
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Parallel Computing Platforms:
Coherence, Ordering, & Synchronization

COMP 422/534 Lecture 10-11 18 February 2020

2

Topics
• Cache coherence

—update vs. invalidate
—snoopy vs. directory
—protocol examples

• Memory models and weak ordering

• Shared-memory synchronization
—approaches
—primitives
—operations

– initialize, signal, acknowledge, reinitialize
—techniques

– sense switching
– paired data structures
– avoid interconnect traffic due to spin waiting (local spinning)

3

Cache Coherence
• Shared address space machines

—must coordinate access to data that might have multiple copies
– copies in caches

—multiple copies can easily become inconsistent
– processor writes, I/O writes

—coordination must provide some guarantees about the semantics

• Sequential consistency
—all data accesses appear to have been executed

– atomically
– in some sequential order

 consistent with the order of operations in individual threads
—corollary

– each variable must appear to have only a single value at a time

Approaches to Cache Coherence
• Hardware

—caches implement coherence protocols to ensure that data
appears globally consistent

—typical in systems today

• Software
—relies on compiler and/or runtime support

– may or may not have help from the hardware
—must be conservative to be safe

– assume the worst about potential memory aliases
—of increasing interest

– concerns about cost of coherence in joules
– scales well for microprocessors based on “tiled” designs

 Intel Scalable Cloud Computer (SCC), 2010

4

y = 2 y = 2

y = 2
memory

y = 2

5

Cache Coherence Protocols

When changing a variable’s value: invalidate or update all copies

Update protocol

Invalidate protocol

y = 2 y = 2

y = 2

P0
load y

P1
load y

memory

y = 4 y = 4

y = 4

P0
write 4, y

memory

y = 2 y = 2

y = 2

P0
load y

P1
load y

memory

y = 2

y = 2
memory

y = 4

P0
write 4, y

6

Update and Invalidate Protocols
• Cost-benefit tradeoff depends upon traffic pattern

—invalidation is worse when
– single producer of data and many consumers

—update is worse when
– multiple writes by one CPU before data is read by another
– a cache is filled with data that is not read again

 e.g., leftovers after thread or process migration

• Data organized in cache lines
—e.g. 64B on recent Intel processors

• Both protocols suffer from false sharing overheads
—line accessed by multiple readers and writers
—cores accessing disjoint data
—false sharing overhead = coherence cost in this case

• Modern machines use invalidate protocols as the default

Using Invalidate Protocols
• Each cache line is associated with a state

• Example set of states: modified, exclusive, shared, or invalid
—modified: only one copy exists

– a write need not generate any invalidates
—exclusive: only one copy exists

– a write need not generate any invalidates
—shared: multiple valid copies of the data item

– a write needs to generate an invalidate
—invalid: data copy is invalid

– a read generates a data request and updates the state

7

Diagram for 4-state MESI Protocol

• PrRd: processor read

• PrW: processor write

• BusRd(S): bus read (shared)

• BusRd(S): bus read (not shared)

• BusRdX: bus read exclusive -
cause others to invalidate

• Flush: save a line to memory

• Flush’: cache to cache transfer,
one cache saves data to memory

8
Figure credit: David Culler, UC Berkeley. CS 258, Spring 99, Lecture 7, Slide 15

https://people.eecs.berkeley.edu/~culler/cs258-s99/slides/lec07/sld015.htm

MESI states: Modified, Exclusive, Shared, and Invalid

9

MESI Implications for Multiple Caches

MESI states: Modified, Exclusive, Shared, and Invalid

M E S I
M
E
S
I

Permissible
state pairs for a
pair of caches

Figure credit: David Culler, UC Berkeley. CS 258, Spring 99, Lecture 7, Slide 15

https://people.eecs.berkeley.edu/~culler/cs258-s99/slides/lec07/sld015.htm

10

Contemporary use of Update Protocols

B. Sinharoy.et al. IBM POWER7 multicore server processor. IBM Journal of Research and
Development 55(3), May-June 2011, 1:1-1:29. http://dx.doi.org/10.1147/JRD.2011.2127330

11

Snoopy Cache Systems

Simple bus-based snoopy cache coherence

How are invalidates sent to the right processors?

Snoopy cache systems
• Broadcast all invalidates and read requests
• Snoopy cache listens and performs appropriate coherence

operations locally

Operation of Snoopy Caches
• Once a datum is tagged modified or exclusive

—all subsequent operations can be performed locally in cache
—no external traffic needed

• If a data item is read by a number of processors
—transitions to the shared state in all caches
—all subsequent read operations become local

• If multiple processors read and update data
—generate coherence requests on the bus
—bus is bandwidth limited: imposes a limit on updates per second

12

Evolution of Node Interconnects

13

Shared front-side bus
(through 2004)

Dual independent buses
(circa 2005)

Intel Quickpath interconnect
(2009 - present)

Figure credits: Introduction to Intel QuickPath Interconnect in Weaving High Performance
Multiprocessor Fabric, Robert A. Maddox, Gurbir Singh, and Robert J. Safranek, Intel Press

Intel MESIF Protocol (2005)
• MESIF: Modified, Exclusive, Shared, Invalid and Forward

• If a cache line is shared
—one shared copy of the cache line is in the F state
—remaining copies of the cache line are in the S state

• Forward (F) state designates a single copy of data from which
further copies can be made
—cache line in the F state will respond to a request for a copy of

the cache line
—consider how one embodiment of the protocol responds to a read

– newly created copy is placed in the F state
– cache line previously in the F state is put in the S or the I state

14

H. Hum et al. US Patent 6,922,756. July 2005. http://bit.ly/gQNkRR

Intel QuickPath Source Snoop

15Figure credits: Introduction to Intel QuickPath Interconnect in Weaving High Performance
Multiprocessor Fabric, Robert A. Maddox, Gurbir Singh, and Robert J. Safranek, Intel Press

MESIF protocol (Intel): Modified (M), Exclusive (E), Shared (S), Invalid (I) and Forward (F)

16

Beyond MESI and MESIF: Power7 Cache States

B. Sinharoy.et al. IBM POWER7 multicore server processor. IBM Journal of Research and
Development 55(3), May-June 2011, 1:1-1:29. http://dx.doi.org/10.1147/JRD.2011.2127330

The Cost of Coherence
• Snoopy caches

—each coherence operation is sent to all processors
—hurts scalability

• Why not send coherence requests to only those processors
that need to be notified?

17

18

Directory-based Schemes

Centralized directory Distributed directory

Some Directory Implementation Alternatives
• Bit vector

—presence bit for each cache line along with its global state

• Pointer set
—limited set of pointers (node ids)

– less overhead than full map
—issue: widespread sharing

19

Intel QuickPath Home Snoop

20Figure credits: Introduction to Intel QuickPath Interconnect in Weaving High Performance
Multiprocessor Fabric, Robert A. Maddox, Gurbir Singh, and Robert J. Safranek, Intel Press

MESIF protocol (Intel): Modified (M), Exclusive (E), Shared (S), Invalid (I) and Forward (F)

AMD’s HT Assist

21Figure source: http://blogs.zdnet.com/perlow/?p=10187

Coherence on Intel Platforms Today
• Ultra Path Interconnect

—point-to-point interconnect replaced QuickPath in Xeon Skylake-
SP platforms in 2017

—only supports directory-based coherency using a home snoop
coherency protocol

• Improvements beyond Quickpath
—power efficiency: adds a new low-power state
—transfer efficiency: new packetization format
—scalability: protocol layer does not require preallocation of

resources

• Combined caching and home agent
—manages of coherency across multiple processors
—per core logic for handling snoops from local and remote

processor cores

22

Paul Alcorn. Intel Xeon Platinum 8176 Scalable Processor Review. July 11, 2017. https://
www.tomshardware.com/uk/reviews/intel-xeon-platinum-8176-scalable-cpu,5120-4.html

Performance of Directory-based Schemes
• Bits to store the directory may add significant overhead

—think about scaling to many processors
– data bits per cache block vs. presence bits per cache block

• Underlying network must carry all coherence requests

• Directory becomes a point of contention
—distributed directory schemes are necessary for scalability

23

Scalable Coherent Interface
Linked-list based distributed directory scheme

24
Figure credit: http://mufasa.informatik.uni-mannheim.de/Lectures/WS0506/RA2/script_pdf/sci.pdf

ANSI/IEEE Std1596-1992

Product: Dophin Interconnect Solutions D333 PMC 64/66 SCI ADAPTER (http://bit.ly/gH2i7o)

SGI Altix UV (2010)
• System overview: 32-2048 cores; cache coherent single system image

• Coherence
— directory-based coherence

– each 128B cache line has an entry in a directory
– directories distributed among the compute/memory blade nodes, like the data homes
– directory size = 1/16 main memory
– line states in a directory

 unowned: when a line is not cached
 exclusive: when only one processor has a copy
 shared: when more than one processor has a copy

– bit vector indicates which nodes may contain a copy
— invalidation-based protocol: write invalidates copies & acquires exclusive ownership

25

rack unit (16 nodes) node blade

Figure credits: http://bit.ly/hLX85a

SGI Altix UV (2010)

26Figure credits: http://bit.ly/hLX85a

node blade

SGI Altix UV (2010)
• System overview: 32-2048 cores; cache coherent single system image

• Coherence
— directory-based coherence

– each 128B cache line has an entry in a directory
– directories distributed among the compute/memory blade nodes, like the data homes
– directory size = 1/16 main memory
– line states in a directory

 unowned: when a line is not cached
 exclusive: when only one processor has a copy
 shared: when more than one processor has a copy

– bit vector indicates which caches may contain a copy
— invalidation-based protocol: write invalidates copies & acquires exclusive ownership

27

rack unit (16 nodes) node blade

Figure credits: http://bit.ly/hLX85a

SGI Altix UV (2010)

28

rack unit (16 nodes)

Figure credits: http://bit.ly/hLX85a

29

Memory Models and
Weak Ordering

Sarita V. Adve and Hans-J. Boehm. 2010. Memory models: a case for rethinking parallel languages
and hardware. CACM 53, 8 (August 2010), 90–101. DOI:https://doi.org/10.1145/1787234.1787255

What is a Memory Model?
• A contract between a program and any hardware and software

that reorders operations in a program execution

• In the context of parallelism, a memory model governs
interactions between threads and shared memory
— atomicity, ordering, visibility

• Weak memory models: any load/store operation can be
reordered with another, as long as the reordering doesn’t
affect single thread execution
—read/write, read/read, write/read, write/write

• Why weak memory models? performance!
—reordering of accesses by compiler, e.g., register allocation
—reordering by hardware

– OOO execution: many operations in flight at once
– write buffers, non-blocking caches, …
– don’t wait for operations to globally complete before continuing

30

Producer/Consumer Synchronization
• Example: using a global flag for synchronization between

producer and consumer threads
—producer indicates that it is done with data by setting a flag
—consumer waits until flag is set before reading data

• Getting it right
—producer must not set flag until updates to data are visible to

consumer
—both the producer and consumer must act to control weak

ordering

IBM Power Weak Memory Model: Producer

32

Compute and store data

time

store flag
pending
updates
to data

Incorrect way: without attention to weak ordering

data now visible
to consumer

IBM Power Weak Memory Model: Producer

33

Correct way: ensure writes complete before setting flag

Compute and store data

pending
updates

lwsync

time

store flag
data now visible to consumer

lwsync ensures that all pending
writes become visible before a store
after lwsync can become visible

IBM Power Weak Memory Model: Consumer

Incorrect way: without attention to weak ordering

Loop: load global flag
 has global flag been set?
 no: go to Loop
 yes: fall through to Next

Next: use data

problem: consumer can
speculatively execute code at
Next before flag is set

producer
stores flag

time

IBM Power Weak Memory Model: Consumer

Correct way: inhibit speculative reads until flag is set

Loop: load global flag
 has global flag been set?
 no: go to Loop
 yes: fall through to Next

Next:

 use data

producer
stores flag

time

isync
isync causes the processor to
complete all previous instructions
and discard instructions after the
isync that may have begun execution

Java Memory Model

Why have a Memory Model for Java?

• Java supports threads that shared memory

• Must have a memory model to define program semantics
—determines the transformations the compiler can make
—specifies ordering guarantees that a compiler must preserve

regardless of the underlying architecture

37

Sequential Consistency Revisited
• Sequential consistency

—all data accesses appear to have been executed
– atomically
– in some sequential order

 consistent with the order of operations in individual threads
—corollary

– each variable must appear to have only a single value at a time

38

Figure credit: Sarita V. Adve, Kourosh Gharachorloo, Memory Consistency
Models for Shared-Memory Multiprocessors. Computer Science Department,

Stanford University Technical Report CSL-TR-95-685. December 1995.

Why Not Sequential Consistency for Java?

Precludes many optimizations important for performance

• HW optimizations: store buffers, speculation, …

• Compiler optimizations
—register allocation
—common sub-expression elimination
—loop interchange or blocking

all have the effect of reordering or eliminating memory
operations

39

‘Out-of-thin-air’ Problem

• Assume an incorrectly synchronized program

• After execution, could r1 == r2 == 42?

40

What if:
1. thread 1 speculatively writes 42 to y
2. thread 2 reads 42 for y
3. thread 2 writes 42 for x
4. thread 1 reads 42 for x
5. thread 1 validates its write speculation for y

Analysis of ‘Out-of-thin-air’ Problem

• Should we disallow this ‘optimization’?

• Why not let this error be undefined?

• Consider the Java class loader
—cornerstone of the Java virtual machine
—describes behavior of converting a named class into the bits

responsible for implementing that class

41

• Suppose ‘42’ was &loadClass?
—unintentional errors => violate safety
—intentional errors => security risk

Lazy Initialization

42

class Foo {
 private Helper helper;
 public Helper getHelper() {
 if (helper == null) {
 helper = new Helper();
 }
 return helper;
 }
}

Clearly is not
thread safe

Ensuring Thread Safety?

Two things to consider
—synchronization

– if used correctly, can provide mutual exclusion to shared data
—data visibility

– writing a value to a variable from a thread doesn't mean it will be
immediately visible in a different thread

43

Mechanisms in Java
• Synchronization

—synchronized keyword for methods and blocks
– permits one thread to enter at any given time

 reentrant: thread can call a synch method within a synch method
– synchronized block specifies object providing the lock

—explicit Lock: finer control

• Data Visibility
—final variable

– can only be initialized only once
 initializer or assignment statement

– final modifier applied to a field or variable only determines the properties of the
value, not the referenced object

 public final Point p;
 after p is assigned, p.x and p.y can be still be assigned

—volatile variable
– never cached: all reads and writes go straight to memory
– a write to a volatile variable v synchronizes-with all subsequent reads of v by any

thread

44

Approach 1: Synchronized Method

• Idea: guarantee thread safety by mutual exclusion using a
synchronized method to control access to helper

45

// extend to multithread -threaded version,
add synchronized on method
1 class Foo {
2 private Helper helper;
3 public synchronized Helper getHelper(){
4 if (helper == null) {
5 helper = new Helper();
6 }
7 return helper;
8 }
9 }

critical section highlighted in blue

Approach 2: Double-checked Locking (DCL)

• Idea: synchronize initialization, but not access

• Why? improve performance

46

1 class Foo {
2 private Helper helper;
3 public Helper getHelper() {
4 if (helper == null) {
5 synchronized(this) {
6 if (helper == null) {
7 helper = new Helper();
8 }
9 }
10 }
11 return helper;
12 }
13 }

it seems to work…

one possible execution sequence

Approach 2: Double-checked Locking (DCL)

• Idea: synchronize initialization, but not access

• Why? improve performance

47

1 class Foo {
2 private Helper helper;
3 public Helper getHelper() {
4 if (helper == null) {
5 synchronized(this) {
6 if (helper == null) {
7 helper = new Helper();
8 }
9 }
10 }
11 return helper;
12 }
13 }

how about this sequence?

Problem:
compiler or hardware could reorder the writes initializing helper and its fields
some fields might be initialized after the write to helper becomes visible

Approach 3: DCL + volatile

48

1 class Foo {
2 private volatile Helper helper;
3 public Helper getHelper() {
5 if (helper == null) {
6 synchronized(this) {
8 if (helper == null) {
9 helper = new Helper();
10 }
11 }
12 }
13 return helper;
14 }
15 }

volatile ensures that the
actions that happen
before the write to helper
in the code must, when
the program executes,
actually happen before
the write to helper

Approach 4: DCL + volatile + caching

49

1 class Foo {
2 private volatile Helper helper;
3 public Helper getHelper() {
4 Helper result = helper;
5 if (result == null) {
6 synchronized(this) {
7 result = helper;
8 if (result == null) {
9 helper = result =
 new Helper();
10 }
11 }
12 }
13 return result;
14 }
15 }

• Local variable ‘result’
reduces access to
volatile variable
‘helper’. after ‘helper’
has been initialized,
(most of the time), the
volatile field is only
accessed once (due to
"return result;" instead
of "return helper”)

• Can improve the
method's overall
performance by as
much as 25 percent.

Terminology

• Data race
—two concurrent accesses to the same shared variable are said to

be conflicting if at least one access is a write

• Correctly synchronized
—a program is said to be correctly synchronized or data-race-free

iff all sequentially consistent executions of the program are free
of data races

50

Java Memory Model

• Goal
—sufficiently easy to

understand and use
—permit important

optimizations used by
compilers and hardware

• Guarantees
—“Well-Behaved”

programs observe
sequentially consistency

—“Incorrect” programs
– may contain data races
– still, no out of thin air

result

51

“Well-
behaved”
programs

All programs

52

 Shared Memory Synchronization

Goal: Coordinate Shared-memory Computation
• Coordinate sharing among all threads

—support mutually exclusive access to shared data
—ensure threads advance through computation phases together

• Coordinate pairwise sharing
—e.g. producer-consumer sharing

• Synchronization in prior lectures
—locks

– e.g. pthread_mutex_lock/unlock, omp_set_lock/unset_lock
—barriers

– team barrier implicit at end of OpenMP parallel loops
 no thread can execute code following a parallel loop until all

iterations have finished (unless nowait specified)

53

Approaches: Spinning vs. Blocking
• Blocking

—what: suspend execution until a resource is available
—advantage: frees up a processor for useful work

– important when # threads > # cores
—disadvantage: longer latency (context switch at a minimum)
—examples: pthread_mutex_lock/unlock/trylock

• Spinning
—what: repeatedly test a condition until it becomes true
—advantage: low latency
—disadvantage: ties up a processor core

– may displace useful computation
—examples: pthread_spin_lock/unlock/trylock

• Rule of thumb
—use spinning in a dedicated environment if # threads <= # cores
—use blocking in shared environment or if # threads > # cores

54

Primitives for Shared-memory Synchronization
• Normal instructions

—load
—store

• What are their uses?
—load: test a variable value
—store: useful when there is a single writer

– e.g., setting a boolean flag

• Limitations
—multiple writers of a variable yield unpredictable values

• Solution: atomic operations (next slide)

55

56

Atomic Primitives for Synchronization

Atomic read-modify-write primitives
• test_and_set(Word &M)

—writes a 1 into M
—returns M’s previous value

• swap(Word &M, Word V)
—replaces the contents of M with V
—returns M’s previous value

• fetch_and_Φ(Word &M, Word V)
—Φ can be ADD, OR, XOR, ...
—replaces the value of M with Φ(old value, V)
—returns M’s previous value

• compare_and_swap(Word &M, Word oldV, Word newV)
—if (M == oldV) M ← newV
—returns TRUE if store was performed
—universal primitive

See http://gcc.gnu.org/onlinedocs/gcc-4.1.0/gcc/Atomic-Builtins.html for use in practice

57

A Simple Lock with Test & Set

type Lock = (unlocked, locked)

procedure acquire_lock(Lock *L)
 loop
 // NOTE: test and set returns old value
 if test_and_set(L) == unlocked
 return

procedure release_lock(Lock *L)
 *L = unlocked

Synchronization
• Initialize

—prepare state of sync variable for first use

• Signal
—notify one or more threads with a sync variable state change

• Acknowledge
—optional handshake to prevent unbounded signaling

• Reinitialize
—adjust state of sync variable

58

Building Blocks
• Single use flag variable

—initialized to false at program launch
—producer sets a flag to true
—consumer eventually notices

• Counter
—initialized to zero
—single writer: increment with non-atomic add
—multiple writers:

– if writer needs intermediate value, use fetch_and_add
– otherwise, use atomic add

• Pointers
—initialize to null
—update with atomic_swap or compare_and_swap

– retrieve old value; (conditionally for CAS) store new value

59

Considerations
• Reinitialization can be tricky

—techniques: sense switching, paired data structure

• Interconnect traffic and contention can degrade performance
—be careful with spin waiting on variables
—advanced technique: local spinning

60

Technique: Sense Switching
• Problem: reinitialization of a flag is often problematic

—can the reinitialization race with a flag inspection?

• Approach: don’t reinitialize, sense switch!
—in even synchronization rounds, wait for a flag to become true
—in odd synchronization rounds, wait for a flag to become false

61

Exercise: Design a Simple Barrier
• Each processor indicates its arrival at the barrier

—updates shared state

• Busy-waits on shared state to determine when all have arrived

• Once all have arrived, each processor is allowed to continue

62

63

Sense-reversing Centralized Barrier

integer count = P
bool sense = true

thread_local bool local_sense = true

void central_barrier() {
 // each processor toggles its own sense

local_sense = not local_sense
 if (fetch_and_add(&count,-1) == 1)
 count = P
 sense = local_sense // last processor toggles global sense
 else
 repeat until sense == local_sense
}

Technique: Paired Data Structure
• Use alternating sets of variables to avoid overlapping updates

• Motivating example
—“dissemination barrier” uses only flag setting to achieve a barrier

– each processor has log P flags
– synchronization proceeds in log P rounds

 each round
 set a flag for another processor
 spin until your flag is set

—one could use sense switching for next barrier phase
—but can’t keep adjacent barrier phases from interfering

– one thread may be stall while spinning in phase k
– what if another thread then flips the sense for phase k+1

• Solve the problem with a paired data structure: separate flags
for odd and even phases

64

Spin Waiting and Interconnect Traffic

Considerations

• How many data transfers over the interconnect will occur?
—is the machine cache coherent?
—what coherence protocol is used?

• Let’s first consider coherence on quad-processor nodes
—cache coherence protocols

– Intel: home snoop, source snoop (2009)
– AMD: HT Assist (2009)

65

Avoid Spin Waiting over the Interconnect
• How?

—don’t have multiple threads spin wait on a shared variable that
will change multiple times per synchronization operation

• For instance
—avoid spin waiting on

– a barrier count that others are adjusting with atomic_add
 use a barrier flag instead

– a lock variable that others will toggle with test and set
 use a link-list-based lock (local spinning)

 e.g. MCS lock

66

Producer Consumer Synchronization
• Data structure

—int64 produced, consumed;

• Operations
—producer

– produced = produced + 1;
—consumer spins

– while (produced < consumed);
– consumed ++;

• Bounded signaling
—producer can spin

– while consumed + SLACK < produced

67

68

References - I
• Adapted from slides “Parallel Programming Platforms” by Ananth Grama

• Based on Chapter 2 of “Introduction to Parallel Computing” by Ananth
Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley,
2003

• Josep Torrellas. “Cache Coherence,” Slides for TAMU CPSC 564 Lecture,
2003. http://bit.ly/fWENU2

• J. Mellor-Crummey, M. L. Scott: Synchronization without Contention.
ASPLOS, 269-278, 1991.

• J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems,
9(1):21-65, Feb. 1991.

• H. Hum et al. US Patent 6,922,756. July 2005. http://bit.ly/gQNkRR

• SGI Altix UV 1000 System User's Guide, Chapter 3. http://bit.ly/hLX85a

• PowerPC storage model and AIX programming. http://www.ibm.com/
developerworks/systems/articles/powerpc.html

69

References - II
• C++ Memory Model and Atomics

• https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-
Herb-Sutter-atomic-Weapons-1-of-2

• https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-
Herb-Sutter-atomic-Weapons-2-of-2

