Collective Communication

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

& RICE COMP 422/534 Lecture 16 5 March 2020

Group Communication

e Motivation: accelerate interaction patterns within a group

e Approach: collective communication

—qgroup works together collectively to realize a communication
—constructed from pairwise point-to-point communications

e Implementation strategy

—standard library of common collective operations
—leverage target architecture for efficient implementation

e Benefits of standard library implementations
—reduce development effort and cost for parallel programs
—improve performance through efficient implementations
—improve quality of scientific applications

Topics for Today

One-to-all broadcast and all-to-one reduction
All-to-all broadcast and reduction

All-reduce and prefix-sum operations
Scatter and gather

All-to-all personalized communication

Optimizing collective patterns

Assumptions

e Network is bidirectional

e Communication is single-ported
—node can receive only one message per step

e Communication cost model
—message of size m, no congestion, time=t_,+t m
—congestion: model by scaling ¢,

One-to-All and All-to-One

¢ One-to-all broadcast
—a processor has M units of data that it must send to everyone

e All-to-one reduction

—each processor has M units of data

—data items must be combined using some associative operator
— e.g. addition, min, max

—result must be available at a target processor

One-to-All and All-to-One on a Ring

e Broadcast
—naive solution
— source sends send p - T messages to the other p - 1 processors

—use recursive doubling
— source sends a message to a selected processor

yields two independent problems over halves of the machine

- -
$ o0l
OmO 0 T

e Reduction 002020
— invert the process m
()

Broadcast on a Balanced Binary Tree

e Consider processors arranged in a dynamic binary tree

—processors are at the leaves
—interior nodes are switches

e Assume leftmost processor is the root of the broadcast

e Use recursive doubling strategy: log p stages

7 i 7

Broadcast and Reduction on a 2D Mesh

e Consider a square mesh of p nodes

— treat each row as a linear array of p?’”2 nodes
— treat each column as a linear array of p?”2 nodes

* Two step broadcast and reduction operations

1. perform the operation along a row

2. perform the operation along each column concurrently

G—0)

2 Y \J3
T
(10— (12
N A\@ broadcast on
3 3 4 x 4 mesh
@71 @f
4 4
;@ 2 ;@

>

1

* Generalizes to higher dimensional meshes

Broadcast and Reduction on a Hypercube

e Consider hypercube with 29 nodes
—view as d-dimensional mesh with two nodes in each dimension

e Apply mesh algorithm to a hypercube
—d (= log p) steps

Broadcast and Reduction Algorithms

Each of aforementioned broadcast/reduction algorithms
—adaptation of the same algorithmic template

Next slide: a broadcast algorithm for a hypercube of 249 nodes

—can be adapted to other architectures

—in the following algorithm
— my_id is the label for a node

— Xis the message to be broadcast

10

One-to-All Broadcast Algorithm

1. procedure GENERAL_ONE_TO_ALL_BC(d, my_id, source, X) o
2 begin | am communicating on
~>my_virtual_id .= my_id XOR source; behalf of a 2/ subcube

By _ mask 1= 2% — 1;
position relative ftor; .— 7 — 1 downto Odo | /* Outer loop */

to source mask := mask XOR 2%, /* Set bit i of maskto 0 */ J
/. if (my_virtual_id AND mask) = 0 then <
8. if (my_virtual_id AND 2') = 0then |/ even
9. virtual_dest := my_virtual_id XOR 2
10. send X to (virtual_dest XOR source);
/* Convert virfual_dest 1o the label of the physical destination */
11, else /| odd
12. virtual_source := my_virtual_id XOR 2¢;
13. receive X from (virfual_source XOR source);
/* Convert virfual_source 10 the label of the physical source */
14, endelse; P e
15. endfor;

16. end GENERAL_ONE_TO_ALL_BC

(000) _», oon)
One-to-all broadcast of a message X from source on a hypercube 11

All-to-One Reduction Algorithm

1. procedure ALL_TO_ONE_REDUCE(d, my_zd, m, X, sum)
2, begin | am communicating on
Z. for j := 0tom — 1 dosumij] := X[j]. behalf of a 2i subcube
: sk . — O
5, I'gf?;;:otod—mol
/* Select nodes whose lower ¢ bits are 0 ¥/
6. if (my_td AND mask) = Othen <
7. if (my_id AND 2*) # 0 then /[odd
8. msg_destination := my_id XOR 2¢;
9. send sum 10 msg_destination;
10, else ” even
1. msg_source := my_id XOR 2%
12. receive X from msg_source;
13. forj :=0tom —1do
14, sum(y] :=sumiz] + X|[3]:
15. endelse;
16. mask := mask XOR 2%, /* Set bit : of maskto 1*/
17. endfor;
18. end ALL_TO_ONE_REDUCE

All-to-One sum reduction on a d-dimensional hypercube

Each node contributes msg X containing m words, and node 0 is the destination 1o

Broadcast/Reduction Cost Analysis

Hypercube

e Log p point-to-point simple message transfers
—each message transfer time: t, + t,m

e Total time
T = (ts + tum) log p.

13

All-to-All Broadcast and Reduction

Each processor is the source as well as destination

e Broadcast
—each process broadcasts its own m-word message all others

e Reduction
—each process gets a copy of the result

M

o1 M

o M

p-1

All-to-all broadcast . : X
. M, M, M,
M,

/ M M
@ @ L. @ éll-to-all reduction @)0 G)O L.

14

All-to-All Broadcast/Reduction on a Ring

CoONOo OV Wi~

9.

10.
11.
12.

procedure ALL_TO_ALL_BC_RING(my_id, my_msgqg, p. resulf)
begin

leff .= (my_id — 1) mod p;

right .= (my-td + 1) mod p;

resulf :== my_msgq;

msg = result; — Mmessage size
fori:=1top—_ldo- stays constant
send msg to right;

receive msg from left;
result .= result U msg;
endfor;
end ALL_TO_ALL_BC_RING

Also works for a linear array with bidirectional communication channels

15

All-to-All Broadcast on a Ring

For an all-to-all reduction

e combine (rather than append) each incoming message into your
local result

e at each step, forward your incoming msg to your successor

16

All-to-all Broadcast on a Mesh

Two phases

e Perform row-wise all-to-all broadcast as for linear array/ring

—each node collects p'2 messages for nodes in its own row
—consolidates into a single message of size mp1/2

e Perform column-wise all-to-all broadcast of merged messages

(6) (7 (8) 6.7.8) (6.7,8) (6.7.8)

(}) (4) (5) (34.5) (}) H-H .4

©) () 2) 0.1.2) (0.1.2) (0.1.2)
(a) Initial data distribution (b) Data distribution after rowwise broadcast

17

All-to-all Broadcast on a Hypercube

* Generalization of the mesh algorithm to log p dimensions

e Message size doubles in each of log p steps

(67) (67)

1 value @ each 2 values @ each

(a) Initial distribution of messages

(4,5, (4.5,

.1,

4 values @ each ™ 8 values @ each

(c) Distribution before the third step (d) Final distribution of messages

18

— 0 0N O WD~

O -

All-to-all Broadcast on a Hypercube

procedure ALL_TO_ALL_BC _HCUBE(my_id, my_msg, d, resul)
begin
result .= my_msg,;
fori:=0tod —1do
partner = my_id XOR 2¢;
send resulf to pariner;
receive msg from pariner;
result .= resulf U msg;

endfor;
end ALL_TO_ALL_BC_HCURBE

19

All-to-all Reduction

e Similar to all-to-all broadcast, except for the merge

e Algorithm sketch
my_result = local_value

for each round
send my_result to partner
receive msg
my_result = my_result ® msg

post condition: each my_result now contains global resulit

20

Cost Analysis for All-to-All Broadcast

e Ring
—(ts + t,m)(p-1)
® Mesh
—phase 1: (t,+ t, m)(p"2 - 1)
—phase 2: (t.+ t, mp'2)(p12-1)
—total: 2t (p'2-1)+t m(p—1)
e Hypercube

logp

T = Z(ts + 2" Hym)

1=1

=tslogp + tum(p — 1).

Above algorithms are asymptotically optimal in msg size

21

Prefix Sum

Pre-condition

—given p numbers ny,n,,...,n, ; (one on each node)
— node labeled k contains n,

Problem statement
—compute the sums s, = >.k_, n. for all k between 0 and p-1

Post-condition
— node labeled k contains s,

22

Prefix Sum

e (Can use all-to-all reduction kernel to implement prefix sum

e Constraint
—prefix sums on node k: values from k-node subset with labels < k

e Strategy
—implemented using an additional result buffer

—add incoming value to result buffer on node k
— only if the msg from a node <k

23

VO NO OB LN —

N — O

Prefix Sum on a Hypercube

procedure PREFIX_SUMS_HCUBE(my_id, my_number, d, resulf)
begin
resulf .= my_number;
msg := result;
fori:=0tod —1do
partner := my_id XOR 2°;
send msg to parfner,
receive humber from partner;
msg := msg + humber,
if (partner < my_id) then result .= result + number,
endfor;
end PREFIX_SUMS_HCUBE

24

Scatter and Gather

Scatter
—a node sends a unique message of size m to every other node
— AKA one-to-all personalized communication

—algorithmic structure is similar to broadcast
— scatter: message size get smaller at each step

— broadcast: message size stay constant

Gather

—single node collects a unique message from each node
—inverse of the scatter operation; can be executed as such

M, ,

Scatter

M,
M, M, M, M,,.

© O @& T ONOREERD

Scatter on a Hypercube

(b) Distribution before the second step

67) (6) 7

(c) Distribution before the third step (d) Final distribution of messages

26

Cost of Scatter and Gather

e Log p steps

—in each step
— machine size halves

— message size halves

e Time
T'=tslogp+tem(p—1).

e Note: time is asymptotically optimal in message size

27

All-to-All Personalized Communication

Total exchange

e Each node: distinct message of size m for every other node

Mo.p-l M1.p-l Mp-l. p-1 Mp-l.o Mp-l.l Mp-l. p-1
My, M, Mp-l.l M, M, Ml.p-l
M, M, M bo10 All-to-all personalized M, My, M, ol

communication
© O - < > © O

28

All-to-All Personalized Communication

: 1
: 4
pO = 4
4 o *
_ ' n
‘.'.-..-
P, # #
¥

29

All-to-All Personalized Communication

e Every node has p pieces of data, each of size m

e Algorithm sketch for a ring
fork=1top-1

send message of size m(p - k) to neighbor
select piece of size m out of message for self

e Cost analysis

T = pz_(ts +t m(p—1))

p-1
= t(p-D+ twmzi

i=1

= (t,+t mp/2)(p-1)

30

Optimizing Collective Patterns

Example: one-to-all broadcast of large messages on a hypercube
e Consider broadcast of message M of size m, where m is large
e Cost of straightforward strategy 7 =(¢,+7 m)logp

e Optimized strategy
—split M into p parts My, M,, ... M, of size m/p each
— want to place M, U M; U ... U M, on all nodes
—scatter M;to node i

—have nodes collectively perform all-to-all broadcast
— each node k broadcasts its M,

e Cost analysis
—scatter time = tJog p + t (m/p)(p-1) (slide 27)
—all-to-all broadcast time = t_log p + t (m/p)(p-1) (slide 21)
—total time = 2(t_log p + t,(m/p)(p-1)) = 2(t.log p + t,m)

(faster than slide 13) 31

References

e Adapted from slides “Principles of Parallel Algorithm Design”
by Ananth Grama

e Based on Chapter 4 of “Introduction to Parallel Computing”
by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

32

