Mutual Exclusion:
Classical Algorithms for Locks

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu
Motivation

• Problem: ensure that a data structure is maintained consistently
 — avoid conflicting accesses to shared data (data races)
 – read/write conflicts
 – write/write conflicts

• Locks guarantee consistency by providing exclusion
 — acquire lock before manipulating the shared data
 — release lock when finished manipulating the shared data
Problems with Locks

- **Conceptual**
 - coarse-grained: poor scalability
 - fine-grained: hard to write

- **Semantic**
 - deadlock
 - priority inversion

- **Performance**
 - intolerance of page faults and preemption
Alternatives to Locks

- **Transactional memory (TM)**
 - support arbitrary atomic actions on multi-word shared data
  ```c
  atomic (entries > 0) {
    node *first = head; head = head->next;
    entries--; return first;
  }
  ```
 - transactions that don’t conflict run uninterrupted in parallel
 - transactions that conflict abort and retry
 - benefit: no need for programmer to worry about deadlock!
 - cost: repeated aborts can waste resources and hurt performance
 + easy to use, well-understood metaphor
 - high overhead in software; HTM on Blue Gene/Q, Intel Haswell, IBM Power8
 ± subject of much active research

- **Ad hoc non-blocking synchronization (NBS)**
 + thread failure/delay cannot prevent progress
 + can be faster than locks (stacks, queues)
 - difficult to write: every new algorithm is a publishable result
 + can be “canned” in libraries (e.g. java.util.concurrent’s ConcurrentLinkedQueue)
Synchronization Landscape

Programmer Effort

System Performance

Figure credit: William Scherer
Properties of Good Lock Algorithms

- Mutual exclusion (safety property)
 - critical sections of different threads do not overlap
 - cannot guarantee integrity of computation without this property

- No deadlock
 - if some thread attempts to acquire the lock, then some thread will acquire the lock

- No starvation
 - every thread that attempts to acquire the lock eventually succeeds
 - implies no deadlock

Notes

- Deadlock-free locks do not imply a deadlock-free program
 - e.g., can create circular wait involving a pair of “good” locks

- Starvation freedom is desirable, but not essential
 - practical locks: many permit starvation, although it is unlikely to occur

- Without a real-time guarantee, starvation freedom is a weak property
Topics for Today

Classical locking algorithms using load and store

- Steps toward a two-thread solution
 —two partial solutions and their properties
- Peterson’s algorithm: a two-thread solution
- Tree lock for n threads
- Lamport’s bakery lock for n threads
- Performance evaluation
Classical Lock Algorithms

- Use atomic load and store only, no stronger atomic primitives
- Not used in practice
 - locks based on stronger atomic primitives are more efficient
- Why study classical lock algorithms?
 - understand the principles underlying synchronization
 - ubiquitous in parallel programs
 - appreciate their subtlety
 - understand the motivation for atomic operations in hardware
Toward a Classical Lock for Two Threads

• First, consider two inadequate but interesting lock algorithms
 —use load and store only

• Assumptions
 —only two threads
 —each thread has a unique value of self_threadid ∈ {0,1}
class Lock1: public Lock {
 private:
 volatile bool flag[2];
 public:
 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true;
 while (flag[other_threadid] == true);
 }
 void release() {
 flag[self_threadid] = false;
 }
 }
Using Lock1

假设初始时两个标志都为假

线程 0
- `flag[0] = true`
- `while(flag[1] == true);`
- `flag[0] = false`

线程 1
- `flag[1] = true`
- `while(flag[0] == true);`
- `flag[1] = false`

线程 0
- `CS_0`
- `wait`
- `CS_1`
- `flag[1] = false`
Lock1 Provides Mutual Exclusion

Proof

• Suppose not. Then \(\exists j, k \in \text{integers} \)
 \[CS_0^j \not\rightarrow CS_1^k \quad \text{and} \quad CS_1^k \not\rightarrow CS_0^j \]

• Consider each thread’s acquire before its \(j^{th} \) (\(k^{th} \)) critical section
 \[
 \begin{align*}
 \text{write}_0(\text{flag}[0] = \text{true}) & \rightarrow \text{read}_0(\text{flag}[1] == \text{false}) \rightarrow CS_0 \quad (1) \\
 \text{write}_1(\text{flag}[1] = \text{true}) & \rightarrow \text{read}_1(\text{flag}[0] == \text{false}) \rightarrow CS_1 \quad (2)
 \end{align*}
 \]

• However, once \(\text{flag}[1] == \text{true} \), it remains \(\text{true} \) while thread 1 in \(CS_1 \)

• So (1) could not hold unless
 \[
 \begin{align*}
 \text{read}_0(\text{flag}[1] == \text{false}) & \rightarrow \text{write}_1(\text{flag}[1] = \text{true}) \quad (3)
 \end{align*}
 \]

• From (1), (2), and (3)
 \[
 \begin{align*}
 \text{write}_0(\text{flag}[0] = \text{true}) & \rightarrow \text{read}_0(\text{flag}[1] == \text{false}) \rightarrow \\
 \text{write}_1(\text{flag}[1] = \text{true}) & \rightarrow \text{read}_1(\text{flag}[0] == \text{false}) \\
 \end{align*}
 \]

• By (4) \(\text{write}_0(\text{flag}[0] = \text{true}) \rightarrow \text{read}_1(\text{flag}[0] == \text{false}) \): a contradiction
class Lock1: public Lock {
 private:
 volatile bool flag[2];
 public:
 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true;
 while (flag[other_threadid] == true);
 }
 void release() {
 flag[self_threadid] = false;
 }
}
Using Lock1

thread 0
flag[0] = true
while(flag[1] == true);
wait

deadlock!

thread 1
flag[1] = true
while(flag[0] == true);
wait

wait
Summary of Lock1 Properties

- Lock1 guarantees mutual exclusion
- Works if one thread completes its acquire before the other
- Deadlock if both threads write flags before either reads
- Since it admits deadlock, Lock1 is inadequate
Lock2

class Lock2: public Lock {
 private:
 volatile int victim;
 public:
 void acquire() {
 victim = self_threadid;
 while (victim == self_threadid); // busy wait
 }
 void release() {}
}
Using Lock2

thread 0

victim = 0
while(victim == 0);

wait

victim = 0
while(victim == 0);

wait

thread 1

victim = 1
while(victim == 1);

wait
Lock2 Provides Mutual Exclusion

Proof

- Suppose not. Then \(\exists j, k \in \text{integers} \)
 \[CS_0^j \leftrightarrow CS_1^k \quad \text{and} \quad CS_1^k \leftrightarrow CS_0^j \]

- Consider each thread’s acquire before its \(j^{\text{th}} \) \((k^{\text{th}}) \) critical section
 \[
 \begin{align*}
 \text{write}_0(\text{victim} = 0) & \rightarrow \text{read}_0(\text{victim} \neq 0) \rightarrow CS_0 \quad (1) \\
 \text{write}_1(\text{victim} = 1) & \rightarrow \text{read}_1(\text{victim} \neq 1) \rightarrow CS_1 \quad (2)
 \end{align*}
 \]

- For thread 0 to enter the critical section, thread 1 must assign \(\text{victim} = 1 \)
 \[
 \begin{align*}
 \text{write}_0(\text{victim} = 0) & \rightarrow \text{write}_1(\text{victim} = 1) \rightarrow \text{read}_0(\text{victim} \neq 0) \rightarrow CS_0 \quad (3)
 \end{align*}
 \]

- Once \(\text{write}_1(\text{victim} = 1) \) occurs, \(\text{victim} \) does not change

- Therefore, thread 1 cannot \(\text{read}_1(\text{victim} \neq 1) \) and enter \(CS_1 \)

- Contradiction!

```c
void acquire() {
    victim = self_threadid;
    while (victim == self_threadid); // busy wait
}
```
Lock2 protocol
class Lock2: public Lock {
 private:
 volatile int victim;
 public:
 void acquire() {
 victim = self_threadid;
 while (victim == self_threadid); // busy wait
 }
 void release() { }
}
Using Lock2

thread 0

victim = 0

while(victim == 0);

wait

deadlock!
Summary of Lock2 Properties

• Guarantees mutual exclusion
• If two threads run concurrently: acquire succeeds for one
• Deadlock if one thread runs before the other
• Since it admits deadlock, Lock2 is inadequate
Combining the Ideas

Lock1 and Lock2 complement each other

- Each succeeds under conditions that causes the other to fail
 - Lock1 succeeds when CS attempts do not overlap
 - Lock2 succeeds when CS attempts do overlap

- Design a lock protocol that leverages the strengths of both…
Peterson’s Algorithm: 2-way Mutual Exclusion

class Peterson: public Lock {
 private:
 volatile bool flag[2];
 volatile int victim;
 public:
 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true; // I’m interested
 victim = self_threadid // you go first
 while (flag[other_threadid] == true &&
 victim == self_threadid);
 }
 void release() {
 flag[self_threadid] = false;
 }
}

Peterson’s Lock: Serialized Acquires

```
flag[0] = true
victim = 0
while(flag[1] == true && victim == 0);
flag[0] = false
CS_0

flag[0] = false

flag[1] = true
victim = 1
while(flag[0] == true && victim == 1);
flag[1] = false
CS_1

wait
```

thread 0

thread 1
Peterson’s Lock: Concurrent Acquires

thread 0

flag[0] = true
victim = 0
while(flag[1] == true
&& victim == 0);
flag[0] = false

thread 1

flag[1] = true
victim = 1
while(flag[0] == true
&& victim == 1);
flag[1] = false

wait

CS₀
flag[0] = false

CS₁
flag[1] = false
Peterson’s Algorithm Provides Mutual Exclusion

- Suppose not. Then $\exists j, k \in \text{integers}$
 \[CS_0^j \not\leftrightarrow CS_1^k \text{ and } CS_1^k \not\leftrightarrow CS_0^j \]
- Consider each thread’s lock op before its j^{th} (k^{th}) critical section
 \[
 \text{write}_0(\text{flag}[0] = \text{true}) \rightarrow \text{write}_0(\text{victim} = 0) \rightarrow \\
 \text{read}_0(\text{flag}[1] == \text{false}) \text{ or } \text{read}_0(\text{victim} != 0) \rightarrow CS_0 \tag{1}
 \]
 \[
 \text{write}_1(\text{flag}[1] = \text{true}) \rightarrow \text{write}_1(\text{victim} = 1) \rightarrow \\
 \text{read}_1(\text{flag}[0] == \text{false}) \text{ or } \text{read}_1(\text{victim} != 1) \rightarrow CS_1 \tag{2}
 \]
- Without loss of generality, assume thread 0 was the last to write victim
 \[
 \text{write}_1(\text{victim} = 1) \rightarrow \text{write}_0(\text{victim} = 0) \tag{3}
 \]
- From (1), (2), and (3), thread 0 must read $\text{victim} == 0$ in (1)
- Since thread 0 nevertheless enters its CS, it must have read $\text{flag}[1]==\text{false}$
- From (1), it must be the case that $\text{write}_0(\text{victim} = 0) \rightarrow \text{read}_0(\text{flag}[1] == \text{false})$
- From (1), (2), and (3) and transitivity,
 \[
 \text{write}_1(\text{flag}[1] = \text{true}) \rightarrow \text{write}_1(\text{victim} = 1) \rightarrow \\
 \text{write}_0(\text{victim} = 0) \rightarrow \text{read}_0(\text{flag}[1] == \text{false}) \tag{4}
 \]
- From (4), it follows that $\text{write}_1(\text{flag}[1] = \text{true}) \rightarrow \text{read}_0(\text{flag}[1] == \text{false})$
- Contradiction!
Peterson’s Algorithm is Starvation-Free

• Suppose not: WLG, suppose that thread 0 waits forever in acquire
 — it must be executing the while statement
 – waiting until flag[1] == false or victim != 0

• What is thread 1 doing while thread 0 fails to make progress?
 — perhaps outside the critical section
 – flag[1] == true only if thread 1 is awaiting or in the critical section
 contradiction!
 — perhaps entering and leaving the critical section
 – if so, thread 1 will set victim to 1 when it tries to re-enter the CS
 – once it is set to 1, it will not change
 – thus, thread 0 must eventually return from acquire
 contradiction!
 — waiting in acquire as well
 – waiting for flag[0] == false or victim == 0
 – victim cannot be both 1 and 0, thus both threads cannot wait
 contradiction!

• Corollary: Peterson’s lock is deadlock-free as well
Dekker’s Algorithm

```plaintext
"begin integer c1, c2, turn;
    c1:= 1; c2:= 1; turn:= 1;
parbegin
  process 1: begin A1: c1:= 0;
      L1: if c2 = 0 then
          begin if turn = 1 then goto L1;
              c1:= 1;
          end;
      B1: if turn = 2 then goto B1;
          goto A1
      end;
    critical section 1;
    turn:= 2; c1:= 1;
    remainder of cycle 1; goto A1
  end;
  process 2: begin A2: c2:= 0;
      L2: if c1 = 0 then
          begin if turn = 2 then goto L2;
              c2:= 1;
          end;
      B2: if turn = 1 then goto B2;
          goto A2
      end;
    critical section 2;
    turn:= 1; c2:= 1;
    remainder of cycle 2; goto A2
  end
end
end"
```

Dijkstra, Edsger W. *Cooperating sequential processes (EWD-123)* (PDF). E.W. Dijkstra Archive. Center for American History, University of Texas at Austin. (transcription) (September 1965)
From 2-way to N-way Mutual Exclusion

- Peterson’s lock provides 2-way mutual exclusion
- How can we generalize to N-way mutual exclusion, $N > 2$?
- Several strategies that are generalizations of Peterson’s lock
An N-way Lock as a Tree of Peterson Locks

- For a lock involving N threads, construct a balanced binary tree with N/2 leaves. Assume N = \(2^k\)
- Each thread uses Peterson’s lock to compete against another thread in a leaf node of the tree
- When a thread acquires a lock, it moves up the tree to compete for the parent lock
- When a thread acquires the root lock, it may enter the critical section
- When a thread exits the critical section, it releases locks along the path from the root to its leaf
Properties of Tree of Peterson Locks

- $O(N)$ space
 - if $N = 2^k$, there are 2^{k-1} leaves and $N-1$ nodes in total
- $\lg N$ steps to acquire or release the lock
class LamportBakery: public Lock {
 private:
 volatile bool flag[N]; volatile Label label[N];
 public:
 void acquire() {
 int i = self_threadid;
 flag[i] = true;
 label[i] = max(label[0], ..., label[N-1]) + 1;
 while (exists k != i such that
 flag[k] && <label[k],k> <L <label[i],i>);
 }
 void release() {
 flag[self_threadid] = 0;
 }
 }

lexicographic ordering of <label, thread_id> tuples;
thread id is used in tuple to break labeling ties
Bakery Algorithm Intuition

• Data structure components
 —flag[A] = Boolean that indicate whether A wants to enter the CS
 —label[A] = integer that indicates the thread’s turn to enter the bakery

• Protocol operation
 —when a thread tries to acquire the lock, it generates a new label
 – reads all other thread labels in some arbitrary order
 – generates a label greater than the largest it read
 – notes:
 if 2 threads select labels concurrently, they may get the same
 —algorithm uses lexicographical order on pairs of (label, thread_id)
 – (label[j], j) <L (label[k],k)
 iff (label[j] < label[k]) || ((label[j] == label[k]) && j < k)
 —in the waiting phase
 – a thread repeatedly rereads the labels
 – waits until
 no thread with its flag set has a smaller (label, thread_id) pair

• Proofs: See Herlihy and Shavit manuscript (deadlock-free, FIFO, ME)
Observations

• Bakery algorithm is concise, elegant and fair

• Why is it not practical?
 —must read N distinct locations; N could be very large
 —threads must be assigned unique ids between 0 and n-1
 – awkward for dynamic threads
 —value of a label is monotonically increasing & unbounded

• Are locking algorithms based on load/store commonly used?
 —no.
 —minimum space O(N)
 —uncontended acquisition latency is O(lg N)

• Atomic primitives enable locks with
 —constant space
 —constant time acquisition in the uncontended case
 —maximum number of threads need not be known in advance
Spin Lock Performance: Maximal Contention

- Peterson-Buhr is a tree of Peterson’s 2-party locks using load/store
- Spinlock uses test-and-set and exponential backoff
- MCS lock uses SWAP and CAS

Figure credit: Peter A. Buhr, David Dice and Wim H. Hesselink. High-performance N-thread software solutions for mutual exclusion. Concurrency and Computation: Practice and Experience, 2014.
Spin Lock Performance: Minimal Contention

- Peterson-Buhr is a tree of Peterson’s 2-party locks using load/store
- Spinlock uses test-and-set and exponential backoff
- MCS lock uses SWAP and CAS

Figure credit: Peter A. Buhr, David Dice and Wim H. Hesselink. High-performance N-thread software solutions for mutual exclusion. Concurrency and Computation: Practice and Experience, 2014.
References

class Filter: public Lock {
 private:
 volatile int level[N]; volatile int victim[N-1];
 public:
 void acquire() {
 for (int j = 1; j < N; j++) {
 level [self_threadid] = j;
 victim [j] = self_threadid;
 // wait while conflicts exist
 while (sameOrHigher(self_threadid, j) &&
 victim[j] == self_threadid);
 }
 }

 bool sameOrHigher(int i, int j) {
 for(int k = 0; k < N; k++)
 if (k != i && level[k] >= j) return true;
 return false;
 }

 void release() {
 level[self_threadid] = 0;
 }
}
Understanding the Filter Lock

- Peterson’s lock used two-element Boolean flag array
- Filter lock generalization: an N-element integer level array
 - value of level[k] = highest level thread k expressed interest in entering
 - each thread must pass through N-1 levels of exclusion
- Each level has its own victim flag to filter out 1 thread, excluding it from the next level
 - natural generalization of victim variable in Peterson’s algorithm
- Properties of levels
 - at least one thread trying to enter level k succeeds
 - if more than one thread is trying to enter level k, then at least one is blocked
- For proofs, see Herlihy and Shavit’s book