Parallel Computing Platforms

Routing, Network Embedding

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

&& RICE COMP 422/534 Lecture 14-15 3 March 2020

Topics for Today

e Routing
—example network fabric: Infiniband

e Network embeddings

Communication Performance

e Depends on a variety of features
—programming model semantics
— synchronous or asynchronous communication

—associated software protocols
— get/put, send/receive

—network topology
—embedding
—routing

Store-and-Forward Routing

e Definition

—an intermediate hop completely receives a multi-hop message
before forwarding it to the next hop

e Total communication cost for

—message of size m words
—cost for header + message to traverse | communication links

3-hop
transmission

Packet Routing

e Store-and-forward makes poor use of communication
resources

e Packet routing

—breaks messages into packets

—pipelines them through the network 3-hop

transmission
e Packets may take different paths,

thus each packet must carry abjcid
—routing information alb/cld
—error checking albleld
—sequencing information N
¢ Transmission time is much shorter, sum of Time

—time for the first packet through the whole path
—transmission time for the rest of the data

Cut-through Routing

e Packet routing in the extreme

—divide messages into basic units called flits

—start forwarding flit before it is received in its entirety
— typically, after seeing the destination address in the first few bytes

e Flits are typically small — header information must be small

—e.g., 128 bits on Cray T3D network (https://dl.acm.org/doi/
10.5555/646434.693065)

e To enable small headers
—force all flits to take the same path, in sequence
— tracer message first programs all intermediate routers
— all flits then take same route
— no sequence numbers needed for assembly at destination
—no error checking per flit
— pass along even bad packets
— perform error checks on the entire message

e Used in today’s Infiniband networks 6

Messaging Costs

If a link serves multiple messages

—cost for transmission across the link must be scaled up by the
number of messages traversing that link

Network congestion varies by

—communication pattern
—match between pattern and network topology

Communication cost models must account for congestion

Cost Models for Shared Memory Machines

Modeling shared memory communication cost is difficult
e Memory layout is typically determined by the system

* Finite cache sizes can cause cache thrashing
—additional traffic because of failure to exploit close reuse

e Difficult to quantify overheads for coherence traffic
—especially for multi-level caches with some shared levels

e Difficult to model

—spatial locality
—false sharing and contention

e Prefetching and multithreading can reduce exposed latency
for data accesses

Routing Variants

Method for choosing a path
—oblivious: unique path between source and destination
— determines route for each pair without considering traffic

— appeal: can be computed in advance, even if they are
computationally expensive

optimal deterministic routing (with a minimal edge-forwarding
index) in arbitrary networks is NP-hard [Saad ’93]

—adaptive: use info about network state to determine path
— must react quickly to changes in the global network

— often constrained to fast suboptimal algorithms

Path characteristics

—minimal: shortest path between source and destination
—non-minimal: may use longer path to avoid congestion

Dimension-ordered Routing

100 101

110

Step 1(010 >110) Step 2 (110 >111)

Routing a message from node P, (010) to node P, (111) in a
3D mesh using dimension-ordered routing

Minimal vs. Non-minimal Routes

¢ (a) dimension ordered route: x theny

¢ (b) non-minimal route (not dimension ordered either)

WJ Dally, BP Towles. Principles and practices
of interconnection networks. Elsevier. 2004
11

Routing Challenges and Approaches

e Routing must prevent deadlocks
— use virtual channels with separate resources

¢ Routing must avoid hot-spots
— can use two-step routing
— message from s — d

first sent to a randomly chosen intermediate processor i
then forward from i to destination d

— reduces a worst case permutation route to two randomized
routing steps

source to a randomly picked intermediate
the randomly picked intermediate to destination

L. G. Valiant. A scheme for fast parallel communication.
SIAM Journal on Computing, 11(2):350-361, 1982.

12

Routing Costs: Theory vs. Practice

¢ Point-to-point metrics (bandwidth, latency) are not accurate
predictors for average network bandwidth

e Widely-used aggregate theoretical metrics

— edge-forwarding index: max # of paths through any edge
— bisection bandwidth

* Practical techniques to increase performance
— multiple virtual transmission channels
— operating system bypass
— adaptive routing

e Optimized routing offers substantial benefits

— Infiniband: for some traffic patterns, congestion degrades
bandwidth by 6.5x and increases latency 5x

— can characterize effectiveness of routing algorithms by
“effective bisection bandwidth”

13

Infiniband

e Infiniband: a switched, high-performance interconnect fabric
—serial connection

—high bandwidth, low latency
— basic link rate: 2.5Gb/s (SDR)

multipliers: 4x, 12x
double data rate 5Gb/s (DDR)
— cut through routing (< 200ns switching®)

—quality of service, failover, scalability

Infiniband
Fabric

¢ Typical switching elements
—crossbar with 24 full-duplex links
—support virtual lanes to break routing cycles & avoid deadlock
e Does not mandate any topology
—deployed networks typically use a fat tree, mesh, or torus

e Scalable to thousands of ports

¢ SDR < DDR ¢+ QDR + FDR10 ¢ FDR =< EDR <+ HDR+ NDR = XDR s

Signaling rate (Gbit/s) 2.5 5 10 10.3125 | 14.0625[81 | 2578125 50 100 250

ORNL’s Summit (2018)

12.5GB/s—_ o 12.5GB/s

16GB/s IGGB/
PCle Gen 4 1/0 \ PCle Gen 4 1/0 @

* System Tired a1/

—4,608 nodes, 256 racks T 2 A =
e Rack =5 e ;;z i

—18 compute nodes

—Mellanox IB EDR Switch @?ﬁj go% % Jffﬁﬁ gog; %
¢ Dual-rail interconnect %ﬁﬁ ,Wf% %ﬁﬁ—tmvﬁ%

—two connections per node @

°® 3_|eve| non'bIOCking fat_tree Figure credit: https:/fuse.wikichip.org/wp-content/
uploads/2018/06/summit-single-socket.png

e Each node has dual-channel Mellanox EDR InfiniBand NIC

—12.5GB/s of bi-directional traffic

—card sits in a PCle Gen4 shared x16 slot
— directly connected the two processors via x8 lanes

— each CPU has direct access to the InfiniBand card
15

Infiniband Routing

Oblivious destination-based distributed routing

Each switch has a forwarding table

—defines which port leads to which endpoint

—on startup or after topology changes
— Subnet Manager (SM) discovers the topology

— computes forwarding table for each switch
— uploads tables to the switches

Credit-based flow control scheme in hardware

—goal: avoid packet loss at congested switches

—how: each output port can only send packets if it has credits at
the destination input port

16

Infiniband OpenSM Routing Algorithms

e MINHOP

— minimal paths among all endpoints; tries to balance the number of routes
per link locally at each switch (under the constraint of minimal routes)

— can be circular dependencies among switch buffers (admits deadlock)

e UPDN

— uses the up*/down* routing algorithm to avoid circular buffer
dependencies by restricting # of possible paths in the network

— legal route must traverse zero or more links in “up” direction followed by
zero or more links in “down” direction

* FTREE

— a routing scheme optimized for fat trees; deadlock-free, but requires a fat
tree network topology

¢ DOR (Dimension Order Routing)

— routes along the dimensions of a k-ary n-cube to determine shortest
paths and might create circular buffer dependencies

e LASH (Layered Shortest Path)

— uses Virtual Lanes (VL) to break cyclic dependencies among channels of
an underlying DOR scheme

17

P-SSSP Routing

¢ Single source shortest path based routing

e Algorithm iterates over all endpoints u € Vp and finds reverse shortest
paths from u to all other endpoints v € Vp

Input: Network G = (Vp, U V., E)

Output: Routes R

foreach u € V}, do
comp. shortest paths from « to all v € V,
add reverse paths to forwarding tables (F)
update edge weights along paths

¢ Tree structure of the shortest path tree automatically generates valid
destination-based routes

e After each endpoint, the algorithm updates edge weights with the number
of routes that pass through each edge

¢ Difference between OpenSM’s MINHOP and P-SSSP

— P-SSSP performs a global optimization of the edge loads

— MINHOP does it only locally at each switch 18

Computing Routes with P-SSSP

Input: Network G = (Vp, U V., E)

Output: Routes R Vp set of end points
1 foreach u € V}, do
2 comp. shortest paths from u to all v € V5, Vc set of crossbars
3 add reverse paths to forwarding tables (R)
4 update edge weights along paths

(b) From endpoint 0 (c) From endpoint 1 (d) From endpoint 2

19

P2-SSSP

Input: Network G = (Vp, U V., E)
Output: Routes R

1 foreach v € V}, do

2 foreach v € V, do

3

comp. shortest path v — v
4 /* the path is constyrained by
destination-based routing! */
5 add path to forwarding tables (R)
6 _ update edge weights along path

(a) The P2-SSSP Algorithm

P-SSP: only updates weights P times
P2-SSSP: more accurate greedy heuristic
to minimize the edge-forwarding index:
perform the SSSP for each source-
destination pair and updates the edge
weights P(P — 1) times (one for each pair
of endpoints)

Sample Infiniband Networks

e Thunderbird (Sandia National Laboratories)
— 4390 endpoints, half-bisection bandwidth fat tree

e Ranger (Texas Advanced Computing Center)

— 4080 endpoints, two Sun Magnum 3456 port switches, 5-
stage full bisection bandwidth fat tree, 4 sockets (16 cores) /
endpoint

e Atlas (LLNL)
— 1142 endpoints, full bisection bandwidth fat tree

e Deimos (Technical University of Dresden)
— 724 endpoints, three 288-port switches connected in a 30

e Odin (Indiana University) = = Js
— 128 endpoint cluster with a single switch (fat tree)

21

Routing Algorithm Performance Simulations

£ 0.9 ' T T T

2 o8l o ggMINHOP s

& UPDN ==—x

c 077 , SSSP mmm—

@ 06} P--SSSP mmmml] 15%

- .

oS 05¢ 25%

2 04} 12%

8 03} ‘

2 02t

g 01¢

5 0 Q. B Y 2
: L R, % Y
%) Z 2 £ %

’boa %, (o4

simulate bandwidth of N random bisect patterns in the network
divide endpoints into two subsets of size P/2.
each in one half sends to a unique node in other half (perfect matching)

22

Routing vs. Infiniband B/W

0.9

e P-SSSP algorithm
globally balances routes
and thus improves the effective
bandwidth of the network

e Dramatically improves
effective bisection bandwidth

effective Bisection Bandwidth

0

0.8
0.7 +
0.6
05t
04
03
02
0.1 ¢

an MINHOP s

2

UPDN ==
SSSP s

P°-SSSP mmmm] 15%

25%

— 25% on the 4080 endpoint Ranger cluster @ TACC

(simulated)

— 40% on Deimos 724-endpoint InfiniBand cluster (measured)

e Why is P2-SSSP not better?

— edge forwarding index = theoretical lower bound to the

minimal point-to-point bandwidth in the networks
— not necessarily a good predictor for effective (avg) bisection BW

23

Global Adaptive Routing

e VAL gives optimal worst-case throughput
e MIN gives optimal benign traffic performance

e UGAL (Universal Globally Adaptive Load-balance)
— [Singh ‘05]
— Routes benign traffic minimally
— Starts routing like VAL if load imbalance in channel queues

— In the worst-case, degenerates into VAL, thus giving optimal
worst-case throughput

B. Dally. From Hypercubes to Dragonflies. IAA Workshop, 2008. 24

UGAL

‘1. H = shortest path (SP) length \
2. q,,= congestion of the outgoing
channel for SP

‘3. Pick i, a random intermediate node \

|4. H,,= non-min path (s=2i->d) length I

5. d,m= congestion of the outgoing
channel for s2>i->d

6. Choose SP if H_.q..< H,.q,; €lse
route via i, minimally in each phase

B. Dally. From Hypercubes to Dragonflies. IAA Workshop, 2008.

25

UGAL report card

Throughput (frac of capacity)

64 node
topology Algo © benign © adv © avg
VAL 0.5 0.5 0.5
Kes MIN 1.0 0.02 0.02
UGAL 1.0 0.5 0.5
VAL 0.5 0.5 0.5
8x8 MIN 1.0 0.33 0.63
torus
UGAL 1.0 0.5 0.7
VAL 0.5 0.5 0.5
64 node
CCC MIN 1.0 0.2 0.52
UGAL 1.0 0.5 0.63

B. Dally. From Hypercubes to Dragonflies. IAA Workshop, 2008.

26

Dragonfly Performance

J. Kim, B. Dally, S. Scott, D. Abts. Technology-Driven, Highly-Scalable Dragonfly Topology. ISCA 2008.

+\VAL +UGALL +UGALG <+MN +MN *UGALL +VAL +UGALG

3 i 30 ‘

25 !]' 25
=2 T - 2
r..% | p' y % !
S .. / S
w15 15 ‘
: f g
g 10 £ g =t /
3 il

5 5

0 L T T T 3 T T T T T

0 02 04 0.8 08 1 0 0.1 02 0.3 04 05 0¢
Offiered load Cffered Load
(a) (b)

Figure 8. Routing algorithm comparison on the dragonfly for (a)
uniform random traffic and (b) adversarial traffic pattern.

adversarial traffic pattern: each node in a group

sends to randomly selected node in another group -

Embeddings

Often need to embed a known communication pattern into a
given interconnection topology

® Why?
— may have an algorithm based on a particular logical topology
— how should we use it on a machine with a different topology

e Thus, it is useful to understand mapping between graphs

28

Embeddings Matter!

All-to-all on Blue Gene/P (16 nodes)

250000 EEER R e e o § § §

line 16 (M) —>6— ?

200000 | line 16 (T) cofee

plane 8 (M) x 2 (M) =@ : s s

«n 150000 | Plane 8 (T) X 2 (M) -8 [
2 plane 4 (M) x 4 (M) =-¥-=

£ box 4 (M) x 2 (M) x 2 (M) f 1

= 100000 _ ; “'5

50000 _m“m“mngnm“m“mé g g ;
e ==

8K | 6K 32K 64K 128K 256K 512K IM

Message size (bytes) _

A. Bhatele et al. Mapping applications with collectives over sub-communicators on
torus networks. In Proceedings SC ’12. IEEE Computer Society, 2012.

29

Embeddings Matter!

pF3D: a laser-plasma interaction code
Blue Gene/Q (16,384 cores)

3(', g
D9 o 8®oxY -
.ag’ 28 b O '”.”C’)
gxr T loweris bettert
c
O 26 [.
5 25 0909'Q AAA
0 08
L>L<I 24 o Qeee. AA PF3D Obser'ved ®

23 ?_0 .. PF3D Predicted o .

22 | | | | | |

0 5 10 15 20 25 30

Mappings sorted by actual execution times

Abhinav Bhatele Task Mapping on Complex Computer Network Topologies
for Improved Performance. LLNL-TR-678732 (FY2015 LDRD Final Report)
http://charm.cs.uiuc.edu/~bhatele/pubs/pdf/2015/Idrd2015.pdf 30

1ime (S)

160

120

80

40

Embeddings Matter!

pF3D: a laser-plasma interacti

pF3D: Time spent in MPI routines

Number of nodes

default mapping on BG/Q

on code

pF3D: Time spent in MPI routines (Best mapping)

Alltoall I

o T0%
52% 61%

Alltoall IS
Send - .. R Izo - Send _ .
Barrier N D Barrier I
................................ g
l_
44% 45%
0
128 256 512 1024 2048 409 128 256

512 1024 2048 4096

Number of nodes

best discovered mapping on BG/Q

Abhinav Bhatele Task Mapping on Complex Computer Network Topologies
for Improved Performance. LLNL-TR-678732 (FY2015 LDRD Final Report)
http://charm.cs.uiuc.edu/~bhatele/pubs/pdf/2015/Idrd2015.pdf

31

Metrics for Graph Mappings

Mapping a graph G(V,E) into G’(V’,E’)
e Congestion = maximum # edges in E mapped onto edge in E’
¢ Dilation = maximum # edges in E’ mapped onto 1 edge in E

e Expansion = (# nodes in V’)/(# nodes in V)

32

A Motivating Problem

HPC Challenge Benchmark: 1D FFT

2(0) — ? R ? X(0)
o -Inm\\vnw N
z(2) — m 2 3 e ® e X(4)
z(3) —» \\'Ilm;‘; Do N - X(12)
z(4) \!!IIWA‘#‘%‘A WS' “ X(2)
S Y O TR C e U1
(6 TATATATA 2 R NN Q) ‘}((6)
O AW
2(8) MWW "‘“3 WS W" X(1)
SO) AN AT AN =
2(10) — I’A’&’A\M‘lﬂ“ “"4' . X(5)
SO WG A DIZANGC DS=C i)
z(12) — III‘\\\WA‘#‘#A R s w“ X(3)
W 30/ AT I G I logical communication
z(14) — 2 R ANANS X(7)
i(l’)) _— W‘W R N X(15)

topology: 4D hypercube

Figure credit: http://media.texample.net/tikz/examples/PDF/radix2fft.pdf

Why FFT?

Often used in spectral methods - a class of techniques
for numerically solving partial differential equations. 33

Binary Reflected Gray Code (RGC)

Adjacent entries G(i, d), G(i + 1, d) differ in only 1 bit
G(i,x): G(0,1) = 0 G(1,1) — 1

| _ [Gli,), e
G(Z,CC‘f’l) — {233—|—G(2x+1—1—7:,33), 1 > 27

1-bit Gray code 2-bit Gray code 3-bit Gray code

o 0/0 0
0 0/o 1
|

11 0(11
G(1, d) 1o o1 0
d = number of —
bits in code

Reflect L LU

line 111

101

100

34

Embedding a Ring into a Hypercube

e Given
—ring of 2d nodes
—d-dimensional hypercube
e Map
—node i of the ring — node G(i, d) of the hypercube

35

Embedding a Ring in a Hypercube

1-bit Graycode 2-bit Graycode 3-bit Graycode 3-D hypercube 8-processor ring

o 0/0 0 0 < =0
0 001 1 1
11 011 3 2 —
10 o1 0 2 3 /
010/ | Qll
Reflect 110 6 4 A v
along this
line 111 7 5 100\4 /101
101 5 6 /
100 4 7 @'j ol
3-bit reflected embedding into
Gray code ring a 3D hypercube

36

Embedding a Mesh into a Hypercube

Map 2r x 2s wraparound mesh into a 2r*s-node hypercube
o G(k, d) = kth element of Gray code of d bits
e | et || denote concatenation

e Map mesh node (i, j) — hypercube node G(i, r) || G(j, s)

37

Embedding a Mesh into a Hypercube

(0,0) 00 00 0,1)0001 020011 (0,3)0010
C\) R />
/ o/ / N
(1,0)0100 | (1,1)0101| (1,2)0111| (1,3)0110
(\ 2 () 4
/ N o/ o
(2001100 | 211101 (22)1111] (2,3) 1110
(\ 2 () 4
J/ / \/ o
(3,001000 3,1)1001| (3,2)1011| (3,3)10 iO
N N\
T] O—O @, ‘T‘Ol
Processors in a column have Processors in a row have identical
identical two least-significant bits two most-significant bits

Mapping nodes in 4 x 4 mesh to nodes in a 4D hypercube

Congestion, dilation, and expansion of the mapping is 1
38

Embedding a Mesh into a Hypercube

110 111

0,0) 000 o,1) 001 02) 011 ©3) 010

|

' I .
/ /
1,0 100 (L) 1001 (@12 111 (13) 110

Embedding a 2 X 4 mesh into a 3D hypercube

Congestion, dilation, and expansion of the mapping is 1

39

Embedding a Mesh into a Linear Array

e Mesh has more edges than a linear array
e No possible mapping with congestion = 1, dilation = 1

e Approach

—first examine the mapping of a linear array into a mesh

—invert above mapping
— yields optimal mapping in terms of congestion

40

Embedding a Mesh into a Linear Array

consider this link

[

T
f O L)_L)l
—)— 00—
O—0O0——0 . : . .
Inverting the mapping - mapping a 2D mesh into a
Mapping a lincar array into a linear array (congestion 5)
2D mesh (congestion 1).
Embedding a 16 node linear Inverse of the mapping:
array into a 2-D mesh 2D mesh to 16-node linear array

Key:
dark lines: links in the linear array
normal lines: links in the mesh.

Embeddings can Help Route Diversity

O—»0Q ID 3D 4D \
2D @ éﬁ i i

Fig. 2: Disjoint (non-overlapping) paths and “spare” links between a pair of
nodes on n-dimensional topologies

Large messages may be routed adaptively to minimize hot-spots or congestion on the network. A careful mapping
of communicating tasks to the physical network can assist the system software and hardware in achieving this
goal. Consider a message sent between two nodes on an n D Cartesian network. Depending on where these
tasks are located, there are one, two, or more routes that the message can take. If tasks are placed on a line,
there is a single shortest path route between them. If we place the tasks on the diagonally opposite corners of a 2
x 2 plane, there exist two shortest paths between them, and twice the available bandwidth. Also, when one of
these paths is being used by other messages, the other path can be used to avoid congested links.

A. Bhatele et al. Mapping applications with collectives over sub-communicators on
torus networks. In Proceedings SC ’12. IEEE Computer Society, 2012. 42

Tilted Embeddings with RUBIK

Tilted embeddings on a mesh increase route diversity

z, Y, X =20, 1,

net = box([4,4,4
net.tilt (Z2, X, 1
net.tilt (X, Y, 1

2 # Assign names to dimensions
]) # Create a box

) # Tilt Z (XY) planes along X
) # Tilt X (YZ) planes along Y

s w D

A. Bhatele et al. Mapping applications with collectives over sub-communicators on
torus networks. In Proceedings SC ’12. IEEE Computer Society, 2012. 43

RUBIK Results with PF3D

Messaging rate (MB/s)

Cores Application Torus Best mapping
2048 16 x 8 x 16 8 x 8 x 8 x4 torus.tile([8, 8, 2, 1]) tilt(Z, X, 1) tilt(Z, Y, 1)
4096 16 x 8 x 32 8 x 8 x 16 x4 torus.tile([1, 8, 16, 1]) tilt(X, Y, 1) tilt(X, Z, 1)
8192 16 x 8 x 64 8 x 8 x 32 x 4 torus.tile([8, 8, 2, 1]) tilt(X, Y, 1)

16384 16x8x 128 8x 16x32x4 torus.tile([8, 16, 1, 1])
32768 16 x 8 x 256 8 x32x32x4 torus.tile([2, 8, 8, 1]) tilt(X, Y, 1) tilt(X, Z, 1)
65536 16 x 8 x 512 16x32x32x4 torustile([1, 8, 16, 1]) tilt(X, Y, 1) tile(X, Z, 1)

TABLE II: Rubik operations corresponding to the best mappings (out of the ones tried) for running pF3D on different core counts

Bandwidth utilization for different mappings of pF3D Execution time for different mappings of pF3D
160 - 1000 oo
| 40 TXYZ I TXYZ I
XYZT & 800 - XyZzZrTmm
120 © 3rdBest R < 3rd Best 23
100 - 2nd Best HEEED 2 400 | 2ndBest .
Best) 5 Best)
80 Sty R 2
60 g 400
40 £
i 200
20 1M ‘
0 0
2048 4096 8192 16384 32768 65536 2048 4096 8192 16384 32768 65536
Number of cores Number of cores

Fig. 14: Weak scaling performance of pF3D for the two default mappings as well as the three best mappings for each core count.

A. Bhatele et al. Mapping applications with collectives over sub-communicators on
torus networks. In Proceedings SC ’12. IEEE Computer Society, 2012. 44

Sharing Machines

Filtering Filtering
Filter: [in]: 101.3 235.9 15 0 Filter: [in]: 101.3 235.9 15 0
Avg: B:76.2 G:57.7 K:49.6 Avg: B:71.8 G:56.8 K:48.6
Num: B: 757 G: 5855 K: 1627 14 1 Num: B: 628 G: 5702 K: 1568 14 . 1
10000 6505 :
o000 13 2\ 2 e 2
¢ 50 100 150 200 : 50 100 150 200
In. " 80 100 150 200 50 100 150 200 =\
12 45 3 12 3 2\ 3
Links Colormap : i Links Colormap a5
W 2359 x| W 2359 ‘= O
oot re ..'f..'_':_ ‘ |
o’os i %33 |
118.0 1113 — .'-".-'j-""\" 4 118.0 1 r—ﬂ’ 14
\ \& \
e« oFreeze g (\‘ .« oFreeze s) \\
10 DRI 10 NN &5/5
Jobs N AN . Jobs G J XM \\ o
id nodes id nodes ‘ 2 id nodes id nodes ; / R
w 0 1366 & > o 10 1 1 & o
1 o e M L SR 0 1388 =3 1388 st ad M
g =g gy

Figure 5: Visualizations of the network traffic on a dragonfly system for two different job work-
loads/scenarios (traffic output obtained using Damselfly). Comparing with a scenario in which Job 0 (4D
Stencil) runs alone (left), when it is run in a workload along side other jobs (right), the number of links with
traffic above a certain threshold decreases and overall maximum traffic on inter-group links increases (231
MB as opposed to 191 MB when run alone). In the parallel workload run, Job 0’s traffic is confined to fewer
inter-group links in order to share bandwidth with other jobs.

Abhinav Bhatele Task Mapping on Complex Computer Network Topologies
for Improved Performance. LLNL-TR-678732 (FY2015 LDRD Final Report)
http://charm.cs.uiuc.edu/~bhatele/pubs/pdf/2015/Idrd2015.pdf 45

References

e T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage Switches
are not Crossbars: Effects of Static Routing in High-Performance
Networks. Proc. of 2008 IEEE Intl. Conf. on Cluster Computing.
IEEE Computer Society, 10 2008.

¢ Rachid Saad. Complexity of the forwarding index problem. SIAM
J. Discret. Math., 6(3):418—-427, 1993.

e Charles E. Leiserson. Fat-trees: universal networks for

hardware-efficient supercomputing. IEEE Trans. Comput.,
34(10):892-901, 1985

e C. Clos. A study of non-blocking switching networks. Bell
System Technology Journal, 32:406—-424, 1953

e J. C. Sancho, A. Robles, and J. Duato. Effective strategy to
compute forwarding tables for InfiniBand networks. In Parallel

Processing, International Conference on, 2001., pages 48-57,
2001.

46

