
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Collective Communication

COMP 422/534 Lecture 16 5 March 2020

2

Group Communication

• Motivation: accelerate interaction patterns within a group

• Approach: collective communication
—group works together collectively to realize a communication
—constructed from pairwise point-to-point communications

• Implementation strategy
—standard library of common collective operations
—leverage target architecture for efficient implementation

• Benefits of standard library implementations
—reduce development effort and cost for parallel programs
—improve performance through efficient implementations
—improve quality of scientific applications

3

Topics for Today

• One-to-all broadcast and all-to-one reduction

• All-to-all broadcast and reduction

• All-reduce and prefix-sum operations

• Scatter and gather

• All-to-all personalized communication

• Optimizing collective patterns

4

Assumptions

• Network is bidirectional

• Communication is single-ported
—node can receive only one message per step

• Communication cost model
—message of size m, no congestion, time = ts + tw m
—congestion: model by scaling tw

5

One-to-All and All-to-One

• One-to-all broadcast
—a processor has M units of data that it must send to everyone

• All-to-one reduction
—each processor has M units of data
—data items must be combined using some associative operator

– e.g. addition, min, max
—result must be available at a target processor

M M
p-110

M
...

One-to-all
broadcast

All-to-one
reduction

p-110

M
...

6

One-to-All and All-to-One on a Ring

• Broadcast
—naïve solution

– source sends send p - 1 messages to the other p - 1 processors
—use recursive doubling

– source sends a message to a selected processor
 yields two independent problems over halves of the machine

• Reduction
— invert the process

0 1

67

2 3

45

0 1

67

2 3

45

7

Broadcast on a Balanced Binary Tree

• Consider processors arranged in a dynamic binary tree
—processors are at the leaves
—interior nodes are switches

• Assume leftmost processor is the root of the broadcast

• Use recursive doubling strategy: log p stages

0 1 2 3 4 5 6 7

8

broadcast on
4 x 4 mesh

Broadcast and Reduction on a 2D Mesh

• Consider a square mesh of p nodes
— treat each row as a linear array of p1/2 nodes
— treat each column as a linear array of p1/2 nodes

• Two step broadcast and reduction operations
1. perform the operation along a row
2. perform the operation along each column concurrently

• Generalizes to higher dimensional meshes

9

Broadcast and Reduction on a Hypercube

• Consider hypercube with 2d nodes
—view as d-dimensional mesh with two nodes in each dimension

• Apply mesh algorithm to a hypercube
—d (= log p) steps

10

Broadcast and Reduction Algorithms

• Each of aforementioned broadcast/reduction algorithms
—adaptation of the same algorithmic template

• Next slide: a broadcast algorithm for a hypercube of 2d nodes
—can be adapted to other architectures
—in the following algorithm

– my_id is the label for a node
– X is the message to be broadcast

11

One-to-All Broadcast Algorithm

One-to-all broadcast of a message X from source on a hypercube

I am communicating on
behalf of a 2i subcube

// even

// odd

position relative
 to source

12

All-to-One Reduction Algorithm

All-to-One sum reduction on a d-dimensional hypercube
Each node contributes msg X containing m words, and node 0 is the destination

// odd

// even

I am communicating on
behalf of a 2i subcube

13

Broadcast/Reduction Cost Analysis

Hypercube

• Log p point-to-point simple message transfers
—each message transfer time: ts + twm

• Total time

14

All-to-All Broadcast and Reduction

Each processor is the source as well as destination

• Broadcast
—each process broadcasts its own m-word message all others

• Reduction
—each process gets a copy of the result

15

All-to-All Broadcast/Reduction on a Ring

All-to-all broadcast on a p-node ring.
message size

stays constant

Also works for a linear array with bidirectional communication channels

16

All-to-All Broadcast on a Ring

For an all-to-all reduction
• combine (rather than append) each incoming message into your

local result
• at each step, forward your incoming msg to your successor

17

All-to-all Broadcast on a Mesh

Two phases

• Perform row-wise all-to-all broadcast as for linear array/ring
—each node collects p1/2 messages for nodes in its own row
—consolidates into a single message of size mp1/2

• Perform column-wise all-to-all broadcast of merged messages

18

All-to-all Broadcast on a Hypercube

• Generalization of the mesh algorithm to log p dimensions

• Message size doubles in each of log p steps

1 value @ each 2 values @ each

4 values @ each 8 values @ each

19

All-to-all Broadcast on a Hypercube

All-to-all broadcast on a d-dimensional hypercube.

20

All-to-all Reduction

• Similar to all-to-all broadcast, except for the merge

• Algorithm sketch
my_result = local_value

for each round
 send my_result to partner
 receive msg
 my_result = my_result ⊕ msg

post condition: each my_result now contains global result

21

Cost Analysis for All-to-All Broadcast

• Ring
—(ts + twm)(p-1)

• Mesh
—phase 1: (ts + twm)(p1/2 – 1)
—phase 2: (ts + twmp1/2)(p1/2 – 1)
—total: 2ts(p1/2 – 1) + twm(p – 1)

• Hypercube

Above algorithms are asymptotically optimal in msg size

22

Prefix Sum

• Pre-condition
—given p numbers n0,n1,…,np-1 (one on each node)

– node labeled k contains nk

• Problem statement
—compute the sums sk = ∑i

k
= 0 ni for all k between 0 and p-1

• Post-condition
— node labeled k contains sk

23

Prefix Sum

• Can use all-to-all reduction kernel to implement prefix sum
• Constraint

—prefix sums on node k: values from k-node subset with labels ≤ k

• Strategy
— implemented using an additional result buffer
—add incoming value to result buffer on node k

– only if the msg from a node ≤ k

24

Prefix Sum on a Hypercube

Prefix sums on a d-dimensional hypercube.

25

Scatter and Gather

• Scatter
—a node sends a unique message of size m to every other node

– AKA one-to-all personalized communication
—algorithmic structure is similar to broadcast

– scatter: message size get smaller at each step
– broadcast: message size stay constant

• Gather
—single node collects a unique message from each node
—inverse of the scatter operation; can be executed as such

26

Scatter on a Hypercube

27

Cost of Scatter and Gather

• Log p steps
—in each step

– machine size halves
– message size halves

• Time

• Note: time is asymptotically optimal in message size

28

All-to-All Personalized Communication

Total exchange

• Each node: distinct message of size m for every other node

29

All-to-All Personalized Communication

30

All-to-All Personalized Communication

• Every node has p pieces of data, each of size m

• Algorithm sketch for a ring

 for k = 1 to p - 1
 send message of size m(p - k) to neighbor
 select piece of size m out of message for self

• Cost analysis

€

T = (ts + twm(p − i))
i=1

p−1

∑

= ts(p −1) + twm i
i=1

p−1

∑
= (ts + twmp /2)(p −1)

31

Optimizing Collective Patterns
Example: one-to-all broadcast of large messages on a hypercube

• Consider broadcast of message M of size m, where m is large

• Cost of straightforward strategy

• Optimized strategy
—split M into p parts M0, M1, … Mp of size m/p each

– want to place M0 ∪ M1 ∪ … ∪ Mp on all nodes

—scatter Mi to node i
—have nodes collectively perform all-to-all broadcast

– each node k broadcasts its Mk

• Cost analysis
—scatter time = tslog p + tw(m/p)(p-1) (slide 27)
—all-to-all broadcast time = tslog p + tw(m/p)(p-1) (slide 21)
—total time = 2(tslog p + tw(m/p)(p-1)) ≈ 2(tslog p + twm)

(faster than slide 13)

€

T = (ts + twm)log p

32

References

• Adapted from slides “Principles of Parallel Algorithm Design”
by Ananth Grama

• Based on Chapter 4 of “Introduction to Parallel Computing”
by Ananth Grama, Anshul Gupta, George Karypis, and Vipin
Kumar. Addison Wesley, 2003

