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Topics
• Cache coherence 

—update vs. invalidate 
—snoopy vs. directory 
—protocol examples 

• Memory models and weak ordering 

• Shared-memory synchronization 
—approaches 
—primitives 
—operations 

– initialize, signal, acknowledge, reinitialize 
—techniques 

– sense switching 
– paired data structures 
– avoid interconnect traffic due to spin waiting (local spinning)
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Cache Coherence 
• Shared address space machines 

—must coordinate access to data that might have multiple copies 
– copies in caches 

—multiple copies can easily become inconsistent 
– processor writes, I/O writes 

—coordination must provide some guarantees about the semantics  

• Sequential consistency 
—all data accesses appear to have been executed  

– atomically  
– in some sequential order  

 consistent with the order of operations in individual threads 
—corollary 

– each variable must appear to have only a single value at a time



Approaches to Cache Coherence
• Hardware 

—caches implement coherence protocols to ensure that data 
appears globally consistent 

—typical in systems today 

• Software 
—relies on compiler and/or runtime support 

– may or may not have help from the hardware 
—must be conservative to be safe 

– assume the worst about potential memory aliases 
—of increasing interest 

– concerns about cost of coherence in joules 
– scales well for microprocessors based on “tiled” designs 

 Intel Scalable Cloud Computer (SCC), 2010
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Cache Coherence Protocols

When changing a variable’s value: invalidate or update all copies

Update protocol

Invalidate protocol
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Update and Invalidate Protocols 
• Cost-benefit tradeoff depends upon traffic pattern 

—invalidation is worse when 
– single producer of data and many consumers 

—update is worse when 
– multiple writes by one CPU before data is read by another 
– a cache is filled with data that is not read again 

 e.g., leftovers after thread or process migration 

• Data organized in cache lines 
—e.g. 64B on recent Intel processors 

• Both protocols suffer from false sharing overheads 
—line accessed by multiple readers and writers 
—cores accessing disjoint data 
—false sharing overhead = coherence cost in this case 

• Modern machines use invalidate protocols as the default



Using Invalidate Protocols 
• Each cache line is associated with a state 

• Example set of states: modified, exclusive, shared, or invalid 
—modified: only one copy exists  

– a write need not generate any invalidates 
—exclusive: only one copy exists  

– a write need not generate any invalidates 
—shared: multiple valid copies of the data item  

– a write needs to generate an invalidate 
—invalid: data copy is invalid 

–  a read generates a data request and updates the state
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Diagram for 4-state MESI Protocol

• PrRd: processor read 

• PrW: processor write 

• BusRd(S): bus read (shared) 

• BusRd(S): bus read (not shared) 

• BusRdX: bus read exclusive - 
cause others to invalidate 

• Flush: save a line to memory 

• Flush’: cache to cache transfer, 
one cache saves data to memory
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Figure credit: David Culler, UC Berkeley. CS 258, Spring 99, Lecture 7, Slide 15

https://people.eecs.berkeley.edu/~culler/cs258-s99/slides/lec07/sld015.htm

MESI states: Modified, Exclusive, Shared, and Invalid 
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MESI Implications for Multiple Caches

MESI states: Modified, Exclusive, Shared, and Invalid 

M E S I
M
E
S
I

Permissible 
state pairs for a 
pair of caches

Figure credit: David Culler, UC Berkeley. CS 258, Spring 99, Lecture 7, Slide 15

https://people.eecs.berkeley.edu/~culler/cs258-s99/slides/lec07/sld015.htm
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Contemporary use of Update Protocols

B. Sinharoy.et al. IBM POWER7 multicore server processor. IBM Journal of Research and 
Development 55(3), May-June 2011, 1:1-1:29. http://dx.doi.org/10.1147/JRD.2011.2127330
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Snoopy Cache Systems

Simple bus-based snoopy cache coherence

How are invalidates sent to the right processors? 

Snoopy cache systems 
• Broadcast all invalidates and read requests  
• Snoopy cache listens and performs appropriate coherence 

operations locally



Operation of Snoopy Caches 
• Once a datum is tagged modified or exclusive 

—all subsequent operations can be performed locally in cache  
—no external traffic needed  

• If a data item is read by a number of processors 
—transitions to the shared state in all caches  
—all subsequent read operations become local 

• If multiple processors read and update data 
—generate coherence requests on the bus 
—bus is bandwidth limited: imposes a limit on updates per second
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Evolution of Node Interconnects
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Shared front-side bus 
(through 2004)

Dual independent buses 
(circa 2005)

Intel Quickpath interconnect 
(2009 - present)

Figure credits: Introduction to Intel QuickPath Interconnect in Weaving High Performance 
Multiprocessor Fabric, Robert A. Maddox, Gurbir Singh, and Robert J. Safranek, Intel Press



Intel MESIF Protocol (2005)
• MESIF: Modified, Exclusive, Shared, Invalid and Forward 

• If a cache line is shared  
—one shared copy of the cache line is in the F state 
—remaining copies of the cache line are in the S state 

• Forward (F) state designates a single copy of data from which 
further copies can be made 
—cache line in the F state will respond to a request for a copy of 

the cache line 
—consider how one embodiment of the protocol responds to a read 

– newly created copy is placed in the F state 
– cache line previously in the F state is put in the S or the I state
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H. Hum et al. US Patent 6,922,756. July 2005. http://bit.ly/gQNkRR



Intel QuickPath Source Snoop

15Figure credits: Introduction to Intel QuickPath Interconnect in Weaving High Performance 
Multiprocessor Fabric, Robert A. Maddox, Gurbir Singh, and Robert J. Safranek, Intel Press

MESIF protocol (Intel): Modified (M), Exclusive (E), Shared (S), Invalid (I) and Forward (F)
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Beyond MESI and MESIF: Power7 Cache States

B. Sinharoy.et al. IBM POWER7 multicore server processor. IBM Journal of Research and 
Development 55(3), May-June 2011, 1:1-1:29. http://dx.doi.org/10.1147/JRD.2011.2127330



The Cost of Coherence 
• Snoopy caches 

—each coherence operation is sent to all processors 
—hurts scalability 

• Why not send coherence requests to only those processors 
that need to be notified? 

17
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Directory-based Schemes

Centralized directory Distributed directory



Some Directory Implementation Alternatives
• Bit vector 

—presence bit for each cache line along with its global state 

• Pointer set 
—limited set of pointers (node ids) 

– less overhead than full map 
—issue: widespread sharing
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Intel QuickPath Home Snoop

20Figure credits: Introduction to Intel QuickPath Interconnect in Weaving High Performance 
Multiprocessor Fabric, Robert A. Maddox, Gurbir Singh, and Robert J. Safranek, Intel Press

MESIF protocol (Intel): Modified (M), Exclusive (E), Shared (S), Invalid (I) and Forward (F)



AMD’s HT Assist

21Figure source: http://blogs.zdnet.com/perlow/?p=10187



Coherence on Intel Platforms Today
• Ultra Path Interconnect  

—point-to-point interconnect replaced QuickPath in Xeon Skylake-
SP platforms in 2017 

—only supports directory-based coherency using a home snoop 
coherency protocol  

• Improvements beyond Quickpath 
—power efficiency: adds a new low-power state 
—transfer efficiency: new packetization format 
—scalability: protocol layer does not require preallocation of 

resources 

• Combined caching and home agent 
—manages of coherency across multiple processors 
—per core logic for handling snoops from local and remote 

processor cores
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Paul Alcorn. Intel Xeon Platinum 8176 Scalable Processor Review. July 11, 2017. https://
www.tomshardware.com/uk/reviews/intel-xeon-platinum-8176-scalable-cpu,5120-4.html



Performance of Directory-based Schemes 
• Bits to store the directory may add significant overhead 

—think about scaling to many processors 
– data bits per cache block vs. presence bits per cache block  

• Underlying network must carry all coherence requests  

• Directory becomes a point of contention 
—distributed directory schemes are necessary for scalability
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Scalable Coherent Interface
Linked-list based distributed directory scheme 

24
Figure credit: http://mufasa.informatik.uni-mannheim.de/Lectures/WS0506/RA2/script_pdf/sci.pdf

ANSI/IEEE Std1596-1992 

Product: Dophin Interconnect Solutions D333 PMC 64/66 SCI ADAPTER (http://bit.ly/gH2i7o)



SGI Altix UV (2010)
• System overview: 32-2048 cores; cache coherent single system image 

• Coherence 
— directory-based coherence 

– each 128B cache line has an entry in a directory  
– directories  distributed among the compute/memory blade nodes, like the data homes 
– directory size = 1/16 main memory 
– line states in a directory 

 unowned: when a line is not cached 
 exclusive: when only one processor has a copy 
 shared: when more than one processor has a copy  

– bit vector indicates which nodes may contain a copy 
— invalidation-based protocol: write invalidates copies & acquires exclusive ownership

25

rack unit (16 nodes) node blade

Figure credits: http://bit.ly/hLX85a



SGI Altix UV (2010)

26Figure credits: http://bit.ly/hLX85a

node blade



SGI Altix UV (2010)
• System overview: 32-2048 cores; cache coherent single system image 

• Coherence 
— directory-based coherence 

– each 128B cache line has an entry in a directory  
– directories  distributed among the compute/memory blade nodes, like the data homes 
– directory size = 1/16 main memory 
– line states in a directory 

 unowned: when a line is not cached 
 exclusive: when only one processor has a copy 
 shared: when more than one processor has a copy  

– bit vector indicates which caches may contain a copy 
— invalidation-based protocol: write invalidates copies & acquires exclusive ownership
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rack unit (16 nodes) node blade

Figure credits: http://bit.ly/hLX85a



SGI Altix UV (2010)
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rack unit (16 nodes)

Figure credits: http://bit.ly/hLX85a
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Memory Models and  
Weak Ordering

Sarita V. Adve and Hans-J. Boehm. 2010. Memory models: a case for rethinking parallel languages 
and hardware. CACM 53, 8 (August 2010), 90–101. DOI:https://doi.org/10.1145/1787234.1787255



What is a Memory Model?
• A contract between a program and any hardware and software 

that reorders operations in a program execution 

• In the context of parallelism, a memory model governs 
interactions between threads and shared memory 
— atomicity, ordering, visibility 

• Weak memory models: any load/store operation can be 
reordered with another, as long as the reordering doesn’t 
affect single thread execution 
—read/write, read/read, write/read, write/write 

• Why weak memory models? performance! 
—reordering of accesses by compiler, e.g., register allocation 
—reordering by hardware 

– OOO execution: many operations in flight at once 
– write buffers, non-blocking caches, … 
– don’t wait for operations to globally complete before continuing

30



Producer/Consumer Synchronization
• Example: using a global flag for synchronization between 

producer and consumer threads 
—producer indicates that it is done with data by setting a flag 
—consumer waits until flag is set before reading data 

• Getting it right 
—producer must not set flag until updates to data are visible to 

consumer 
—both the producer and consumer must act to control weak 

ordering



IBM Power Weak Memory Model: Producer

32

Compute and store data

time

store flag
pending 
updates  
to data

Incorrect way: without attention to weak ordering

data now visible  
to consumer



IBM Power Weak Memory Model: Producer
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Correct way: ensure writes complete before setting flag

Compute and store data

pending 
updates

lwsync

time

store flag
data now visible to consumer

lwsync ensures that all pending 
writes become visible before a store 
after lwsync can become visible



IBM Power Weak Memory Model: Consumer

Incorrect way: without attention to weak ordering

Loop:  load global flag 
           has global flag been set? 
           no: go to Loop 
           yes: fall through to Next

Next: use data 

problem: consumer can 
speculatively execute code at 
Next before flag is set

producer 
stores flag

time



IBM Power Weak Memory Model: Consumer

Correct way: inhibit speculative reads until flag is set

Loop:  load global flag 
           has global flag been set? 
           no: go to Loop 
           yes: fall through to Next

Next: 
          
         use data 

producer 
stores flag

time

isync
isync causes the processor to 
complete all previous instructions 
and discard instructions after the 
isync that may have begun execution



Java Memory Model



Why have a Memory Model for Java?  

• Java supports threads that shared memory 

• Must have a memory model to define program semantics 
—determines the transformations the compiler can make 
—specifies ordering guarantees that a compiler must preserve 

regardless of the underlying architecture

37



Sequential Consistency Revisited
• Sequential consistency 

—all data accesses appear to have been executed  
– atomically  
– in some sequential order  

 consistent with the order of operations in individual threads 
—corollary 

– each variable must appear to have only a single value at a time

38

Figure credit: Sarita V. Adve, Kourosh Gharachorloo, Memory Consistency 
Models for Shared-Memory Multiprocessors. Computer Science Department, 

Stanford University Technical Report CSL-TR-95-685. December 1995.



Why Not Sequential Consistency for Java?

Precludes many optimizations important for performance 

• HW optimizations: store buffers, speculation, … 

• Compiler optimizations 
—register allocation 
—common sub-expression elimination 
—loop interchange or blocking  

all have the effect of reordering or eliminating memory 
operations

39



‘Out-of-thin-air’ Problem

• Assume an incorrectly synchronized program 

• After execution, could r1 == r2 == 42?

40

What if: 
1. thread 1 speculatively writes 42 to y 
2. thread 2 reads 42 for y 
3. thread 2 writes 42 for x 
4. thread 1 reads 42 for x 
5. thread 1 validates its write speculation for y



Analysis of ‘Out-of-thin-air’ Problem

• Should we disallow this ‘optimization’? 

• Why not let this error be undefined? 

• Consider the Java class loader 
—cornerstone of the Java virtual machine 
—describes behavior of converting a named class into the bits 

responsible for implementing that class

41

• Suppose ‘42’ was &loadClass? 
—unintentional errors => violate safety 
—intentional errors => security risk



Lazy Initialization

42

class Foo { 
    private Helper helper; 
    public Helper getHelper() { 
        if (helper == null) { 
            helper = new Helper(); 
        } 
        return helper; 
    }     
} 

Clearly is not 
thread safe



Ensuring Thread Safety?

Two things to consider 
—synchronization 

– if used correctly, can provide mutual exclusion to shared data 
—data visibility 

– writing a value to a variable from a thread doesn't mean it will be 
immediately visible in a different thread

43



Mechanisms in Java
• Synchronization  

—synchronized keyword for methods and blocks 
– permits one thread to enter at any given time 

 reentrant: thread can call a synch method within a synch method 
– synchronized block specifies object providing the lock 

—explicit Lock: finer control 

• Data Visibility  
—final variable  

– can only be initialized only once 
 initializer or assignment statement 

– final modifier applied to a field or variable only determines the properties of the 
value, not the referenced object 

 public final Point p; 
 after p is assigned, p.x and p.y can be still be assigned 

—volatile variable 
– never cached: all reads and writes go straight to memory 
– a write to a volatile variable v synchronizes-with all subsequent reads of v by any 

thread

44



Approach 1: Synchronized Method

• Idea: guarantee thread safety by mutual exclusion using a 
synchronized method to control access to helper

45

// extend to multithread -threaded version, 
add synchronized on method  
1 class Foo { 
2    private Helper helper; 
3    public synchronized Helper getHelper(){ 
4        if (helper == null) { 
5            helper = new Helper(); 
6        } 
7        return helper; 
8    } 
9  } 

critical section highlighted in blue



Approach 2: Double-checked Locking (DCL) 

• Idea: synchronize initialization, but not access 

• Why? improve performance

46

1 class Foo { 
2    private Helper helper; 
3    public Helper getHelper() { 
4        if (helper == null) { 
5            synchronized(this) { 
6                if (helper == null) { 
7                    helper = new Helper(); 
8                } 
9            } 
10        } 
11        return helper; 
12    }   
13 } 

it seems to work…

one possible execution sequence



Approach 2: Double-checked Locking (DCL)

• Idea: synchronize initialization, but not access 

• Why? improve performance

47

1 class Foo { 
2    private Helper helper; 
3    public Helper getHelper() { 
4        if (helper == null) { 
5            synchronized(this) { 
6                if (helper == null) { 
7                    helper = new Helper(); 
8                } 
9            } 
10        } 
11        return helper; 
12    }   
13 } 

how about this sequence?  

Problem:  
compiler or hardware could reorder the writes initializing helper and its fields  
some fields might be initialized after the write to helper becomes visible



Approach 3:  DCL + volatile 
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1 class Foo { 
2    private volatile Helper helper; 
3    public Helper getHelper() { 
5        if (helper == null) { 
6            synchronized(this) { 
8                if (helper == null) { 
9                    helper = new Helper(); 
10                } 
11            } 
12        } 
13        return helper; 
14    } 
15 } 

volatile ensures that the 
actions that happen 
before the write to helper 
in the code must, when 
the program executes, 
actually happen before 
the write to helper 



Approach 4:  DCL + volatile  + caching 

49

1 class Foo { 
2    private volatile Helper helper; 
3    public Helper getHelper() {  
4        Helper result = helper;     
5        if (result == null) { 
6            synchronized(this) { 
7                result = helper; 
8                if (result == null) { 
9                    helper = result =  
       new Helper(); 
10                } 
11            } 
12        } 
13        return result; 
14    } 
15 } 

• Local variable ‘result’ 
reduces access to 
volatile variable 
‘helper’. after ‘helper’ 
has been initialized, 
(most of the time), the 
volatile field is only 
accessed once (due to 
"return result;" instead 
of "return helper”) 

• Can improve the 
method's overall 
performance by as 
much as 25 percent.



Terminology 

• Data race
—two concurrent accesses to the same shared variable are said to 

be conflicting if at least one access is a write 

• Correctly synchronized
—a program is said to be correctly synchronized or data-race-free 

iff all sequentially consistent executions of the program are free 
of data races

50



Java Memory Model

• Goal 
—sufficiently easy to 

understand and use  
—permit important 

optimizations used by 
compilers and hardware 

• Guarantees 
—“Well-Behaved” 

programs observe 
sequentially consistency 

—“Incorrect” programs 
– may contain data races 
– still, no out of thin air 

result

51

“Well-
behaved” 
programs 

All programs 
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 Shared Memory Synchronization



Goal: Coordinate Shared-memory Computation
• Coordinate sharing among all threads 

—support mutually exclusive access to shared data 
—ensure threads advance through computation phases together 

• Coordinate pairwise sharing 
—e.g. producer-consumer sharing 

• Synchronization in prior lectures 
—locks  

– e.g. pthread_mutex_lock/unlock, omp_set_lock/unset_lock 
—barriers 

– team barrier implicit at end of OpenMP parallel loops 
 no thread can execute code following a parallel loop until all 

iterations have finished (unless nowait specified) 
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Approaches: Spinning vs. Blocking
• Blocking 

—what: suspend execution until a resource is available 
—advantage: frees up a processor for useful work  

– important when # threads > # cores 
—disadvantage: longer latency (context switch at a minimum) 
—examples: pthread_mutex_lock/unlock/trylock  

• Spinning 
—what: repeatedly test a condition until it becomes true 
—advantage: low latency 
—disadvantage: ties up a processor core 

– may displace useful computation 
—examples: pthread_spin_lock/unlock/trylock 

• Rule of thumb 
—use spinning in a dedicated environment  if # threads <= # cores 
—use blocking in shared environment or if # threads > # cores
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Primitives for Shared-memory Synchronization
• Normal instructions 

—load 
—store 

• What are their uses? 
—load: test a variable value 
—store: useful when there is a single writer 

– e.g., setting a boolean flag 

• Limitations 
—multiple writers of a variable yield unpredictable values 

• Solution: atomic operations (next slide)

55
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Atomic Primitives for Synchronization

Atomic read-modify-write primitives 
• test_and_set(Word &M) 

—writes a 1 into M 
—returns M’s previous value 

• swap(Word &M, Word V) 
—replaces the contents of M with V 
—returns M’s previous value  

• fetch_and_Φ(Word &M, Word V) 
—Φ can be ADD, OR, XOR, ... 
—replaces the value of M with Φ(old value, V) 
—returns M’s previous value 

• compare_and_swap(Word &M, Word oldV, Word newV) 
—if (M == oldV) M ← newV 
—returns TRUE if store was performed  
—universal primitive

See http://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html for use in practice
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A Simple Lock with Test & Set

type Lock = (unlocked, locked)
    
procedure acquire_lock(Lock *L)      
  loop
    // NOTE: test and set returns old value 
    if test_and_set(L) == unlocked 
       return
   
procedure release_lock(Lock *L)      
  *L = unlocked



Synchronization
• Initialize 

—prepare state of sync variable for first use 

• Signal 
—notify one or more threads with a sync variable state change 

• Acknowledge 
—optional handshake to prevent unbounded signaling  

• Reinitialize 
—adjust state of sync variable

58



Building Blocks
• Single use flag variable  

—initialized to false at program launch 
—producer sets a flag to true 
—consumer eventually notices 

• Counter  
—initialized to zero 
—single writer: increment with non-atomic add 
—multiple writers: 

– if writer needs intermediate value, use fetch_and_add 
– otherwise, use atomic add 

• Pointers 
—initialize to null 
—update with atomic_swap or compare_and_swap 

– retrieve old value; (conditionally for CAS) store new value

59



Considerations
• Reinitialization can be tricky 

—techniques: sense switching, paired data structure 

• Interconnect traffic and contention can degrade performance 
—be careful with spin waiting on variables 
—advanced technique: local spinning

60



Technique: Sense Switching
• Problem: reinitialization of a flag is often problematic 

—can the reinitialization race with a flag inspection? 

• Approach: don’t reinitialize, sense switch! 
—in even synchronization rounds, wait for a flag to become true 
—in odd synchronization rounds, wait for a flag to become false

61



Exercise: Design a Simple Barrier
•  Each processor indicates its arrival at the barrier 

—updates shared state 

•  Busy-waits on shared state to determine when all have arrived 

•  Once all have arrived, each processor is allowed to continue
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Sense-reversing Centralized Barrier

integer count = P  
bool sense = true  

thread_local bool local_sense = true 
  
void central_barrier() {     
  // each processor toggles its own sense 

local_sense = not local_sense 
  if (fetch_and_add(&count,-1) == 1)
    count = P
    sense = local_sense // last processor toggles global sense   
  else          
    repeat until sense == local_sense
}



Technique: Paired Data Structure
• Use alternating sets of variables to avoid overlapping updates 

• Motivating example 
—“dissemination barrier” uses only flag setting to achieve a barrier 

– each processor has log P flags 
– synchronization proceeds in log P rounds 

 each round  
 set a flag for another processor 
 spin until your flag is set 

—one could use sense switching for next barrier phase 
—but can’t keep adjacent barrier phases from interfering 

– one thread may be stall while spinning in phase k 
– what if another thread then flips the sense for phase k+1 

• Solve the problem with a paired data structure: separate flags 
for odd and even phases
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Spin Waiting and Interconnect Traffic 

Considerations 

• How many data transfers over the interconnect will occur? 
—is the machine cache coherent? 
—what coherence protocol is used? 

• Let’s first consider coherence on quad-processor nodes 
—cache coherence protocols 

– Intel: home snoop, source snoop (2009) 
– AMD: HT Assist (2009)
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Avoid Spin Waiting over the Interconnect
• How?  

—don’t have multiple threads spin wait on a shared variable that 
will change multiple times per synchronization operation 

• For instance 
—avoid spin waiting on 

– a barrier count that others are adjusting with atomic_add 
 use a barrier flag instead 

– a lock variable that others will toggle with test and set 
 use a link-list-based lock (local spinning) 

 e.g. MCS lock
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Producer Consumer Synchronization
• Data structure 

—int64 produced, consumed; 

• Operations 
—producer  

– produced = produced + 1; 
—consumer spins  

– while (produced < consumed); 
– consumed ++; 

• Bounded signaling 
—producer can spin 

– while consumed + SLACK < produced

67
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