
COMP 422/534
Parallel Computing:

An Introduction

 John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

COMP 422/534 Lecture 1 14 January 2020

2

Course Information

• Time: TTh 1:00-2:15

• Place: DH 1075

• Instructor: John Mellor-Crummey
—Email: johnmc@rice.edu
—Office: DH 3082, 713-348-5179
—Office Hours: Thursday 9am-10am or by appointment

• WWW site: http://www.clear.rice.edu/comp422

3

Parallelism

• Definition: ability to execute parts of a computation
concurrently

• Goal: solve large problems fast
—with more parallelism

– solve larger problems in the same time
– solve a fixed size problem in shorter time

• Grain of parallelism: how big are the units?
—bits, instructions, blocks, loop iterations, procedures, …

• COMP 422/534 focus: explicit thread-level parallelism
—thread = a unit of execution consisting of a sequence of

instructions that is managed by either the operating system
or a runtime system

4

Course Objectives

• Learn fundamentals of parallel computing
—principles of parallel algorithm design
—programming models and methods
—parallel computer architectures
—parallel algorithms
—modeling and analysis of parallel programs and systems

• Develop skill writing parallel programs
—programming assignments

• Develop skill analyzing parallel computing problems
—solving problems posed in class

5

Difference Between 422 and 534

• COMP 422 assignments
—produce well-written parallel programs
—examine their scalability and performance
—write a report about how each program works and your

observations about its scalability and performance

• COMP 534 assignments
—same assignments as 422 students with an added component

– use a performance tool to analyze where a program spends its time
and how each program component scales

—performance and scalability of submitted programs counts for a
larger fraction of the grade

Recommended Books

• Introduction to Parallel Computing, 2nd Ed, Ananth Grama,
Anshul Gupta, George Karypis, Vipin Kumar (2003)

• Using OpenMP: Portable Shared Memory Parallel
Programming - Barbara Chapman, Gabriele Jost, Ruud van
der Pas (2008)

• Using MPI: Portable Parallel Programming with the Message-
Passing Interface, 3rd Ed - William Gropp, Ewing Lusk,
Anthony Skjellum (2014)

• Programming Massively Parallel Processors: A Hands-on
Approach, 3rd Ed. - David B. Kirk, Wen-mei W. Hwu (2016)

6

Topics (Part 1)
• Introduction

• Principles of parallel algorithm design
—decomposition techniques
—mapping & scheduling computation
—templates

• Programming shared-address space systems
—Cilk Plus
—OpenMP
—Pthreads
—synchronization

• Parallel computer architectures
—shared memory systems and cache coherence
—distributed-memory systems
—interconnection networks and routing

7

Topics (Part 2)
• Programming scalable systems

—message passing: MPI
—global address space languages

• Collective communication

• Analytical modeling of program performance
—speedup, efficiency, scalability, cost optimality, isoefficiency

• Parallel algorithms
—non-numerical algorithms: sorting, graphs
—numerical algorithms: dense and sparse matrix algorithms

• Performance measurement and analysis of parallel programs

• GPU Programming with CUDA

• Problem solving on clusters using MapReduce

• Warehouse-scale computing
8

9

Prerequisites

• Programming in C, C++, or similar

• Basics of data structures

• Basics of machine architecture

• Prerequisites
—COMP 321 (formerly 221) INTRO TO COMPUTER SYSTEMS
—or equivalent

• See me if you have concerns

10

Rules
• Generally, use Piazza for class communication (see syllabus)

• If you send me email
—subject line must include COMP 422/534
—send it from your Rice email address

• Don’t share code for the assignments
—you may not share code with classmates
—you may not collaborate with people who are not your

classmates or instructor in any way
– e.g., don’t post questions to programming forums

—you may not take more than two lines of code from an external
resource and include it in one of your assignments

—we use automated tools to identify violations
– don’t underestimate their power!

—violations will be reported to the honor council

• See syllabus for full definition of misconduct

11

Motivations for Parallel Computing

• Technology push

• Application pull

12

The Rise of
Multicore

Processors

Advance of Semiconductors: “Moore’s Law”

Gordon Moore,
Founder of Intel

• 1965: since the
integrated circuit was
invented, the number
of transistors in an
integrated circuit has
roughly doubled every
year; this trend would
continue for the
foreseeable future

• 1975: revised - circuit
complexity doubles
every two years

13

By shigeru23 CC BY-SA 3.0, via Wikimedia Commons

Evolution of Microprocessors 1971-2017

14

Figure credits:
Intel processors: Shekhar Borkar, Andrew A. Chien, The Future of Microprocessors.

Communications of the ACM, Vol. 54 No. 5, Pages 67-77 10.1145/1941487.1941507.
Oracle M7: Timothy Prickett Morgan Oracle Cranks Up The Cores To 32 With Sparc M7

Chip, Enterprise Tech - Systems Edition, August 13, 2014.

https://en.wikichip.org/wiki/ibm/microarchitectures/power9

Oracle M7, 2015
32 cores, 64MB cache

10B transistors

Intel 4004, 1971
1 core, no cache
23K transistors

(Chip pictures not to scale)

IBM Power9, 2017
24 cores, 120MB cache

8B transistors

15

Leveraging Moore’s Law Trends

From increasing transistor count to performance

• More transistors = ↑ opportunities for exploiting parallelism

• Parallelism in a CPU core
—implicit parallelism: invisible to the programmer

– pipelined execution of instructions
– multiple functional units for multiple independent pipelines

—explicit parallelism
– long instruction words (VLIW)

 bundles of independent instructions that can be issued together
 e.g., Intel Itanium processor 2000-2017

– SIMD processor extensions up to 512 bits wide (AVX512)
 integer, floating point, complex data
 operations on up to 16 32-bit data items per instruction

16

Microprocessor Architecture (Mid 90’s)

• Superscalar (SS) designs were the state of the art
—multiple functional units (e.g., int, float, branch, load/store)
—multiple instruction issue
—dynamic scheduling: HW tracks instruction dependencies
—speculative execution: look past predicted branches
—non-blocking caches: multiple outstanding memory operations

• Apparent path to higher performance?
—wider instruction issue
—support for more speculation

17

Trouble on the Horizon

 Increasing issue width provides diminishing returns

Two factors1

• Fundamental circuit limitations
—delays ↑ as issue queues ↑ and multi-port register files ↑
—increasing delays limit performance returns from wider issue

• Limited amount of instruction-level parallelism
—inefficient for programs with difficult-to-predict branches

1The case for a single-chip multiprocessor, K. Olukotun, B. Nayfeh,
L. Hammond, K. Wilson, and K. Chang, ASPLOS-VII, 1996.

18

Issue Waste

Instruction-level Parallelism Concerns

• Contributing factors
—instruction dependencies
—long-latency operations within a thread

19

Some Sources of Wasted Issue Slots

• TLB miss

• I cache miss

• D cache miss

• Load delays (L1 hits)

• Branch misprediction

• Instruction dependences

• Memory conflict

 Memory Hierarchy

 Control Flow

 Instruction Stream

20

Simulations of 8-issue Superscalar
Simultaneous multithreading: maximizing

on-chip parallelism, Tullsen et. al. ISCA, 1995.

Applications: most of SPEC92

• On average < 1.5 IPC (19%)

• Dominant waste differs by
application

• Short FP dependences: 37%

Summary:
Highly underutilized

21

Power and Heat Stall Clock Frequencies

 May 17, 2004 … Intel, the world's largest chip maker, publicly
acknowledged that it had hit a ''thermal wall'' on its microprocessor line.
As a result, the company is changing its product strategy and disbanding
one of its most advanced design groups. Intel also said that it would
abandon two advanced chip development projects …

 Now, Intel is embarked on a course already adopted by some of its major
rivals: obtaining more computing power by stamping multiple processors
on a single chip rather than straining to increase the speed of a single
processor … Intel's decision to change course and embrace a ''dual core''
processor structure shows the challenge of overcoming the effects of heat
generated by the constant on-off movement of tiny switches in modern
computers … some analysts and former Intel designers said that Intel
was coming to terms with escalating heat problems so severe they
threatened to cause its chips to fracture at extreme temperatures…

New York Times

Technology Trends

22Figure credit: Karl Rupp. https://www.karlrupp.net/wp-content/uploads/2015/06/40-years-processor-trend.png.

Recent Multicore Processors

23

• 2019: AMD EPYC 7742
—64 cores; 2-way SMT; 256MB cache

• 2017: IBM Power9
—24 cores; 4-way SMT; 120MB cache

• 2016: Intel Knight’s Landing
—72 cores; 4-way SMT; 36MB cache

• 2015: Oracle SPARC M7
—32 cores; 8-way SMT; 64MB cache

• Fall 14: Intel Haswell
—18 cores; 2-way SMT; 45MB cache

• June 14: IBM Power8
—12 cores; 8-way SMT; 96MB cache

• Sept 13: SPARC M6
—12 cores; 8-way SMT; 48MB cache

• May 12: AMD Trinity
—4 CPU cores; 384 graphics cores

IBM Power9
https://en.wikichip.org/wiki/ibm/

microarchitectures/power9

Intel Scalable Processors (April 2, 2019)

24Latency-optimized cores
2 SMT threads/core for all but one processor

1 thread/core

25

Application Pull

• Complex problems require computation on large-scale data

• Sufficient performance is available only through massive
parallelism

26

Computing and Science

• “Computational modeling and simulation are among the most
significant developments in the practice of scientific inquiry in the
20th century. Within the last two decades, scientific computing
has become an important contributor to all scientific disciplines.

• It is particularly important for the solution of research problems
that are insoluble by traditional scientific theoretical and
experimental approaches, hazardous to study in the laboratory,
or time consuming or expensive to solve by traditional means”

— “Scientific Discovery through Advanced Computing”
 DOE Office of Science, 2000

27

The Need for Speed: Complex Problems
• Science

—understanding matter from elementary particles to cosmology
—storm forecasting and climate prediction
—understanding biochemical processes of living organisms

• Engineering
—multiscale simulations of metal additive manufacturing processes
—understanding quantum properties of materials
—understanding reaction dynamics of heterogeneous catalysts
—earthquake and structural modeling
—pollution modeling and remediation planning
—molecular nanotechnology

• Business
—computational finance - high frequency trading
—information retrieval
—data mining “big data”

• Defense
—nuclear weapons stewardship

The Scientific Case for Exascale Computing

• Predict regional climate changes: sea
level rise, drought and flooding, and
severe weather patterns

• Reduce carbon footprint of
transportation

• Improve efficiency and safety of nuclear
energy

• Improve design for cost-effective
renewable energy resources such as
batteries, catalysts, and biofuels

• Certify the U.S. nuclear stockpile

• Design advanced experimental facilities,
such as accelerators, and magnetic and
inertial confinement fusion

• Understand properties of fission and
fusion reactions

• Reverse engineer the human brain

• Design advanced materials

28

29

Earthquake Simulation in Japan

Earthquake Research Institute, University of Tokyo
 Tonankai-Tokai Earthquake Scenario
 Video Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004

March 11, 2011 Fukushima Daiichi Nuclear Power
Plant suffered major damage from a 9.0 earthquake

and subsequent tsunami that hit Japan.

The earthquake and tsunami disabled the reactor
cooling systems, leading to radiation leaks and

triggering a 30 km evacuation zone around the plant.

Confirmed deaths: 19,575 as of September 2017

Ocean Global Circulation Model for the Earth Simulator
 Seasonal Variation of Ocean Temperature
 Video Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004

Ocean Circulation Simulation

30

El Niño is an anomalous, yet periodic, warming of the central and eastern equatorial
Pacific Ocean. For reasons still not well understood, every 2-7 years, this patch of
ocean warms for six to 18 months

El Niño was strong through the Northern Hemisphere winter 2015-16, with a
transition to ENSO-neutral in May 2016.

Source: http://www.weather.com/storms/winter/news/january-march-outlook-2016-noaa-wsi

https://www.climate.gov/enso

Community Earth System Model (CESM)

31
Figure courtesy of M. Vertenstein (NCAR)

CESM Execution Configurations

32
Figure courtesy of M. Vertenstein (NCAR)

CESM Simulations on a Cray Supercomputer

33
Figure courtesy of Pat Worley (ORNL)

34

Simulating Turbulent Reacting Flows: S3D
• Direct numerical simulation (DNS) of turbulent combustion

— state-of-the-art code developed at CRF/Sandia
– PI: Jaqueline H. Chen, SNL

— 2020: 600K hours, IBM AC922 2xP9+6xV100
— “DNS of Turbulent Combustion Towards

Efficient Engines with In Situ Analytics”

• Science
— study micro-physics of turbulent reacting flows

– physical insight into chemistry turbulence interactions
— simulate chemistry and multi-physics (sprays, radiation, soot)
— develop and validate reduced model descriptions used in

macro-scale simulations of engineering-level systems

DNS Physical
Models

Engineering
CFD codes

(RANS, LES)
Text and figures courtesy of Jacqueline H. Chen, SNL

35

Fluid-Structure Interactions
• Simulate …

—rotational geometries (e.g. engines, pumps), flapping wings

• Traditionally, such simulations have used a fixed mesh
—drawback: solution quality is only as good as initial mesh

• Dynamic mesh computational fluid dynamics
—integrate automatic mesh generation within parallel flow solver

– nodes added in response to user-specified refinement criteria
– nodes deleted when no longer needed
– element connectivity changes to maintain minimum energy mesh

—mesh changes continuously as geometry + solution changes

• Example: 3D simulation of a hummingbird’s flight

• Another example: 3D heart simulation [2014]
—https://youtu.be/2LPboySOSvo

[Andrew Johnson, AHPCRC 2005]

36

Air Velocity (Front)

37

Air Velocity (Side)

38

Mesh Adaptation (front)

39

Mesh Adaptation (side)

40

Challenges of Explicit Parallelism

• Algorithm development is harder
—complexity of specifying and coordinating concurrent activities

• Software development is much harder
—lack of standardized & effective development tools and

programming models
—subtle program errors: race conditions

• Rapid pace of change in computer system architecture
—a great parallel algorithm for one machine may not be suitable for

another
– example: homogeneous multicore processors vs. GPUs

41

Hummingbird Simulation in UPC

• UPC: PGAS language for scalable parallel systems
—supports a shared memory programming model on a cluster

• Application overview
—distribute mesh among the processors
—partition the mesh among the processors
—each processor maintains and controls its piece of the mesh

– has a list of nodes, faces, and elements
—communication and synchronization

– read-from or write-to other processor’s data elements as required
– processors frequently synchronize using barriers
– use “broadcast” and “reduction” patterns

—constraint
– only 1 processor may change the mesh at a time

42

Algorithm Sketch

At each time step…

• Test if re-partitioning is required

• Set up interprocessor communication if mesh changed

• Split elements into independent (vectorizable) groups

• Calculate the refinement value at each mesh node

• Move the mesh

• Solve the coupled fluid-flow equation system

• Update the mesh to ensure mesh quality
—swap element faces to obtain a “Delaunay” mesh
—add nodes to locations where there are not enough
—delete nodes from locations where there are too many
—swap element faces to obtain a “Delaunay” mesh

43

Parallel Hardware
in the Large

ORNL Summit Supercomputer

44

200 x 1015 operations/second

Scale of the Largest HPC Systems (Nov 2019)

45

all 10
> 250K
cores

hybrid
CPU+accelerator

homogeneous
manycore

heterogeneous
manycore

Intel KNL
(68C/272T)

Intel Xeon (28C/56T)

Intel Xeon (12C/24T) +  
NVIDIA P100 (56SM)

Intel Xeon (12C/24T) + 
Matrix-2000 (128C)

Sunway 4C + 260C > 1.5M
cores

Source
https://www.top500.org

IBM Power9 (22C/88T) 
4x Nvidia Volta (80SM)

IBM Power9 (22C/88T) 
6x Nvidia Volta (80SM)

Top500 Chart Generator

IBM Power9 (22C/88T) 
4x Nvidia Volta (80SM)

Intel Xeon
(16C/22T)

Intel Xeon (20C/80T) 
2x Nvidia Volta (80SM)

Intel Xeon (24C/48T)

46

Achieving High Performance on Parallel Systems

• Memory latency and bandwidth
—CPU rates are > 200x faster than

memory
—bridge speed gap using memory

hierarchy
—more cores exacerbates demand

• Interprocessor communication

Computation is only part of the picture

• Input/output
— I/O bandwidth to disk typically needs to grow linearly with the

processors

Image Credit: Bob Colwell, ISCA 1995

CPU

system

Challenges of Parallelism in the Large

• Parallel science applications are often very sophisticated
—e.g. adaptive algorithms may require dynamic load balancing

• Multilevel parallelism is difficult to manage

• Extreme scale exacerbates inefficiencies
—algorithmic scalability losses
—serialization and load imbalance
—communication or I/O bottlenecks
—insufficient or inefficient parallelization

• Hard to achieve top performance even on individual nodes
—contention for shared memory bandwidth
—memory hierarchy utilization on multicore processors

47

48

Thursday’s Class

• Introduction to parallel algorithms
—tasks and decomposition
—task dependences and critical path
—mapping tasks

• Decomposition techniques
—recursive decomposition
—data decomposition

49

Parallel System for the Course

• NOTS
—226 nodes, each with two 8C/16T Intel Xeon processors
—2 nodes with 2 x NVIDIA K80 GPGPUs
—no global shared memory

