Parallel Computing Platforms:

Control Structures and
Memory Hierarchy

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

““ RICE COMP 422/534 Lecture 12 25 February 2020

Topics for Today

e SIMD, MIMD, SIMT control structure

e Memory hierarchy and performance

Parallel Computing Platforms

A parallel computing platform must specify

—concurrency = control structure
—interaction between concurrent tasks = communication model

Control Structure of Parallel Platforms

Parallelism ranges from instructions to processes

® Processor control structure alternatives

— work independently
— operate under the centralized control of a single control unit

e MIMD

— Multiple Instruction streams
— each hardware thread has its own control unit
— each hardware thread can execute different instructions

— Multiple Data streams
— each thread can work on its own data

e SIMD

— Single Instruction stream

— single control unit dispatches the same instruction to processing
elements

— Multiple Data streams
— processing elements work on their own data

Control Structure of Parallel Platforms - Il

e SIMT

—Single Instruction stream

— single control unit dispatches the same instruction to processing
element

—NMultiple Threads

e SIMT features that SIMD lacks
—single instruction, multiple register sets
— SIMT processing elements have a separate register set per thread
—single instruction, multiple flow paths

— one can write if statement blocks that contain more than a single
operation. some processors will execute the code, others will no-op.

SIMD and MIMD Processors

e =1 PE + i
§ control unit C_Ia
§ §
Global = PE+ =
Control 2.- control unit 2:-
Unit S . S
A CD=F : z
o * o
S S S
. S PE + S
O 8
SIMD architecture MIMD architecture

PE = Processing Element

SIMD Control

e SIMD excels for computations with regular structure
—media processing, scientific kernels (e.g., linear algebra, FFT)

e Activity mask

—per PE predicated execution: turn off operations on certain PEs
— each PE tests own conditional and sets own activity mask

— PE can conditionally perform operation predicated on mask value

Example: 128-bit SIMD Vectors

e Data types: anything that fits into 16 bytes, e.g.,

4x floats

2x doubles

16x bytes

¢ Instructions operate in parallel on data in this 16 byte register
— add, multiply etc.

e Data bytes must be contiguous in memory and aligned

e Additional instructions needed for

— masking data
— moving data from one part of a register to another

Computing with SIMD Vector Units

e Scalar processing e SIMD vector units
—one operation produces —one operation produces
one result multiple results

x3+y3 [x2+y2 | x1+y1| x0+y0

Slide Credit: Alex Klimovitski & Dean Macri, Intel Corporation

Executing a Conditional on a SIMD Processor

conditional statement

Initial values

execute
“then” branch

execute
“else” branch

if (A==0)

then C =B

else C = B/A

A 0 A 4 A) A 0
B | 5 B[| B | 2 B[7|
clolllc[olllc[ol||lc|o

Processor O

Processor 1

Processor 2

Processor 3

A

B
C

4

8

0

A

B
C

|

2

0

Processor 1

Al o
Bl 5
cls
Processor 0
Al o
Bl 5
cl s

Processor O

A

B
C

4
3

(\®)

Processor 1

Processor 2

A

B
C

2
2

1

Processor 2

A

B
C

0
7

~

Processor 3

A

B
C

0
7

7

Processor 3

SIMD Examples

Previously: SIMD computers

—e.g., Connection Machine CM-1/2, and MasPar MP-1/2
— CM-1 (1980s): 65,536 1-bit processors

Today: SIMD functional units or co-processors

—vector units
— AVX - Advanced Vector Extensions

16 256-bit vector registers in Intel and AMD processors since 2011

256 bits as 8-bit chars, 16-bit words, 32/64-bit int and float
32 512-bit vector registers in Intel Xeon Phi

512 bits as 8-bit chars, 16-bit words, 32/64-bit int and float
— VSX - Vector-Scalar Extensions

64 128-bit vector registers in IBM Power processors
all can be used for vector-scalar floating point operations
32 of these registers can be used as 8/16/32/64/128-bit quantities
—CO-processors
— ClearSpeed CSX700 array processor (control PE + array of 96 PEs)

— NVIDIA Volta V100 GPGPU
11

Intel Knight’s Landing (includes SIMD)

e > 8 billion transistors

2nd Generation Xeon Phi

o Self-hosted manycore
processor

e Up to 72-cores o0
—4 SMT threads per core ol §°

e Up to 384GB of DDR4-2400 |
main memory

—115GB/s max mem BW

e Up to 16GB of MCDRAM
on-package (3D stacked)

—400GB/s max mem BW

e 3.46TF double precision
http://ark.intel.com/products/95831/Intel-Xeon-Phi-Processor-7290F-16GB-1_50-GHz-72-core

SIMD: ClearSpeed MTAP Co-processor

MTAP processor

e Features
—hardware multi-threading
—asynchronous, overlapped I/O
—extensible instruction set

e SIMD core

—poly controller
—poly execution unit

array of 192 PEs
64- and 32-bit floating point

250 MHz (key to low power)
96 GFLOP, <15 Watts

(CSX700 released June 2008
company delisted in 2009)

tom Notwork

csx700_product_brief.pdf 13

NVIDIA VOLTA V100 (SIMT)

21.1B transistors
84 Streaming Multiprocessors (SMs) , 4; "

Each SM ¢ |1 AR BS8B/BNN BN BN DR FN IR BN BN 08 D58 3R DA 10
—64 FP32 cores (EEEREEEREEEAS SRR R RN
—64 INT32 cores I o
—32 FP64 cores
—8 tensor cores (64 FP16 FMA each/cycle)
—4 texture units —
—4 warp schedulers - SeEB

— 32-thread groups (warp)

— 4 warps issue and execute concurrently

7.8 TF DP; 125 Tensor TF

zzzzzzzzzzzz

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf 14

SIMT Thread Scheduling on Volta

if (threadidx.x < 4) {

Aj
B;
} else {
X3
Y;
}
Z;
__syncwarp() Time
T_device__ void insert_after(Node *a, Node *b)
Independent thrgad scheduling SR
enables threads in a warp to € 7 amnext
execute independently - a key to ey - o]
starvation freedom when threads b-snext = ¢
c->prev = b;

synchronize
unlock (c); unlock(a);

}

NVIDIATESLA V100 GPU ARCHITECTURE
White Paper WP-08608-001_v1.1, August 2017

15

SIMT Thread Scheduling on Volta

__device__ void 1insert_after(Node *a, Node *b)

{
Node *c;
lock(a); lock(a->next);
C = a->next;

a->next = b;
b->prev = a;
b->next = c;
c->prev = b;

unlock (c); unlock(a);

Short Vectors: The Good and Bad

for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++1i)
for (j = 1; j < N+1; ++j)
S1: Clil[j] = A[i]1[j] + A[i]l[j-1];
for (i = 0; i < N; ++1i)
for (j = 1; j < N+1; ++j)
S2: A[i][j] = C[il[j] + Cc[il[j-1]1;

¥

for (t = 0; t < T; ++t) {
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
S3: C[il [j]1 = A[i1([j] + B[i1([j];
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
S4: } A[il (3] = B[il[j] + Clil[j];

AMD Phenom 1.2 GFlop/s
Performance: Core2 3.5 GFlop/s
Core 17 4.1 GFlop/s

AMD Phenom 1.9 GFlop/s
Performance: Core2 6.0 GFlop/s
Core 17 6.7 GFlop/s

(a) Stencil code

(b) Non-Stencil code

The stencil code (a) has much lower performance than the
non-stencil code (b) despite accessing 50% fewer data

elements

Figure credit: P. Sadayappan. See Henretty et al. [CC'11]

17

The Subtlety of Using Short Vectors

e Consider the following:

VR1
VR2
VR3
VR4
VR5

2
C

o)

0
a
m
n

1
b
n
0

P

3
d
P
q

Vector Registers

Data in Memory:

o o plq]

abicdle fghijk

for (i=0;i<H; ++i)
for (j =4;] < W, +4j)
c[i][j] = bli][j+1] + b[i][j]

-

o clin]

cJs[i[a]v]

< TTTT [T TTTTTT] bl

e Stream alignment conflict between b[i][j+1] and c[i][j]

Figure credit: P. Sadayappan. See Henretty et al. [CC’11] 18

Dimension-lifted Transformation (DLT)

3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 16 1

alB|cC EFGHIJKLMNOPQRS|T|U|V|WIX|
(a) Original Layout 14 7
DLT + i
. I~ vector
— 3EE intrinsics «!
A | B c|)> E |F B la N | T .
VGHIJKL .N1czou DLT+ ggs
l::jj:: I“{:: autovec |
b[i-1] b[i] b[i+1] L & original «7
+ # # (c) Transposed
2 ¥
|AcusannrcIoulnapvzxqwrnnxl 0 k

Core i7

(d) Transformed Layout

(a) 1D array in memory
(b) 2D view of same array
(c) Transposed 2D array brings non-interacting

elements into contiguous vectors Jacobi-
(d) New 1D layout after transformation alil _‘« @

Figure credit: P. Sadayappan. See Henretty et al. [CC'11]

Phenom
Core2Quad

.L
Y
O

MIMD Processors

Execute different programs on different processors

e Platforms include current generation systems
— shared memory
— multicore laptop
— workstation with multiple quad core processors
— legacy:
SGI UV 3000 (up to 256 sockets, each with 8 cores)
— distributed memory
— clusters (e.g., nots.rice.edu, davinci.rice.edu)
— Cray XC, IBM Blue Gene, Power9+NVIDIA Volta

e SPMD programming paradigm

—Single Program, Multiple Data streams

— same program on different PEs, behavior conditional on
thread id

20

SIMD, MIMD, SIMT

SIMD platforms

—special purpose: not well-suited for all applications
—custom designed with long design cycles

—less hardware: single control unit

—need less memory: only 1 copy of program
—today: SIMD common only for vector units

MIMD platforms

—suitable for broad range of applications
—inexpensive: off-the-shelf components + short design cycle
—need more memory: program and OS on each processor

SIMT
—GPUs, e.g., NVIDIA VOLTA

21

Data Movement and Communication

e | atency: How long does a single operation take?
— measured in nanoseconds

e Bandwidth: What data rate can be sustained?
— measured in Mbytes or GBytes per second

e These terms can be applied to

— memory access
— messaging

22

A Memory Hierarchy (ltanium 2)

/I Processor ‘
A

| (FP)
we) /|
‘ E Cache-Dlﬂ 16K | + 16K D, 1 cycle
—| L2cCache | 256K 5(6FP)cycles
Write
Buffers,
Etc "" L3 cache ‘ 3M, 13.3 (13.1 FP cycles)

N\

‘ memory controller‘

O~

209.6 ns
bank 1 | | bank?

http://www.devx.com/Intel/Article/20521 23

Memory Bandwidth

Limited by both

—the bandwidth of the memory bus
—the bandwidth of the memory modules

Can be improved by increasing the size of memory blocks

Memory system takes L time units to deliver B units of data

—L is the latency of the system
—B is the block size

24

Reusing Data in the Memory Hierarchy

e Spatial reuse: using more than one word in a multi-word line
—using multiple words in a cache line

e Temporal reuse: using a word repeatedly
—accessing the same word in a cache line more than once

e Applies at every level of the memory hierarchy

—e.g. TLB
— spatial reuse: access multiple cache lines in a page

— temporal reuse: access data on the same page repeatedly

25

CTIT T T T T I 11]
EEEENESN =k
B = m m w0
] N N)

S
for array A of length L from 4KB to 8MB by 2x

for stride s from 4 Bytes (1 word) to L/2 by 2x

time the following loop
(repeat many times and average)
forifromOtoL bys
load A[i] from memory (4 Bytes)

\

Experimental Study of Memory (membench)

Microbenchmark for memory system performance

> 1 experiment

S

26

Membench: What to Expect

daverage cost per access
HERNER NN RR RN R
PFNNNNNNNN)D ™
0 F | | H)
l l .:) size > L1
cache total size < L1
hit time ”

s = stride

e Consider the average cost per load
—plot one line for each array length, time vs. stride
—unit stride is best: if cache line holds 4 words, only /4 miss

—if array is smaller than a cache, all accesses will hit after first run
— time for first run is negligible with enough repetitions

—upper right figure assumes only one level of cache
—performance profile is more complicated on modern systems
27

| u
Memory Hierarchy on a Sun Ultra-2i
Sun Ultra-2i, 333 MHz
1 1 1 Array length
450 1 I 1 1 I 1 1 I I
4KB —+—
OKB ---x-
16KB ---%---
400 - * Lelslld il -
T e > Mem: 396 ns
350 | i 256KB ---#--— (132 cycles)
i 512KB - &
\ TIMB 4
300 ‘x. B v
\ 8MB ---o--
o 250 - -
g) \
© % :
E .
=
L2: 2 MB,
2ng - 12 cycles (36 ns)
I isé >
. I >
4 1 256 4K 16K 64K 256K 1M 2M 4M 8M 16M3z2m -1
Stride (bytes) 16 KB
L1: 16 B line L2: 64 byte line T
8 K pages,

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

32 TLB entries

2 cycles (6ns)

28

Memory Hierarchy on a Pentium llI

Time {nsec)

600

500

400

300

200

100

I|<atmai DII’OCGSSOI'IOI’I Miller[mium. 5|50 MHz |

Array size

AL
v
.,r‘ff‘ o
g _--_—!—_—-_—!—_—-_—-3—__—-_—!——__' . iz .__‘

8KB ---x-—-—-
16KB ------
32KB -8
256KB ----e---
512KB - -2 -
1MB &
2MB ————
AMB ---v-—]

256 1K 4K
L1: 32 byte line ? Stride (bytes)

64K 256K

iM 2M 4M 8M 16M32M

L2: 512 KB
60 ns

L1: 64K
5 ns, 4-way?

29

Memory Bandwidth in Practice

What matters for application performance is “balance” between sustainable
memory bandwidth and peak double-precision floating-point performance.

Analysis of some prior systems at Texas Advanced Computing Center
—Ranger (4-socket quad-core AMD “Barcelona”)
— bandwidth = 7.5 GB/s (2.19 GWI/s, 8-Byte Words) per node

— peak FP rate = 2.3 GHz * 4 FP Ops/Hz/core * 4 cores/socket * 4 sockets =
147.2 GFLOPS/node

— ratio =67 FLOPS/Word
—Lonestar (2-socket 6-core Intel “Westmere”)
— bandwidth = 41 GB/s (5.125 GW/s) per node

— peak FP rate = 3.33 GHz * 4 Ops/Hz/core * 6 cores/socket * 2 sockets =
160 GFLOPS/node

— ratio = 31 FLOPS/Word
—Stampede (2-socket 8-core Intel “Sandy Bridge” processors)
— bandwidth = 78 GB/s (9.75 GW/s) per node

— peak FP rate = 2.7 GHz * 8 FP Ops/Hz * 8 cores/socket * 2 sockets =
345.6 GFLOPS per node

— ratio = 35 FLOPS/Word

Credit: John McCalpin, TACC, http://blogs.utexas.edu/jdm4372/2012/11/ 30

Understanding Performance Limitations

128
64
© 32
%,”; peak floating-point performance
o c q
Eo 2. floating-point balance
o
93 1. ILPor SIMD
s I
k: i
<
TLP only
[
[
Kernel 2
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

Williams, Waterman, Patterson; CACM April 2009

31

Memory System Performance: Summary

e Exploiting spatial and temporal locality is critical for
—amortizing memory latency
—increasing effective memory bandwidth

e Ratio # operations / # memory accesses
—good indicator of anticipated tolerance to memory bandwidth

e Memory layout and computation organization significantly
affect spatial and temporal locality

32

Multithreading for Latency Hiding

e We illustrate threads with a dense matrix vector multiply

for (1 = 0; i < n; 1i++)
c[i] = dot product(get row(a, i), b);

e Each dot-product is independent of others
—thus, can execute concurrently
e Can rewrite the above code segment using threads
#pragma omp parallel for

for (1 = 0; 1 < n; i++)
c[i] = dot product,get _row(a, i), b);

Multithreading for Latency Hiding (contd)

e Consider how the code executes

—first thread accesses a pair of vector elements and waits for them

—second thread can access two other vector elements in the next
cycle

o After L units of time

—(L is the latency of the memory system)
—first thread gets its data from memory and performs its madd

e Next cycle
—data items for the next function instance arrive

e Every clock cycle, we can perform a computation

34

Multithreading for Latency Hiding (contd)

* Previous example makes two hardware assumptions
—memory system can service multiple outstanding requests
—processor is capable of switching threads at every cycle

e Also requires program to have explicit threaded concurrency

e Machines such as the Sun T2000 (Niagara-2) and the Cray
Threadstorm rely on multithreaded processors
—can switch the context of execution in every cycle
—are able to hide latency effectively
e Sun T2000, 64-bit SPARC v9 processor @1200MHz

—organization: 8 cores, 4 strands per core, 8KB Data cache and
16KB Instruction cache per core, L2 cache: unified 12-way 3MB,
RAM: 32GB

e Cray Threadstorm: 128 threads

35

Prefetching for Latency Hiding

e Misses on loads cause programs to stall; why not load data
before it is needed?

—by the time it is actually needed, it will be there!

e Drawback: need space to store early loads

—may overwrite other necessary data in cache
—if early loads are overwritten, we are little worse than before!

e Prefetching support

—software only, e.g. Itanium2
—hardware and software, modern Intel, AMD, ...

e Hardware prefetching requires

—predictable access pattern
—limited number of independent streams

36

Tradeoffs in Multithreading and Prefetching

Multithreaded systems

—bandwidth requirements
— may increase very significantly because of reduced cache/ thread

—can become bandwidth bound instead of latency bound

Multithreading and prefetching

—only address latency
—may often exacerbate bandwidth needs
—have significantly larger data footprint; need hardware for that

37

References

Adapted from slides “Parallel Programming Platforms” by
Ananth Grama accompanying course textbook

Vivek Sarkar (Rice), COMP 422 slides from Spring 2008

Jack Dongarra (U. Tenn.), CS 594 slides from Spring 2008,
http://www.cs.utk.edu/%7Edongarra/WEB-PAGES/
cs594-2008.htm

Kathy Yelick (UC Berkeley), CS 267 slides from Spring 2007,
http://lwww.eecs.berkeley.edu/~yelick/cs267 _sp07/lectures

Tom Henretty, Kevin Stock, Louis-Noel Pouchet, Franz
Franchetti, J. Ramanujam and P. Sadayappan. Data Layout
Transformation for Stencil Computations on Short-Vector
SIMD Architectures. In ETAPS Intl. Conf. on Compiler
Construction (CC'2011), Springer Verlag, Saarbrucken,
Germany, March 2011.

38

