
John Mellor-Crummey 

Department of Computer Science 
Rice University 

johnmc@rice.edu

Parallel Computing Platforms: 
Control Structures and  

Memory Hierarchy

COMP 422/534 Lecture 12  25 February 2020



2

Topics for Today

• SIMD, MIMD, SIMT control structure 

• Memory hierarchy and performance



Parallel Computing Platforms 

A parallel computing platform must specify  
—concurrency = control structure 
—interaction between concurrent tasks = communication model 

3



4

Control Structure of Parallel Platforms 

Parallelism ranges from instructions to processes  
• Processor control structure alternatives  

— work independently 
— operate under the centralized control of a single control unit 

• MIMD 
— Multiple Instruction streams 

– each hardware thread has its own control unit 
– each hardware thread can execute different instructions 

— Multiple Data streams 
– each thread can work on its own data   

• SIMD 
— Single Instruction stream 

– single control unit dispatches the same instruction to processing 
elements 

— Multiple Data streams 
– processing elements work on their own data



5

Control Structure of Parallel Platforms - II 

• SIMT 
—Single Instruction stream 

— single control unit dispatches the same instruction to processing 
element 

—Multiple Threads 

• SIMT features that SIMD lacks 
—single instruction, multiple register sets 

– SIMT processing elements have a separate register set per thread 
—single instruction, multiple flow paths 

– one can write if statement blocks that contain more than a single 
operation. some processors will execute the code, others will no-op.



6

SIMD and MIMD Processors

SIMD architecture MIMD architecture

PE = Processing Element
...

Interconnection N
etw

ork
PE + 

control unit

PE + 
control unit

PE + 
control unit

...

Interconnection N
etw

ork

PE

PE

PE

PE

PE

Global 
Control 

Unit



SIMD Control

• SIMD excels for computations with regular structure 
—media processing, scientific kernels (e.g., linear algebra, FFT) 

• Activity mask 
—per PE predicated execution: turn off operations on certain PEs 

– each PE tests own conditional and sets own activity mask 
– PE can conditionally perform operation predicated on mask value

7



Example: 128-bit SIMD Vectors

• Data types: anything that fits into 16 bytes, e.g., 

• Instructions operate in parallel on data in this 16 byte register  
— add, multiply etc. 

• Data bytes must be contiguous in memory and aligned 

• Additional instructions needed for  
— masking data  
— moving data from one part of a register to another

8

16x bytes

4x floats

2x doubles

                

    

  



9

Computing with SIMD Vector Units

+

• Scalar processing 
—one operation produces 

one result

• SIMD vector units 
—one operation produces 

multiple results 

X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Credit: Alex Klimovitski & Dean Macri,  Intel Corporation



10

Executing a Conditional on a SIMD Processor 

initial values

conditional statement
if (A == 0)
then C = B
else C = B/A

execute  
“then” branch

execute  
“else” branch

0A

5B

0C

Processor 0

4A

8B

0C

Processor 1

2A

2B

0C

Processor 2

0A

7B

0C

Processor 3

0A

5B

5C

Processor 0

4A

8B

0C

Processor 1

1A

2B

0C

Processor 2

0A

7B

7C

Processor 3

0A

5B

5C

Processor 0

4A

8B

2C

Processor 1

2A

2B

1C

Processor 2 Processor 3

0A

7B

7C



11

SIMD Examples 
• Previously: SIMD computers 

—e.g., Connection Machine CM-1/2, and MasPar MP-1/2 
– CM-1 (1980s): 65,536 1-bit processors 

• Today: SIMD functional units or co-processors 
—vector units 

– AVX -  Advanced Vector Extensions 
 16 256-bit vector registers in Intel and AMD processors since 2011 

 256 bits as 8-bit chars, 16-bit words, 32/64-bit int and float 
 32 512-bit vector registers in Intel Xeon Phi 

 512 bits as 8-bit chars, 16-bit words, 32/64-bit int and float 
– VSX - Vector-Scalar Extensions 

 64 128-bit vector registers in IBM Power processors 
 all can be used for vector-scalar floating point operations 
 32 of these registers can be used as 8/16/32/64/128-bit quantities  

—co-processors 
– ClearSpeed CSX700 array processor (control PE + array of 96 PEs) 
– NVIDIA Volta V100 GPGPU



Intel Knight’s Landing (includes SIMD)

• > 8 billion transistors 

• Self-hosted manycore 
processor 

• Up to 72-cores 
—4 SMT threads per core 
—32 512-bit vector registers 

• Up to 384GB of DDR4-2400 
main memory 
—115GB/s max mem BW 

• Up to 16GB of MCDRAM 
on-package (3D stacked) 
—400GB/s max mem BW 

• 3.46TF double precision

12http://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1_50-GHz-72-core

2nd Generation Xeon Phi 



13

• Features 
—hardware multi-threading 
—asynchronous, overlapped I/O 
—extensible instruction set 

• SIMD core 
—poly controller 
—poly execution unit 

– array of 192 PEs 
– 64- and 32-bit floating point 
– 250 MHz (key to low power) 
– 96 GFLOP, <15 Watts

SIMD: ClearSpeed MTAP Co-processor
MTAP processor

csx700_product_brief.pdf

(CSX700 released June 2008
company delisted in 2009)



 
NVIDIA VOLTA V100 (SIMT)

• 21.1B transistors 

• 84 Streaming Multiprocessors (SMs) 

• Each SM 
—64 FP32 cores  
—64 INT32 cores  
—32 FP64 cores  
—8 tensor cores (64 FP16 FMA each/cycle) 
—4 texture units  
—4 warp schedulers 

– 32-thread groups (warp) 
– 4 warps issue and execute concurrently 

• 7.8 TF DP; 125 Tensor TF

14http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf



15

SIMT Thread Scheduling on Volta

NVIDIA TESLA V100 GPU ARCHITECTURE 
White Paper WP-08608-001_v1.1, August 2017 

Independent thread scheduling 
enables threads in a warp to 
execute independently - a key to 
starvation freedom when threads 
synchronize



16

SIMT Thread Scheduling on Volta

NVIDIA TESLA V100 GPU ARCHITECTURE 
White Paper WP-08608-001_v1.1, August 2017 

Independent thread scheduling 
enables threads in a warp to 
execute independently - a key to 
starvation freedom when threads 
synchronize



Short Vectors: The Good and Bad

The stencil code (a) has much lower performance than the 
non-stencil code (b) despite accessing 50% fewer data 
elements

17Figure credit: P. Sadayappan. See Henretty et al. [CC’11]



The Subtlety of Using Short Vectors

18Figure credit: P. Sadayappan. See Henretty et al. [CC’11]

• Consider the following: 

• Stream alignment conflict between b[i][j+1] and c[i][j] 



Dimension-lifted Transformation (DLT)

(a) 1D array in memory 
(b) 2D view of same array 
(c) Transposed 2D array brings non-interacting  

elements into contiguous vectors 
(d) New 1D layout after transformation

19Figure credit: P. Sadayappan. See Henretty et al. [CC’11]

Jacobi-1D:  
a[i] = b[i-1] + b[i] + b[i+1]

original

DLT +  
autovec

DLT +  
vector  
intrinsics

b[i-1] b[i] b[i+1]



20

MIMD Processors

Execute different programs on different processors  

• Platforms include current generation systems 
— shared memory 

– multicore laptop 
– workstation with multiple quad core processors 
– legacy: 

 SGI UV 3000 (up to 256 sockets, each with 8 cores) 
— distributed memory 

– clusters (e.g., nots.rice.edu, davinci.rice.edu) 
– Cray XC, IBM Blue Gene, Power9+NVIDIA Volta 

• SPMD programming paradigm 
—Single Program, Multiple Data streams  

— same program on different PEs, behavior conditional on 
thread id



SIMD, MIMD, SIMT

• SIMD platforms 
—special purpose: not well-suited for all applications 
—custom designed with long design cycles 
—less hardware: single control unit 
—need less memory: only 1 copy of program 
—today: SIMD common only for vector units 

• MIMD platforms  
—suitable for broad range of applications  
—inexpensive: off-the-shelf components + short design cycle 
—need more memory: program and OS on each processor 

• SIMT  
—GPUs, e.g., NVIDIA VOLTA

21



22

Data Movement and Communication
• Latency: How long does a single operation take? 

— measured in nanoseconds 

• Bandwidth: What data rate can be sustained?  
— measured in Mbytes or GBytes per second 

• These terms can be applied to  
— memory access 
— messaging



23

A Memory Hierarchy (Itanium 2)

L1 Cache-IL1 Cache-D

memory controller

L2 Cache

L3 cache

mem 
bank 1

mem 
bank 2

TLBTLB

209.6 ns

Processor

Write 
Buffers, 

Etc

(FP)

http://www.devx.com/Intel/Article/20521

16K I + 16K D, 1 cycle

256K, 5 (6 FP) cycles

3M, 13.3 (13.1 FP cycles)



24

Memory Bandwidth

• Limited by both 
—the bandwidth of the memory bus  
—the bandwidth of the memory modules 

• Can be improved by increasing the size of memory blocks 

• Memory system takes L time units to deliver B units of data  
—L is the latency of the system 
—B is the block size



Reusing Data in the Memory Hierarchy

• Spatial reuse: using more than one word in a multi-word line 
—using multiple words in a cache line 

• Temporal reuse: using a word repeatedly 
—accessing the same word in a cache line more than once 

• Applies at every level of the memory hierarchy 
—e.g. TLB 

– spatial reuse: access multiple cache lines in a page 
– temporal reuse: access data on the same page repeatedly

25



26

Experimental Study of Memory (membench)

Microbenchmark for memory system performance

                   time the following loop  
                   (repeat many times and average) 
               for i from 0 to L 
                                load A[i] from memory (4 Bytes)

        for array A of length L from 4KB to 8MB by 2x 
             for stride s from 4 Bytes (1 word) to L/2 by 2x 
                   time the following loop  
                   (repeat many times and average) 
               for i from 0 to L by s 
                                load A[i] from memory (4 Bytes)

s

1 experiment



27

Membench: What to Expect

• Consider the average cost per load 
—plot one line for each array length, time vs. stride 
—unit stride is best: if cache line holds 4 words, only ¼ miss 
—if array is smaller than a cache, all accesses will hit after first run 

– time for first run is negligible with enough repetitions 
—upper right figure assumes only one level of cache 
—performance profile is more complicated on modern systems

s = stride

average cost per access

total size < L1cache 
hit time

memory  
time

size > L1



28

Memory Hierarchy on a Sun Ultra-2i

L1:  
16 KB 
2 cycles (6ns)

Sun Ultra-2i, 333 MHz

L2: 64 byte line

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

L2: 2 MB,  
12 cycles (36 ns)

Mem: 396 ns 

(132 cycles)

8 K pages,    
32 TLB entries

L1: 16 B line

Array length



29

Memory Hierarchy on a Pentium III

L1: 32 byte line ?

L2: 512 KB  
60 ns

L1: 64K 
5 ns, 4-way?

Katmai processor on Millennium, 550 MHz Array size



30

Memory Bandwidth in Practice
What matters for application performance is “balance” between sustainable 
memory bandwidth and peak double-precision floating-point performance.  

Analysis of some prior systems at Texas Advanced Computing Center 
—Ranger (4-socket quad-core AMD “Barcelona”)  

– bandwidth = 7.5 GB/s (2.19 GW/s, 8-Byte Words) per node 
– peak FP rate =  2.3 GHz * 4 FP Ops/Hz/core * 4 cores/socket * 4 sockets =  

147.2 GFLOPS/node 
– ratio = 67 FLOPS/Word 

—Lonestar (2-socket 6-core Intel “Westmere”)  
– bandwidth = 41 GB/s (5.125 GW/s) per node 
– peak FP rate = 3.33 GHz * 4 Ops/Hz/core * 6 cores/socket * 2 sockets =  

160 GFLOPS/node 
– ratio = 31 FLOPS/Word 

—Stampede (2-socket 8-core Intel “Sandy Bridge” processors) 
– bandwidth = 78 GB/s (9.75 GW/s) per node 
– peak FP rate = 2.7 GHz * 8 FP Ops/Hz * 8 cores/socket * 2 sockets =  

345.6 GFLOPS per node 
– ratio = 35 FLOPS/Word

Credit: John McCalpin, TACC, http://blogs.utexas.edu/jdm4372/2012/11/



Understanding Performance Limitations

31

Williams,	Waterman,	Pa.erson;	CACM	April	2009



32

Memory System Performance: Summary 

• Exploiting spatial and temporal locality is critical for  
—amortizing memory latency 
—increasing effective memory bandwidth 

• Ratio # operations / # memory accesses 
—good indicator of anticipated tolerance to memory bandwidth  

• Memory layout and computation organization significantly 
affect spatial and temporal locality



33

Multithreading for Latency Hiding 

• We illustrate threads with a dense matrix vector multiply  

for (i = 0; i < n; i++)
     c[i] = dot_product(get_row(a, i), b); 

• Each dot-product is independent of others 
—thus, can execute concurrently 

• Can rewrite the above code segment using threads  

#pragma omp parallel for
for (i = 0; i < n; i++)
  c[i] = dot_product,get_row(a, i), b);



34

Multithreading for Latency Hiding (contd)

• Consider how the code executes 
—first thread accesses a pair of vector elements and waits for them 
—second thread can access two other vector elements in the next 

cycle 
—...  

• After L units of time 
—(L is the latency of the memory system) 
—first thread gets its data from memory and performs its madd  

• Next cycle  
—data items for the next function instance arrive 

• ... 

• Every clock cycle, we can perform a computation 



35

Multithreading for Latency Hiding (contd) 

• Previous example makes two hardware assumptions 
—memory system can service multiple outstanding requests 
—processor is capable of switching threads at every cycle  

• Also requires program to have explicit threaded concurrency   

• Machines such as the Sun T2000 (Niagara-2) and the Cray 
Threadstorm rely on multithreaded processors  
—can switch the context of execution in every cycle 
—are able to hide latency effectively 

• Sun T2000, 64-bit SPARC v9 processor @1200MHz 
—organization: 8 cores, 4 strands per core, 8KB Data cache and 

16KB Instruction cache per core, L2 cache: unified 12-way 3MB, 
RAM: 32GB 

• Cray Threadstorm: 128 threads



36

Prefetching for Latency Hiding 

• Misses on loads cause programs to stall; why not load data 
before it is needed? 
—by the time it is actually needed, it will be there!  

• Drawback: need space to store early loads 
—may overwrite other necessary data in cache  
—if early loads are overwritten, we are little worse than before! 

• Prefetching support 
—software only, e.g. Itanium2 
—hardware and software, modern Intel, AMD, … 

• Hardware prefetching requires 
—predictable access pattern 
—limited number of independent streams



37

Tradeoffs in Multithreading and Prefetching 

• Multithreaded systems 
—bandwidth requirements  

– may increase very significantly because of reduced cache/ thread  
—can become bandwidth bound instead of latency bound  

• Multithreading and prefetching  
—only address latency 
—may often exacerbate bandwidth needs  
—have significantly larger data footprint; need hardware for that



References

• Adapted from slides “Parallel Programming Platforms” by 
Ananth Grama accompanying course textbook  

• Vivek Sarkar (Rice), COMP 422 slides from Spring 2008 

• Jack Dongarra (U. Tenn.), CS 594 slides from Spring 2008, 
http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/
cs594-2008.htm 

• Kathy Yelick (UC Berkeley), CS 267 slides from Spring 2007, 
http://www.eecs.berkeley.edu/~yelick/cs267_sp07/lectures 

• Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz 
Franchetti, J. Ramanujam and P. Sadayappan. Data Layout 
Transformation for Stencil Computations on Short-Vector 
SIMD Architectures. In ETAPS Intl. Conf. on Compiler 
Construction (CC'2011), Springer Verlag, Saarbrucken, 
Germany, March 2011. 

38


