled
 — worker’s completed map tasks re-execute on failure
 – data on local disk of failed worker is inaccessible
 – any reducers attempting to read notified of the re-execution

Fault tolerance example:
 — network maintenance on a cluster caused groups of 80 machines at a time to become unreachable for several minutes
 — master simply re-executed work for unreachable machines and continued to make forward progress
What about Master Failure?

- Master could periodically write checkpoints of master data structures
- If master dies, another could be recreated from checkpointed copies of its state
- In practice
 — only a single master
 — failure would be rare
 — implementation currently aborts MapReduce if master fails
 — client could check this condition and retry the computation
Exploiting Locality

- Network bandwidth is a scarce commodity

- Data is stored on local disks of machines
 - GFS divides files into 64MB blocks
 - stores several copies (typically 3) on different machines

- MapReduce master
 - attempts to map worker onto a machine that contains a replica of input data
 - if impossible, attempts to map task near a replica
 - on machine attached to same network switch

Locality management example:
- when running large MapReduce operations on a significant fraction of machines in a cluster, most input data is local and consumes no network bandwidth
Task Granularity

• Divide map phase into M pieces; reduce phase into R pieces
• Ideally, M and R much larger than number of worker machines
• Dynamically load balance tasks onto workers
• Upon failure
 —the many map tasks performed by a worker can be distributed among other machines
• How big are M and R?

Task granularity in practice
—e.g., M = 200K, R=5K, using 2000 worker machines
Coping with “Stragglers”

• Problem: a slow machine at the end of the computation could stall the whole computation

• When a MapReduce is nearing completion, schedule redundant “backup” executions of in-progress tasks

Backup task execution in practice

—significantly reduces time for large MapReduce computations
—a sorting example took 44% longer without backup tasks
Combiner

- When there is significant repetition in intermediate keys —e.g. instances of `<the, 1>` in word count output, it is useful to partially merge data locally before sending it across the network to a reducer

- Combiner
 —function executed on each machine that performs a map task
 —typically the same code as the reducer

- Significantly speeds up “certain classes of MapReduce operations”
Input and Output Types

- Can supply a “reader” for new input type
 — e.g. reader interface might read records from a database
- Output types can produce outputs in different formats as well
Refinements

• Partitioning function
 —typically hash(key) mod R
 – tends to give balanced partitions
 —user can supply their own if certain properties desired
 – hash(Hostname(URL)) mod R: all URLs from same host end up in same output file

• Ordering guarantees
 —within a given partition, all intermediate values processed in order: simplifies creating sorted output

• Real world issues
 —skip “bad records”
 —side effects - write extra files “atomically” and idempotently
 —master provides status pages via HTTP
 – enable users to predict run time, decide to add more resources, gain insight into performance issues
MapReduce at Google (2004)

- Large-scale machine learning and graph computations
- Clustering problems for Google News
- Extraction of data to produce popular queries (Zeitgeist)
- Extracting properties of web pages
 - e.g. geographical location for localized search
- Large-scale indexing
 - 2004: indexing crawled documents
 - data size > 20 TB
 - runs indexing as a sequence of 5-10 MapReduce operations
 - experience
 - applications smaller than ad-hoc indexing by 4x
 - readily modifiable because programs are simple
 - performance is good: keep conceptually distinct thing separate rather than forcing them together
 - indexing is easy to operate: e.g. fault tolerant; easy to improve performance by adding new machines
- Hundreds of thousands of MapReduce calculations/day!
MapReduce Examples at Google

- Extracting the set of outgoing links from a collection of HTML documents and aggregating by target document
- Stitching together overlapping satellite images to remove seams and to select high-quality imagery for Google Earth
- Generating a collection of inverted index files using a compression scheme tuned for efficient support of Google search queries
- Processing all road segments in the world and rendering map tile images that display these segments for Google Maps
Performance Anecdotes I

• Cluster
 — ~1800 nodes
 – 2 2GHz Xeon, 4GB memory, 2 160GB IDE drives, 1Gb Ethernet
 — network 2-level tree-shaped switched Ethernet
 – ~100-200Gbps aggregate bandwidth at the root

• Benchmarks executed on a roughly idle cluster

 grep: scan through 10^{10} 100-byte records (~1TB) for a relatively rare 3-character pattern
 – split input into 64MB pieces, $M=15000$, $R = 1$ (one output file)
 – time = ~150 seconds
Performance Anecdotes II

sort 10^{10} 100-byte records (~1TB)
- consists of < 50 lines of user code
- split input into 64MB pieces, M=15000, R=4000
- partitioning function uses initial bytes to put it into one of R pieces
- input rate higher than shuffle or output rate: on local disk
- output phase makes 2 replica for availability
- time = 891 seconds

read rate

comm rate

write rate
MapReduce is a Success

• Reasons for its success
 — easy even for users lacking experience with parallel systems
 – insulates user from complexity
 parallelization, fault tolerance, locality opt., load balancing
 — large variety of computations expressible using MapReduce
 – sorting, data mining, machine learning, etc.
 — implementation scales to large commodity clusters
 – makes efficient use of thousands of machines

• Lessons
 — restricting programming model simplifies tackling parallelization, fault tolerance, distribution
 — network bandwidth is a scarce resource
 – locality optimizations to save network bandwidth are important
 read data from local disk; write intermediate data to local disk
 — redundant execution
 – reduces impact of slow machines, machine failures, data loss
#include "mapreduce/mapreduce.h"

class WordCounter : public Mapper {
public:
 virtual void Map(const MapInput& input) {
 const string& text = input.value();
 const int n = text.size();
 for (int i = 0; i < n;) {
 // Skip past leading whitespace
 while ((i < n) && isspace(text[i])) i++;
 // Find word end
 int start = i;
 while ((i < n) && !isspace(text[i])) i++;
 if (start < i) Emit(text.substr(start,i-start),"1");
 }
 }
};

REGISTER_MAPPER(WordCounter);
#include "mapreduce/mapreduce.h"

class Adder : public Reducer {
 virtual void Reduce(ReduceInput* input) {
 // Iterate over all entries with the
 // same key and add the values
 int64 value = 0;
 while (! input->done()) {
 value += StringToInt(input->value());
 input->NextValue();
 }
 // Emit sum for input->key()
 Emit(IntToString(value));
 }
};

REGISTER_REDUCER(Adder);
#include "mapreduce/mapreduce.h"

int main(int argc, char** argv) {
 ParseCommandLineFlags(argc, argv);
 MapReduceSpecification spec;

 // Store list of input files into "spec"
 for (int i = 1; i < argc; i++) {
 MapReduceInput* input = spec.add_input();
 input->set_format("text");
 input->set_filepattern(argv[i]);
 input->set_mapper_class("WordCounter");
 }

 // Specify the output files:
 // /gfs/test/freq-00000-of-00100
 // /gfs/test/freq-00001-of-00100
 // ...
 MapReduceOutput* out = spec.output();
 out->set_filebase("/gfs/test/freq");
 out->set_num_tasks(100);
 out->set_format("text");
 out->set_reducer_class("Adder");

 // Optional: do partial sums within map
 // tasks to save network bandwidth
 out->set_combiner_class("Adder");

 // Tuning parameters: use at most 2000
 // machines and 100 MB memory per task
 spec.set_machines(2000);
 spec.set_map_megabytes(100);
 spec.set_reduce_megabytes(100);

 // Now run it
 MapReduceResult result;
 if (!MapReduce(spec, &result)) abort();

 // Done: 'result' structure contains info
 // about counters, time taken, number of
 // machines used, etc.

 return 0;
}
MapReduce Evolution

• September 2010
 — Google announced that its new search infrastructure “Caffeine” is no longer based on MapReduce
 – MapReduce supported batch indexing scheme
 – Caffeine supports incremental indexing
 use “Bigtable” to represent WWW index
 sparse, distributed, persistent multi-dimensional sorted map
 \((row:string, column:string, time:int64) \rightarrow string \)
 analyze the WWW in small pieces
 supports incremental updates to index without entire rebuild

• December 2011
 — Open source Apache Hadoop 1.0.0 - http://hadoop.apache.org
 – Hadoop File System
 – Hadoop MapReduce
 – Hadoop Common - support utilities
References - I

- Introduction to Parallel Programming with MapReduce, Google Code University

- Seminar presentation on “MapReduce Theory and Implementation” by Christophe Bisciglia et al. Summer 2007
 —http://code.google.com/edu/submissions/mapreduce/llm3-mapreduce.ppt
References - II

- Hadoop Map/Reduce Tutorial
 —http://hadoop.apache.org/core/docs/r0.19.1/mapred_tutorial.html

 —http://research.google.com/archive/bigtable.html