
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Principles of Parallel
Algorithm Design:

Concurrency and Mapping

COMP 422/534 Lecture 3 21 January 2020

Last Thursday

• Introduction to parallel algorithms
—tasks and decomposition
—threads and mapping
—threads versus cores

• Decomposition techniques - part 1
—recursive decomposition
—data decomposition

2

3

Owner Computes Rule

• Each datum is assigned to a thread

• Each thread computes values associated with its data

• Implications
—input data decomposition

– all computations using an input datum are performed by its thread
—output data decomposition

– an output is computed by the thread assigned to the output data

Topics for Today

• Decomposition techniques - part 2
—exploratory decomposition
—hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
—static mappings
—dynamic mappings

• Methods for minimizing interaction overheads

4

Exploratory Decomposition

• Exploration (search) of a state space of solutions
—problem decomposition reflects shape of execution

• Examples
—discrete optimization

– 0/1 integer programming
—theorem proving
—game playing

5

6

Exploratory Decomposition Example

Solving a 15 puzzle

• Sequence of three moves from state (a) to final state (d)

• From an arbitrary state, must search for a solution

7

Exploratory Decomposition: Example

 Solving a 15 puzzle
Search

— generate successor states of the current state
— explore each as an independent task

initial state

final state (solution)

after first move

8

Exploratory Decomposition Speedup

• Parallel formulation may perform a different amount of work

• Can cause super- or sub-linear speedup

m m m m m m m m

total serial work = 2m + 1
total parallel work = 4

total serial work = m
total parallel work = 4m

solution

9

Speculative Decomposition

• Dependencies between tasks are not always known a-priori
—makes it impossible to identify independent tasks

• Conservative approach
—identify independent tasks only when no dependencies left

• Optimistic (speculative) approach
—schedule tasks even when they may potentially be erroneous

• Drawbacks for each
—conservative approaches

– may yield little concurrency
—optimistic approaches

– may require a roll-back mechanism if a dependence is encountered

10

Speculative Decomposition in Practice

Discrete event simulation
• Data structure: centralized time-ordered event list

• Simulation
— extract next event in time order
— process the event
— if required, insert new events into the event list

• Optimistic event scheduling
— assume outcomes of all prior events
— speculatively process next event
— if assumption is incorrect, roll back its effects and continue

Time Warp
David Jefferson. “Virtual Time,”

ACM TOPLAS, 7(3):404-425, July 1985

11

Speculative Decomposition in Practice

Time Warp OS http://bit.ly/twos-94

• A new operating system for military simulations
—expensive computational tasks
—composed of many interacting subsystems
—highly irregular temporal behavior

• Optimistic execution and process rollback
—don't treat rollback as a special case for handling exceptions,

breaking deadlock, aborting transactions, …
—use rollback as frequently as other systems use blocking

• Why a new OS?
—rollback forces a rethinking of all OS issues

– scheduling, synchronization, message queueing, flow control,
memory management, error handling, I/O, and commitment

—building Time Warp on top of an OS would require two levels of
synchronization, two levels of message queues, …

12

Optimistic Simulation

David Bauer et al. “ROSS.NET: Optimistic Simulation
Framework For Large-scale Internet Models,” Proc. of

the 2003 Winter Simulation Conference

13

Hybrid Decomposition

Use multiple decomposition strategies together

Often necessary for adequate concurrency
• Quicksort

—recursive decomposition alone limits concurrency

—augmenting recursive with data decomposition is better
– can use data decomposition on input data to compute a split

Hybrid Decomposition for Climate Simulation

14Figure courtesy of Pat Worley (ORNL)

Data decomposition within atmosphere, ocean, land, and sea-ice tasks

15

Topics for Today

• Decomposition techniques - part 2
— data decomposition
— exploratory decomposition
— hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
— static mappings
— dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates

☛

16

Characteristics of Tasks

• Key characteristics
—generation strategy
—associated work
—associated data size

• Impact choice and performance of parallel algorithms

Task Generation

• Static task generation
—identify concurrent tasks a-priori
—typically decompose using data or recursive decomposition
—examples

– matrix operations
– graph algorithms on static graphs
– image processing applications
– other regularly structured problems

• Dynamic task generation
—identify concurrent tasks as a computation unfolds
—typically decompose using exploratory or speculative

decompositions
—examples

– puzzle solving
– game playing

17

18

Task Size

• Uniform: all the same size

• Non-uniform
— sometimes sizes known or can be estimated a-priori
— sometimes not

– example: tasks in quicksort
 size of each partition depends upon pivot selected

19

Size of Data Associated with Tasks

• Data may be small or large compared to the computation
— size(input) < size(computation), e.g., 15 puzzle
— size(input) = size(computation) > size(output), e.g., min
— size(input) = size(output) < size(computation), e.g., sort

• Implications
— small data: task can easily migrate to another thread
— large data: ties the task to a thread

– possibly can avoid communicating the task context
 reconstruct/recompute the context elsewhere

20

Characteristics of Task Interactions

Orthogonal classification criteria

• Static vs. dynamic

• Regular vs. irregular

• Read-only vs. read-write

• One-sided vs. two-sided

21

Characteristics of Task Interactions

• Static interactions
—tasks and interactions are known a-priori
—simpler to code

• Dynamic interactions
—timing or interacting tasks cannot be determined a-priori
—harder to code

– especially using two-sided message passing APIs

Characteristics of Task Interactions

• Regular interactions
—interactions have a pattern that can be described with a function

– e.g. mesh, ring
—regular patterns can be exploited for efficient implementation

– e.g. schedule communication to avoid conflicts on network links

• Irregular interactions
—lack a well-defined topology
—modeled by a graph

22

23

Static Regular Task Interaction Pattern

Image operations, e.g., edge detection

Nearest neighbor interactions on a 2D mesh

Sobel Edge
Detection Stencils

24

Static Irregular Task Interaction Pattern

Sparse matrix-vector multiply

Characteristics of Task Interactions

• Read-only interactions
—tasks only read data associated with other tasks

• Read-write interactions
—read and modify data associated with other tasks
—harder to code: requires synchronization

– need to avoid read-write and write-write ordering races

25

Characteristics of Task Interactions

• One-sided
—initiated & completed independently by 1 of 2 interacting tasks

– READ or WRITE
– GET or PUT

• Two-sided
—both tasks coordinate in an interaction

– SEND and RECV

26

27

Topics for Today

• Decomposition techniques - part 2
— data decomposition
— exploratory decomposition
— hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
— static mappings
— dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates

☛

28

Mapping Techniques

Map concurrent tasks to threads for execution

• Overheads of mappings
—serialization (idling)
—communication

• Select mapping to minimize overheads

• Conflicting objectives: minimizing one increases the other
—assigning all work to one thread

– minimizes communication
– significant idling

—minimizing serialization introduces communication

29

Mapping Techniques for Minimum Idling

• Must simultaneously minimize idling and load balance
• Balancing load alone does not minimize idling

Time Time

30

Mapping Techniques for Minimum Idling

 Static vs. dynamic mappings

• Static mapping
—a-priori mapping of tasks to threads or processes
— requirements

– a good estimate of task size
– even so, computing an optimal mapping may be NP hard

 e.g., even decomposition analogous to bin packing

• Dynamic mapping
— map tasks to threads or processes at runtime
— why?

– tasks are generated at runtime, or
– their sizes are unknown

Factors that influence choice of mapping
• size of data associated with a task
• nature of underlying domain

31

Schemes for Static Mapping

• Data partitionings

• Task graph partitionings

• Hybrid strategies

32

Mappings Based on Data Partitioning

Partition computation using a combination of
—data partitioning
—owner-computes rule

Example: 1-D block distribution for dense matrices

33

Block Array Distribution Schemes

Multi-dimensional block distributions

Multi-dimensional partitioning enables larger # of threads

34

Block Array Distribution Example

Multiplying two dense matrices C = A x B

• Partition the output matrix C using a block decomposition

• Give each task the same number of elements of C
— each element of C corresponds to a dot product
— even load balance

• Obvious choices: 1D or 2D decomposition

• Select to minimize associated communication overhead

x =

35

Data Usage in Dense Matrix Multiplication

x =

36

Consider: Gaussian Elimination

Active submatrix shrinks as elimination progresses

A[k,j]

active for step k
active for step k+1

37

Imbalance and Block Array Distributions

• Consider a block distribution for Gaussian Elimination
— amount of computation per data item varies
— a block decomposition would lead to significant load

imbalance

38

Block Cyclic Distribution

Variant of the block distribution scheme that can be used to
alleviate the load-imbalance and idling

Steps
1. partition an array into many more blocks than the number

of available threads or processes
2. round-robin assignment of blocks to threads or processes

– each thread or process gets several non-adjacent blocks

39

Block-Cyclic Distribution

 1D block-cyclic 2D block-cyclic

• Cyclic distribution: special case with block size = 1
• Block distribution: special case with block size is n/p

—n is the dimension of the matrix; p is the # of threads

40

Decomposition by Graph Partitioning

Sparse-matrix vector multiply

• Graph of the matrix is useful for decomposition
— work ~ number of edges
— communication for a node ~ node degree

• Goal: balance work & minimize communication

• Partition the graph
— assign equal number of nodes to each thread
— minimize edge count of the graph partition

41

Partitioning a Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut

42

Mappings Based on Task Partitioning

Partitioning a task-dependency graph

• Optimal partitioning for general task-dependency graph
— NP-hard problem

• Excellent heuristics exist for structured graphs

43

Mapping a Sparse Matrix

Sparse matrix-vector product

sparse matrix structure

17 items to
communicate

partitioning
mapping

44

Mapping a Sparse Matrix

Sparse matrix-vector product

mapping

13 items to
communicate

partitioning

sparse matrix structure

17 items to
communicate

45

Hierarchical Mappings

• Sometimes a single-level mapping is inadequate

• Hierarchical approach
— use a task mapping at the top level
— data partitioning within each task

Example:
Hybrid Decomposition  
+ Data Partitioning for  

Community Earth System Model

46

Topics for Today

• Decomposition techniques - part 2
— data decomposition
— exploratory decomposition
— hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
— static mappings
— dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates

☛

47

Schemes for Dynamic Mapping

• Dynamic mapping AKA dynamic load balancing
—load balancing is the primary motivation for dynamic mapping

• Styles
—centralized
—distributed

Centralized Dynamic Mapping

• Threads types: masters or slaves

• General strategy
—when a slave runs out of work → request more from master

• Challenge
—master may become bottleneck for large # of threads

• Approach
—chunk scheduling: thread picks up several of tasks at once
—however

– large chunk sizes may cause significant load imbalances
– gradually decrease chunk size as the computation progresses

48

Distributed Dynamic Mapping

• All threads as peers

• Each thread can send or receive work from other threads
—avoids centralized bottleneck

• Four critical design questions
—how are sending and receiving threads paired together?
—who initiates work transfer?
—how much work is transferred?
—when is a transfer triggered?

• Ideal answers can be application specific

• Cilk uses a distributed dynamic mapping: “work stealing”

49

50

Topics for Today

• Decomposition techniques - part 2
— data decomposition
— exploratory decomposition
— hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
— static mappings
— dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates
☛

51

Minimizing Interaction Overheads (1)

“Rules of thumb”

• Maximize data locality
— don’t fetch data you already have
— restructure computation to reuse data promptly

• Minimize volume of data exchange
— partition interaction graph to minimize edge crossings

• Minimize frequency of communication
— try to aggregate messages where possible

• Minimize contention and hot-spots
— use decentralized techniques (avoidance)

52

Minimizing Interaction Overheads (2)

Techniques
• Overlap communication with computation

— use non-blocking communication primitives
– overlap communication with your own computation
– one-sided: prefetch remote data to hide latency

— multithread code
– overlap communication with another thread’s computation

• Replicate data or computation to reduce communication

• Use group communication instead of point-to-point primitives

• Issue multiple communications and overlap their latency
 (reduces exposed latency)

53

Topics for Today

• Decomposition techniques - part 2
— data decomposition
— exploratory decomposition
— hybrid decomposition

• Characteristics of tasks and interactions

• Mapping techniques for load balancing
— static mappings
— dynamic mappings

• Methods for minimizing interaction overheads

• Parallel algorithm design templates ☛

54

Parallel Algorithm Model

• Definition: ways of structuring a parallel algorithm

• Aspects of a model
— decomposition
— mapping technique
— strategy to minimize interactions

55

Common Parallel Algorithm Templates

• Data parallel
— each task performs similar operations on different data
— typically statically map tasks to threads or processes

• Task graph
— use task dependency graph relationships to promote locality,

or reduce interaction costs

• Master-slave
— one or more master threads generate work
— allocate it to worker threads
— allocation may be static or dynamic

• Pipeline / producer-consumer
— pass a stream of data through a sequence of workers
— each performs some operation on it

• Hybrid
— apply multiple models hierarchically, or
— apply multiple models in sequence to different phases

56

Topics for Tuesday

• Threaded programming models

• Introduction to Cilk Plus
—tasks
—algorithmic complexity measures
—scheduling
—performance and granularity
—task parallelism examples

57

References

• Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

• Based on Chapter 3 of “Introduction to Parallel
Computing” by Ananth Grama, Anshul Gupta, George
Karypis, and Vipin Kumar. Addison Wesley, 2003

