Principles of Parallel Algorithm Design:
Concurrency and Mapping

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu
Last Thursday

• Introduction to parallel algorithms
 — tasks and decomposition
 — threads and mapping
 — threads versus cores

• Decomposition techniques - part 1
 — recursive decomposition
 — data decomposition
Topics for Today

• Decomposition techniques - part 2
 — exploratory decomposition
 — hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
 — static mappings
 — dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates
Exploratory Decomposition

- Exploration (search) of a state space of solutions
 - problem decomposition reflects shape of execution
- Examples
 - discrete optimization
 - 0/1 integer programming
 - theorem proving
 - game playing
Exploratory Decomposition Example

Solving a 15 puzzle

• Sequence of three moves from state (a) to final state (d)

• From an arbitrary state, must search for a solution
Exploratory Decomposition: Example

Solving a 15 puzzle

Search

—generate successor states of the current state
—explore each as an independent task
Exploratory Decomposition Speedup

- Parallel formulation may perform a different amount of work

![Diagram](image)

Total serial work = $2m + 1$

Total parallel work = 4

- Can cause super- or sub-linear speedup
Speculative Decomposition

• Dependencies between tasks are not always known *a-priori*
 —makes it impossible to identify independent tasks

• Conservative approach
 —identify independent tasks only when no dependencies left

• Optimistic (speculative) approach
 —schedule tasks even when they may potentially be erroneous

• Drawbacks for each
 —conservative approaches
 – may yield little concurrency
 —optimistic approaches
 – may require a roll-back mechanism if a dependence is encountered
Speculative Decomposition In Practice

Discrete event simulation

- Data structure: centralized time-ordered event list
- Simulation
 - extract next event in time order
 - process the event
 - if required, insert new events into the event list
- Optimistic event scheduling
 - assume outcomes of all prior events
 - speculatively process next event
 - if assumption is incorrect, roll back its effects and continue

Time Warp
David Jefferson. “Virtual Time,”
ACM TOPLAS, 7(3):404-425, July 1985
Hybrid Decomposition

Use multiple decomposition strategies together

Often necessary for adequate concurrency

- **Quicksort**
 - recursive decomposition alone limits concurrency (why?)

- **Climate simulation**
 - data parallelism can be applied within atmosphere, ocean, land, and sea-ice simulations
CESM Simulations on a Cray XT

Performance Limiters: Left is CAM; Right is POP.

Figure courtesy of Pat Worley (ORNL)
Topics for Today

• Decomposition techniques - part 2
 —exploratory decomposition
 —hybrid decomposition

❖ Characteristics of tasks and interactions

• Mapping techniques for load balancing
 —static mappings
 —dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates
Characteristics of Tasks

• Key characteristics
 — generation strategy
 — associated work
 — associated data size

• Impact choice and performance of parallel algorithms
Task Generation

- **Static task generation**
 - identify concurrent tasks a-priori
 - typically decompose using data or recursive decomposition
 - examples
 - matrix operations
 - graph algorithms
 - image processing applications
 - other regularly structured problems

- **Dynamic task generation**
 - identify concurrent tasks as a computation unfolds
 - typically decompose using exploratory or speculative decompositions
 - examples
 - puzzle solving
 - game playing
Task Size

- Uniform: all the same size
- Non-uniform
 - sometimes sizes known or can be estimated *a-priori*
 - sometimes not
 - example: tasks in quicksort
 size of each partition depends upon pivot selected
Size of Data Associated with Tasks

- Data may be small or large compared to the computation
 - size(input) < size(computation), e.g., 15 puzzle
 - size(input) = size(computation) > size(output), e.g., min
 - size(input) = size(output) < size(computation), e.g., sort

- Implications
 - small data: task can easily migrate to another thread
 - large data: ties the task to a thread
 - possibly can avoid communicating the task context
 reconstruct/recompute the context elsewhere
Characteristics of Task Interactions

Orthogonal classification criteria

• Static vs. dynamic
• Regular vs. irregular
• Read-only vs. read-write
• One-sided vs. two-sided
Characteristics of Task Interactions

• **Static interactions**
 — tasks and interactions are known a-priori
 — simpler to code

• **Dynamic interactions**
 — timing or interacting tasks cannot be determined a-priori
 — harder to code
 – especially using two-sided message passing APIs
Characteristics of Task Interactions

• Regular interactions
 —interactions have a pattern that can be described with a function
 − e.g. mesh, ring
 —regular patterns can be exploited for efficient implementation
 − e.g. schedule communication to avoid conflicts on network links

• Irregular interactions
 —lack a well-defined topology
 —modeled by a graph
Static Regular Task Interaction Pattern

Image operations, e.g., edge detection

Nearest neighbor interactions on a 2D mesh

Sobel Edge Detection Stencils

\[
G_x = \begin{bmatrix}
-1 & 0 & +1 \\
-2 & 0 & +2 \\
-1 & 0 & +1 \\
\end{bmatrix}
\]

\[
G_y = \begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
+1 & +2 & +1 \\
\end{bmatrix}
\]
Static Irregular Task Interaction Pattern

Sparse matrix-vector multiply

(a) Task 0
(b) Task 11
Characteristics of Task Interactions

- Read-only interactions
 - tasks only read data associated with other tasks
- Read-write interactions
 - read and modify data associated with other tasks
 - harder to code: requires synchronization
 - need to avoid read-write and write-write ordering races
Characteristics of Task Interactions

- **One-sided**
 - initiated & completed independently by 1 of 2 interacting tasks
 - READ or WRITE
 - GET or PUT

- **Two-sided**
 - both tasks coordinate in an interaction
 - SEND and RECV
Topics for Today

- Decomposition techniques - part 2
 - exploratory decomposition
 - hybrid decomposition

- Characteristics of tasks and interactions

- Mapping techniques for load balancing
 - static mappings
 - dynamic mappings

- Methods for minimizing interaction overheads

- Parallel algorithm design templates
Mapping Techniques

Map concurrent tasks to processes for execution

- Overheads of mappings
 - serialization (idling)
 - communication

- Select mapping to minimize overheads

- Conflicting objectives: minimizing one increases the other
 - assigning all work to one processor
 - minimizes communication
 - significant idling
 - minimizing serialization introduces communication
Mapping Techniques for Minimum Idling

- Must simultaneously minimize idling and load balance
- Balancing load alone does not minimize idling
Mapping Techniques for Minimum Idling

Static vs. dynamic mappings

• Static mapping
 — *a-priori* mapping of tasks to processes
 — requirements
 - a good estimate of task size
 - even so, optimal mapping may be NP complete
 e.g., multiple knapsack problem

• Dynamic mapping
 — map tasks to processes at runtime
 — why?
 - tasks are generated at runtime, or
 - their sizes are unknown

Factors that influence choice of mapping
 • size of data associated with a task
 • nature of underlying domain
Schemes for Static Mapping

- Data partitionings
- Task graph partitionings
- Hybrid strategies
Mappings Based on Data Partitioning

Partition computation using a combination of

—data partitioning
—owner-computes rule

Example: 1-D block distribution for dense matrices

row-wise distribution

column-wise distribution
Block Array Distribution Schemes

Multi-dimensional block distributions

Multi-dimensional partitioning enables larger # of processes
Block Array Distribution Example

Multiplying two dense matrices $C = A \times B$

- Partition the output matrix C using a block decomposition
- Give each task the same number of elements of C
 — each element of C corresponds to a dot product
 — even load balance
- Obvious choices: 1D or 2D decomposition
- Select to minimize associated communication overhead
Data Usage in Dense Matrix Multiplication

\[\begin{align*}
\text{Input} & \quad \times \quad \text{Input} & \quad = \quad \text{Output} \\
\text{Input} & \quad \times \quad \text{Input} & \quad = \quad \text{Output}
\end{align*} \]
Consider: Gaussian Elimination

Active submatrix shrinks as elimination progresses

Imbalance and Block Array Distributions

- Consider a block distribution for Gaussian Elimination
 — amount of computation per data item varies
 — a block decomposition would lead to significant load imbalance
Block Cyclic Distribution

Variant of the block distribution scheme that can be used to alleviate the load-imbalance and idling

Steps

1. partition an array into many more blocks than the number of available processes
2. assign blocks to processes in a round-robin manner
 - each process gets several non-adjacent blocks
Block-Cyclic Distribution

- Cyclic distribution: special case with block size = 1
- Block distribution: special case with block size is n/p
 —n is the dimension of the matrix; p is the # of processes
Decomposition by Graph Partitioning

Sparse-matrix vector multiply

- Graph of the matrix is useful for decomposition
 - work \(\sim \) number of edges
 - communication for a node \(\sim \) node degree

- Goal: balance work & minimize communication

- Partition the graph
 - assign equal number of nodes to each process
 - minimize edge count of the graph partition
Partitioning a Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut
Partitioning a task-dependency graph

- Optimal partitioning for general task-dependency graph — NP-complete problem
- Excellent heuristics exist for structured graphs
Mapping a Sparse Matrix

Sparse matrix-vector product

sparse matrix structure

mapping
partitioning

17 items to communicate

C0 = (4,5,6,7,8)
C1 = (0,1,2,3,8,9,10,11)
C2 = (0,4,5,6)
Mapping a Sparse Matrix

Sparse matrix-vector product

sparse matrix structure

mapping partitioning
Hierarchical Mappings

• Sometimes a single mapping is inadequate
 —e.g., task mapping of quicksort binary tree cannot readily use a large number of processors.

• Hierarchical approach
 —use a task mapping at the top level
 —data partitioning within each task
Topics for Today

• Decomposition techniques - part 2
 —exploratory decomposition
 —hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
 —static mappings
 —dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates
Schemes for Dynamic Mapping

- Dynamic mapping AKA dynamic load balancing
 - load balancing is the primary motivation for dynamic mapping
- Styles
 - centralized
 - distributed
Centralized Dynamic Mapping

- Processes = masters or slaves
- General strategy
 - when a slave runs out of work → request more from master
- Challenge
 - master may become bottleneck for large # of processes
- Approach
 - chunk scheduling: process picks up several of tasks at once
 - however
 - large chunk sizes may cause significant load imbalances
 - gradually decrease chunk size as the computation progresses
Distributed Dynamic Mapping

- All processes as peers
- Each process can send or receive work from other processes
 - avoids centralized bottleneck
- Four critical design questions
 - how are sending and receiving processes paired together?
 - who initiates work transfer?
 - how much work is transferred?
 - when is a transfer triggered?
- Ideal answers can be application specific
- Cilk uses a distributed dynamic mapping: “work stealing”
Topics for Today

• Decomposition techniques - part 2
 —exploratory decomposition
 —hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
 —static mappings
 —dynamic mappings

Methods for minimizing interaction overheads

• Parallel algorithm design templates
Minimizing Interaction Overheads (1)

“Rules of thumb”

• Maximize data locality
 — don’t fetch data you already have
 — restructure computation to reuse data promptly

• Minimize volume of data exchange
 — partition interaction graph to minimize edge crossings

• Minimize frequency of communication
 — try to aggregate messages where possible

• Minimize contention and hot-spots
 — use decentralized techniques (avoidance)
Minimizing Interaction Overheads (2)

Techniques

• Overlap communication with computation
 — use non-blocking communication primitives
 – overlap communication with your own computation
 – one-sided: prefetch remote data to hide latency
 — multithread code on a processor
 – overlap communication with another thread’s computation

• Replicate data or computation to reduce communication

• Use group communication instead of point-to-point primitives

• Issue multiple communications and overlap their latency
 (reduces exposed latency)
Topics for Today

• Decomposition techniques - part 2
 —exploratory decomposition
 —hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
 —static mappings
 —dynamic mappings

• Methods for minimizing interaction overheads

Parallel algorithm design templates
Parallel Algorithm Model

• Definition: ways of structuring a parallel algorithm

• Aspects of a model
 — decomposition
 — mapping technique
 — strategy to minimize interactions
Common Parallel Algorithm Templates

• Data parallel
 — each task performs similar operations on different data
 — typically statically map tasks to processes

• Task graph
 — use task dependency graph relationships to
 – promote locality, or reduce interaction costs

• Master-slave
 — one or more master processes generate work
 — allocate it to worker processes
 — allocation may be static or dynamic

• Pipeline / producer-consumer
 — pass a stream of data through a sequence of processes
 — each performs some operation on it

• Hybrid
 — apply multiple models hierarchically, or
 — apply multiple models in sequence to different phases
References

- Adapted from slides “Principles of Parallel Algorithm Design” by Ananth Grama
- Based on Chapter 3 of “Introduction to Parallel Computing” by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley, 2003