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Course Information

• Time: TTh 1:00-2:15 

• Place: DH 1075  

• Instructor: John Mellor-Crummey 
—Email: johnmc@rice.edu   
—Office: DH 3082, 713-348-5179 
—Office Hours: Thursday 9am-10am or by appointment 

• WWW site: http://www.clear.rice.edu/comp422
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Parallelism

• Definition: ability to execute parts of a computation 
concurrently 

• Goal: solve large problems fast  
—with more parallelism 

– solve larger problems in the same time 
– solve a fixed size problem in shorter time  

• Grain of parallelism: how big are the units? 
—bits, instructions, blocks, loop iterations, procedures, … 

• COMP 422/534 focus: explicit thread-level parallelism 
—thread = a unit of execution consisting of a sequence of 

instructions that is managed by either the operating system  
or a runtime system
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Course Objectives

• Learn fundamentals of parallel computing 
—principles of parallel algorithm design 
—programming models and methods 
—parallel computer architectures 
—parallel algorithms 
—modeling and analysis of parallel programs and systems 

• Develop skill writing parallel programs 
—programming assignments 

• Develop skill analyzing parallel computing problems 
—solving problems posed in class
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Difference Between 422 and 534

• COMP 422 assignments 
—produce well-written parallel programs 
—examine their scalability and performance 
—write a report about how each program works and your 

observations about its scalability and performance 

• COMP 534 assignments 
—same assignments as 422 students with an added component 

– use a performance tool to analyze where a program spends its time 
and how each program component scales 

—performance and scalability of submitted programs counts for a 
larger fraction of the grade



Recommended Books

• Introduction to Parallel Computing, 2nd Ed, Ananth Grama, 
Anshul Gupta, George Karypis, Vipin Kumar (2003) 

• Using OpenMP: Portable Shared Memory Parallel 
Programming - Barbara Chapman, Gabriele Jost, Ruud van 
der Pas (2008) 

• Using MPI: Portable Parallel Programming with the Message-
Passing Interface, 3rd Ed - William Gropp, Ewing Lusk, 
Anthony Skjellum (2014) 

• Programming Massively Parallel Processors: A Hands-on 
Approach, 3rd Ed. - David B. Kirk, Wen-mei W. Hwu (2016)
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Topics (Part 1)
• Introduction  

• Principles of parallel algorithm design 
—decomposition techniques 
—mapping & scheduling computation 
—templates 

• Programming shared-address space systems 
—Cilk Plus 
—OpenMP 
—Pthreads 
—synchronization 

• Parallel computer architectures 
—shared memory systems and cache coherence 
—distributed-memory systems 
—interconnection networks and routing
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Topics (Part 2)
• Programming scalable systems 

—message passing: MPI 
—global address space languages 

• Collective communication 

• Analytical modeling of program performance 
—speedup, efficiency, scalability, cost optimality, isoefficiency 

• Parallel algorithms 
—non-numerical algorithms: sorting, graphs 
—numerical algorithms: dense and sparse matrix algorithms 

• Performance measurement and analysis of parallel programs 

• GPU Programming with CUDA 

• Problem solving on clusters using MapReduce 

• Warehouse-scale computing
8
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Prerequisites

• Programming in C, C++, or similar 

• Basics of data structures 

• Basics of machine architecture 

• Prerequisites  
—COMP 321 (formerly 221) INTRO TO COMPUTER SYSTEMS 
—or equivalent 

• See me if you have concerns
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Rules
• Generally, use Piazza for class communication (see syllabus) 

• If you send me email 
—subject line must include COMP 422/534 
—send it from your Rice email address

• Don’t share code for the assignments  
—you may not share code with classmates 
—you may not collaborate with people who are not your 

classmates or instructor in any way 
– e.g., don’t post questions to programming forums 

—you may not take more than two lines of code from an external 
resource and include it in one of your assignments 

—we use automated tools to identify violations 
– don’t underestimate their power! 

—violations will be reported to the honor council 

• See syllabus for full definition of misconduct 
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Motivations for Parallel Computing

• Technology push 

• Application pull
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The Rise of 
Multicore 

Processors



Advance of Semiconductors: “Moore’s Law”

Gordon Moore, 
Founder of Intel 

• 1965: since the 
integrated circuit was 
invented, the number 
of transistors in an 
integrated circuit has 
roughly doubled every 
year; this trend would 
continue for the 
foreseeable future 

• 1975: revised - circuit 
complexity doubles 
every two years
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By shigeru23 CC BY-SA 3.0, via Wikimedia Commons



 
Evolution of Microprocessors 1971-2017
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Figure credits:  
Intel processors: Shekhar Borkar, Andrew A. Chien, The Future of Microprocessors. 

Communications of the ACM, Vol. 54 No. 5, Pages 67-77 10.1145/1941487.1941507. 
Oracle M7: Timothy Prickett Morgan Oracle Cranks Up The Cores To 32 With Sparc M7 

Chip, Enterprise Tech - Systems Edition, August 13, 2014.

https://en.wikichip.org/wiki/ibm/microarchitectures/power9

Oracle M7, 2015 
32 cores, 64MB cache 

10B transistors

Intel 4004, 1971 
1 core, no cache 
23K transistors

(Chip pictures not to scale)

IBM Power9, 2017 
24 cores, 120MB cache 

8B transistors
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Leveraging Moore’s Law Trends

From increasing transistor count to performance 

• More transistors =  ↑ opportunities for exploiting parallelism 

• Parallelism in a CPU core 
—implicit parallelism: invisible to the programmer 

– pipelined execution of instructions 
– multiple functional units for multiple independent pipelines 

—explicit parallelism 
– long instruction words (VLIW) 

 bundles of independent instructions that can be issued together 
 e.g., Intel Itanium processor 2000-2017 

– SIMD processor extensions up to 512 bits wide (AVX512) 
 integer, floating point, complex data  
 operations on up to 16 32-bit data items per instruction 
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Microprocessor Architecture (Mid 90’s)

• Superscalar (SS) designs were the state of the art 
—multiple functional units (e.g., int, float, branch, load/store) 
—multiple instruction issue 
—dynamic scheduling: HW tracks instruction dependencies 
—speculative execution: look past predicted branches 
—non-blocking caches: multiple outstanding memory operations 

• Apparent path to higher performance?  
—wider instruction issue 
—support for more speculation
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Trouble on the Horizon

 Increasing issue width provides diminishing returns 

Two factors1 

• Fundamental circuit limitations 
—delays ↑ as issue queues ↑ and multi-port register files ↑  
—increasing delays limit performance returns from wider issue 

• Limited amount of instruction-level parallelism 
—inefficient for programs with difficult-to-predict branches

1The case for a single-chip multiprocessor, K. Olukotun, B. Nayfeh,  
L. Hammond, K. Wilson, and K. Chang, ASPLOS-VII, 1996.
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Issue Waste

Instruction-level Parallelism Concerns

• Contributing factors 
—instruction dependencies 
—long-latency operations within a thread
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Some Sources of Wasted Issue Slots

• TLB miss 

• I cache miss 

• D cache miss 

• Load delays (L1 hits) 

• Branch misprediction 

• Instruction dependences 

• Memory conflict 

 Memory Hierarchy

 Control Flow

 Instruction Stream
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Simulations of 8-issue Superscalar
Simultaneous multithreading: maximizing  

on-chip parallelism, Tullsen et. al. ISCA, 1995.

Applications: most of SPEC92 

• On average  < 1.5 IPC (19%) 

• Dominant waste differs by 
application 

• Short FP dependences: 37% 

Summary:  
Highly underutilized
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Power and Heat Stall Clock Frequencies

     May 17, 2004 … Intel, the world's largest chip maker, publicly 
acknowledged that it had hit a ''thermal wall'' on its microprocessor line. 
As a result, the company is changing its product strategy and disbanding 
one of its most advanced design groups. Intel also said that it would 
abandon two advanced chip development projects … 

     Now, Intel is embarked on a course already adopted by some of its major 
rivals: obtaining more computing power by stamping multiple processors 
on a single chip rather than straining to increase the speed of a single 
processor … Intel's decision to change course and embrace a ''dual core'' 
processor structure shows the challenge of overcoming the effects of heat 
generated by the constant on-off movement of tiny switches in modern 
computers … some analysts and former Intel designers said that Intel 
was coming to terms with escalating heat problems so severe they 
threatened to cause its chips to fracture at extreme temperatures… 

New York Times



Technology Trends

22Figure credit: Karl Rupp. https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png.



Recent Multicore Processors
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• 2019: AMD EPYC 7742 
—64 cores; 2-way SMT; 256MB cache 

• 2017: IBM Power9 
—24 cores; 4-way SMT; 120MB cache 

• 2016: Intel Knight’s Landing 
—72 cores; 4-way SMT; 36MB cache 

• 2015: Oracle SPARC M7 
—32 cores; 8-way SMT; 64MB cache 

• Fall 14: Intel Haswell 
—18 cores; 2-way SMT; 45MB cache  

• June 14: IBM Power8 
—12 cores; 8-way SMT; 96MB cache 

• Sept 13: SPARC M6 
—12 cores; 8-way SMT; 48MB cache 

• May 12: AMD Trinity 
—4 CPU cores; 384 graphics cores

IBM Power9 
https://en.wikichip.org/wiki/ibm/

microarchitectures/power9



Intel Scalable Processors (April 2, 2019)

24Latency-optimized cores
2 SMT threads/core for all but one processor

1 thread/core
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Application Pull

• Complex problems require computation on large-scale data 

• Sufficient performance is available only through massive 
parallelism
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Computing and Science 

• “Computational modeling and simulation are among the most 
significant developments in the practice of scientific inquiry in the 
20th century. Within the last two decades, scientific computing 
has become an important contributor to all scientific disciplines.  

• It is particularly important for the solution of research problems 
that are insoluble by traditional scientific theoretical and 
experimental approaches, hazardous to study in the laboratory, 
or time consuming or expensive to solve by traditional means” 

— “Scientific Discovery through Advanced Computing” 
      DOE Office of Science, 2000
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The Need for Speed: Complex Problems 
• Science 

—understanding matter from elementary particles to cosmology 
—storm forecasting and climate prediction 
—understanding biochemical processes of living organisms 

• Engineering 
—multiscale simulations of metal additive manufacturing processes 
—understanding quantum properties of materials 
—understanding reaction dynamics of heterogeneous catalysts 
—earthquake and structural modeling 
—pollution modeling and remediation planning 
—molecular nanotechnology 

• Business 
—computational finance - high frequency trading 
—information retrieval 
—data mining “big data” 

• Defense 
—nuclear weapons stewardship 



The Scientific Case for Exascale Computing

• Predict regional climate changes: sea 
level rise, drought and flooding, and 
severe weather patterns 

• Reduce carbon footprint of 
transportation 

• Improve efficiency and safety of nuclear 
energy 

• Improve design for cost-effective 
renewable energy resources such as 
batteries, catalysts, and biofuels 

• Certify the U.S. nuclear stockpile 

• Design advanced experimental facilities, 
such as accelerators, and magnetic and 
inertial confinement fusion 

• Understand properties of fission and 
fusion reactions  

• Reverse engineer the human brain 

• Design advanced materials

28
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Earthquake Simulation in Japan

Earthquake Research Institute, University of Tokyo 
 Tonankai-Tokai Earthquake Scenario 
 Video Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004

March 11, 2011 Fukushima Daiichi Nuclear Power 
Plant suffered major damage from a 9.0 earthquake 

and subsequent tsunami that hit Japan.  

The earthquake and tsunami disabled the reactor 
cooling systems, leading to radiation leaks and 

triggering a 30 km evacuation zone around the plant. 

Confirmed deaths: 19,575 as of September 2017



Ocean Global Circulation Model for the Earth Simulator 
 Seasonal Variation of Ocean Temperature 
 Video Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004

Ocean Circulation Simulation
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El Niño is an anomalous, yet periodic, warming of the central and eastern equatorial 
Pacific Ocean. For reasons still not well understood, every 2-7 years, this patch of 
ocean warms for six to 18 months 

El Niño was strong through the Northern Hemisphere winter 2015-16, with a 
transition to ENSO-neutral in May 2016. 

Source: http://www.weather.com/storms/winter/news/january-march-outlook-2016-noaa-wsi

https://www.climate.gov/enso



Community Earth System Model (CESM)
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Figure courtesy of M. Vertenstein (NCAR)



CESM Execution Configurations
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Figure courtesy of M. Vertenstein (NCAR)



CESM Simulations on a Cray Supercomputer

33
Figure courtesy of Pat Worley (ORNL)



34

Simulating Turbulent Reacting Flows: S3D 
• Direct numerical simulation (DNS) of turbulent combustion 

— state-of-the-art code developed at CRF/Sandia 
– PI: Jaqueline H. Chen, SNL 

— 2020: 600K hours, IBM AC922 2xP9+6xV100 
— “DNS of Turbulent Combustion Towards  

Efficient Engines with In Situ Analytics” 

• Science 
— study micro-physics of turbulent reacting flows 

– physical insight into chemistry turbulence interactions 
— simulate chemistry and multi-physics (sprays, radiation, soot) 
— develop and validate reduced model descriptions used in 

macro-scale simulations of engineering-level systems 

DNS Physical 
Models

Engineering 
CFD codes 

(RANS, LES)
Text and figures courtesy of Jacqueline H. Chen, SNL
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Fluid-Structure Interactions
• Simulate … 

—rotational geometries (e.g. engines, pumps), flapping wings 

• Traditionally, such simulations have used a fixed mesh 
—drawback: solution quality is only as good as initial mesh 

• Dynamic mesh computational fluid dynamics 
—integrate automatic mesh generation within parallel flow solver 

– nodes added in response to user-specified refinement criteria 
– nodes deleted when no longer needed 
– element connectivity changes to maintain minimum energy mesh 

—mesh changes continuously as geometry + solution changes 

• Example: 3D simulation of a hummingbird’s flight 

• Another example: 3D heart simulation  [2014] 
—https://youtu.be/2LPboySOSvo

[Andrew Johnson, AHPCRC 2005] 
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Air Velocity (Front)
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Air Velocity (Side)
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Mesh Adaptation (front)
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Mesh Adaptation (side)
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Challenges of Explicit Parallelism

• Algorithm development is harder 
—complexity of specifying and coordinating concurrent activities 

• Software development is much harder 
—lack of standardized & effective development tools and 

programming models 
—subtle program errors: race conditions 

• Rapid pace of change in computer system architecture 
—a great parallel algorithm for one machine may not be suitable for 

another 
– example: homogeneous multicore processors vs. GPUs
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Hummingbird Simulation in UPC

• UPC: PGAS language for scalable parallel systems 
—supports a shared memory programming model on a cluster 

• Application overview 
—distribute mesh among the processors 
—partition the mesh among the processors 
—each processor maintains and controls its piece of the mesh  

– has a list of nodes, faces, and elements 
—communication and synchronization 

– read-from or write-to other processor’s data elements as required 
– processors frequently synchronize using barriers 
– use “broadcast” and “reduction” patterns 

—constraint 
– only 1 processor may change the mesh at a time
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Algorithm Sketch

At each time step… 

• Test if re-partitioning is required 

• Set up interprocessor communication if mesh changed 

• Split elements into independent (vectorizable) groups 

• Calculate the refinement value at each mesh node  

• Move the mesh  

• Solve the coupled fluid-flow equation system 

• Update the mesh to ensure mesh quality 
—swap element faces to obtain a “Delaunay” mesh 
—add nodes to locations where there are not enough 
—delete nodes from locations where there are too many  
—swap element faces to  obtain a “Delaunay” mesh
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Parallel Hardware 
in the Large



ORNL Summit Supercomputer
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200 x 1015 operations/second



Scale of the Largest HPC Systems (Nov 2019)
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all 10 
> 250K 
cores

hybrid 
CPU+accelerator

homogeneous 
manycore

heterogeneous 
manycore

Intel KNL
(68C/272T)

Intel Xeon (28C/56T)

Intel Xeon (12C/24T) +  
NVIDIA P100 (56SM)

Intel Xeon (12C/24T) + 
Matrix-2000 (128C)

Sunway 4C + 260C > 1.5M 
cores

Source
https://www.top500.org

IBM Power9 (22C/88T) 
4x Nvidia Volta (80SM)

IBM Power9 (22C/88T) 
6x Nvidia Volta (80SM)

Top500 Chart Generator

IBM Power9 (22C/88T) 
4x Nvidia Volta (80SM)

Intel Xeon
(16C/22T)

Intel Xeon (20C/80T) 
2x Nvidia Volta (80SM)

Intel Xeon (24C/48T)
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Achieving High Performance on Parallel Systems

• Memory latency and bandwidth 
—CPU rates are > 200x faster than 

memory 
—bridge speed gap using memory 

hierarchy  
—more cores exacerbates demand  

• Interprocessor communication

Computation is only part of the picture

• Input/output 
— I/O bandwidth to disk typically needs to grow linearly with the  

# processors

Image Credit: Bob Colwell, ISCA 1995

CPU

system



Challenges of Parallelism in the Large

• Parallel science applications are often very sophisticated 
—e.g. adaptive algorithms may require dynamic load balancing 

• Multilevel parallelism is difficult to manage 

• Extreme scale exacerbates inefficiencies 
—algorithmic scalability losses 
—serialization and load imbalance 
—communication or I/O bottlenecks 
—insufficient or inefficient parallelization 

• Hard to achieve top performance even on individual nodes 
—contention for shared memory bandwidth 
—memory hierarchy utilization on multicore processors
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Thursday’s Class

• Introduction to parallel algorithms  
—tasks and decomposition 
—task dependences and critical path 
—mapping tasks 

• Decomposition techniques  
—recursive decomposition  
—data decomposition
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Parallel System for the Course

• NOTS 
—226 nodes, each with two 8C/16T Intel Xeon processors 
—2 nodes with 2 x NVIDIA K80 GPGPUs 
—no global shared memory


