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Group Communication

• Motivation: accelerate interaction patterns within a group 

• Approach: collective communication 
—group works together collectively to realize a communication 
—constructed from pairwise point-to-point communications 

• Implementation strategy 
—standard library of common collective operations 
—leverage target architecture for efficient implementation  

• Benefits of standard library implementations 
—reduce development effort and cost for parallel programs 
—improve performance through efficient implementations 
—improve quality of scientific applications
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Topics for Today

• One-to-all broadcast and all-to-one reduction  

• All-to-all broadcast and reduction  

• All-reduce and prefix-sum operations  

• Scatter and gather  

• All-to-all personalized communication  

• Optimizing collective patterns  
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Assumptions 

• Network is bidirectional 

• Communication is single-ported 
—node can receive only one message per step  

• Communication cost model 
—message of size m, no congestion, time = ts + tw m  
—congestion: model by scaling tw
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One-to-All and All-to-One

• One-to-all broadcast 
—a processor has M units of data that it must send to everyone 

• All-to-one reduction  
—each processor has M units of data 
—data items must be combined using some associative operator  

– e.g. addition, min, max 
—result must be available at a target processor
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One-to-All and All-to-One on a Ring

• Broadcast 
—naïve solution 

– source sends send p - 1 messages to the other p - 1 processors  
—use recursive doubling 

– source sends a message to a selected processor 
 yields two independent problems over halves of the machine 

• Reduction 
— invert the process
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Broadcast on a Balanced Binary Tree 

• Consider processors arranged in a dynamic binary tree  
—processors are at the leaves 
—interior nodes are switches 

• Assume leftmost processor is the root of the broadcast 

• Use recursive doubling strategy: log p stages

0 1 2 3 4 5 6 7
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broadcast on  
4 x 4 mesh

Broadcast and Reduction on a 2D Mesh 

• Consider a square mesh of p nodes 
— treat each row as a linear array of p1/2 nodes 
— treat each column as a linear array of p1/2 nodes  

• Two step broadcast and reduction operations 
1. perform the operation along a row 
2. perform the operation along each column concurrently 

 

• Generalizes to higher dimensional meshes 
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Broadcast and Reduction on a Hypercube 

• Consider hypercube with 2d nodes  
—view as d-dimensional mesh with two nodes in each dimension  

• Apply mesh algorithm to a hypercube  
—d (= log p) steps 
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Broadcast and Reduction Algorithms 

• Each of aforementioned broadcast/reduction algorithms  
—adaptation of the same algorithmic template  

• Next slide: a broadcast algorithm for a hypercube of 2d nodes 
—can be adapted to other architectures 
—in the following algorithm 

– my_id is the label for a node  
– X is the message to be broadcast



11

One-to-All Broadcast Algorithm 

One-to-all broadcast of a message X from source on a hypercube

I am communicating on  
behalf of a 2i subcube

// even

// odd

position relative 
 to source
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All-to-One Reduction Algorithm 

All-to-One sum reduction on a  d-dimensional hypercube  
Each node contributes msg X containing m words, and node 0 is the destination 

// odd

// even

I am communicating on  
behalf of a 2i subcube
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Broadcast/Reduction Cost Analysis 

Hypercube 

• Log p point-to-point simple message transfers 
—each message transfer time: ts + twm  

• Total time
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All-to-All Broadcast and Reduction

Each processor is the source as well as destination  

• Broadcast 
—each process broadcasts its own m-word message all others 

• Reduction 
—each process gets a copy of the result
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All-to-All Broadcast/Reduction on a Ring 

All-to-all broadcast on a p-node ring.
message size  

stays constant

Also works for a linear array with bidirectional communication channels
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All-to-All Broadcast on a Ring 

For an all-to-all reduction  
• combine (rather than append) each incoming message into your 

local result 
• at each step, forward your incoming msg to your successor
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All-to-all Broadcast on a Mesh 

Two phases  

• Perform row-wise all-to-all broadcast as for linear array/ring 
—each node collects p1/2 messages for nodes in its own row 
—consolidates into a single message of size mp1/2  

• Perform column-wise all-to-all broadcast of merged messages 
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All-to-all Broadcast on a Hypercube 

• Generalization of the mesh algorithm to log p dimensions 

• Message size doubles in each of log p steps 

1 value @ each 2 values @ each

4 values @ each 8 values @ each
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All-to-all Broadcast on a Hypercube 

All-to-all broadcast on a d-dimensional hypercube. 
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All-to-all Reduction 

• Similar to all-to-all broadcast, except for the merge  

• Algorithm sketch 
my_result = local_value 

for each round 
 send my_result to partner  
 receive msg 
 my_result = my_result ⊕ msg 

post condition: each my_result now contains global result  



21

Cost Analysis for All-to-All Broadcast 

• Ring 
—(ts + twm)(p-1)  

• Mesh 
—phase 1: (ts + twm)(p1/2 – 1) 
—phase 2: (ts + twmp1/2)(p1/2 – 1) 
—total: 2ts(p1/2 – 1) + twm(p – 1) 

• Hypercube

Above algorithms are asymptotically optimal in msg size 
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Prefix Sum

• Pre-condition 
—given p numbers n0,n1,…,np-1 (one on each node) 

– node labeled k contains nk  

• Problem statement 
—compute the sums sk = ∑i

k
= 0 ni for all k between 0 and p-1  

• Post-condition 
— node labeled k contains sk 
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Prefix Sum

• Can use all-to-all reduction kernel to implement prefix sum 
• Constraint 

—prefix sums on node k: values from k-node subset with labels ≤ k  

• Strategy 
— implemented using an additional result buffer 
—add incoming value to result buffer on node k  

– only if the msg from a node  ≤ k 



24

Prefix Sum on a Hypercube 

Prefix sums on a d-dimensional hypercube.
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Scatter and Gather 

• Scatter  
—a node sends a unique message of size m to every other node 

– AKA one-to-all personalized communication 
—algorithmic structure is similar to broadcast 

– scatter:  message size get smaller at each step 
– broadcast: message size stay constant 

• Gather  
—single node collects a unique message from each node  
—inverse of the scatter operation; can be executed as such
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Scatter on a Hypercube 
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Cost of Scatter and Gather 

• Log p steps 
—in each step 

– machine size halves 
– message size halves 

• Time 

  

• Note: time is asymptotically optimal in message size 
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All-to-All Personalized Communication 

Total exchange 

• Each node: distinct message of size m for every other node 
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All-to-All Personalized Communication
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All-to-All Personalized Communication

• Every node has p pieces of data, each of size m 

• Algorithm sketch for a ring 

 for k = 1 to p - 1 
  send message of size m(p - k) to neighbor 
  select piece of size m out of message for self 

• Cost analysis

€ 

T = (ts + twm(p − i))
i=1

p−1

∑

= ts(p −1) + twm i
i=1

p−1

∑
= (ts + twmp /2)(p −1)



31

Optimizing Collective Patterns
Example: one-to-all broadcast of large messages on a hypercube 

• Consider broadcast of message M of size m, where m is large 

• Cost of straightforward strategy 

• Optimized strategy 
—split M into p parts M0, M1, … Mp of size m/p each 

– want to place M0 ∪ M1 ∪ … ∪ Mp on all nodes 

—scatter Mi to node i  
—have nodes collectively perform all-to-all broadcast  

– each node k broadcasts its Mk 

• Cost analysis 
—scatter time =  tslog p + tw(m/p)(p-1) (slide 27) 
—all-to-all broadcast time = tslog p + tw(m/p)(p-1) (slide 21) 
—total time = 2(tslog p + tw(m/p)(p-1)) ≈ 2(tslog p + twm)  

(faster than slide 13)

€ 

T = (ts + twm)log p
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