Principles of Parallel
Algorithm Design:

Concurrency and Mapping

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

RICE COMP 422/534 Lecture 3 21 January 2020

Last Thursday

Introduction to parallel algorithms

—tasks and decomposition
—threads and mapping
—threads versus cores

Decomposition techniques - part 1

—recursive decomposition
—data decomposition

Owner Computes Rule

e Each datum is assigned to a thread
e Each thread computes values associated with its data

¢ [Implications

—input data decomposition
— all computations using an input datum are performed by its thread

—output data decomposition
— an output is computed by the thread assigned to the output data

Topics for Today

e Decomposition techniques - part 2

—eXxploratory decomposition
—hybrid decomposition

e Characteristics of tasks and interactions

e Mapping techniques for load balancing
—static mappings
—dynamic mappings

e Methods for minimizing interaction overheads

Exploratory Decomposition

Exploration (search) of a state space of solutions
—problem decomposition reflects shape of execution

Examples
—discrete optimization
— 0/1 integer programming
—theorem proving
—game playing

Exploratory Decomposition Example

Solving a 15 puzzile

e Sequence of three moves from state (a) to final state (d)

1234 1234 1234 1234

5|6 * 8 5/6|7]|8 56|78 50678

9 (10| 7 |11 9 |10 |11 91011* 9 [10|11]12

1314|1512 13|14[15]|12 1314|1512 13|14 |15
@) ® ©) (CY)

* From an arbitrary state, must search for a solution

Exploratory Decomposition: Example

Solving a 15 puzzle

Search

— generate successor states of the current state
— explore each as an independent task

©

.I—l
5
/

after first move

..........

S

BIGIE]
lzi/tilot] 6
9
z
v
o1
9
z
v
1
9
z

Exploratory Decomposition Speedup

e Parallel formulation may perform a different amount of work

solution

total serial work = 2m + 1 total serial work = m
total parallel work = 4 total parallel work = 4m

e Can cause super- or sub-linear speedup

Speculative Decomposition

e Dependencies between tasks are not always known a-priori
—makes it impossible to identify independent tasks

e Conservative approach
—identify independent tasks only when no dependencies left
e Optimistic (speculative) approach
—schedule tasks even when they may potentially be erroneous

e Drawbacks for each

—conservative approaches
— may yield little concurrency

—optimistic approaches
— may require a roll-back mechanism if a dependence is encountered

Speculative Decomposition in Practice

Discrete event simulation
e Data structure: centralized time-ordered event list

e Simulation

— extract next event in time order
— process the event
— if required, insert new events into the event list

e Optimistic event scheduling

— assume outcomes of all prior events
— speculatively process next event
— if assumption is incorrect, roll back its effects and continue

Time Warp

David Jefferson. “Virtual Time,”
ACM TOPLAS, 7(3):404-425, July 1985

10

Speculative Decomposition in Practice

Time Warp OS http://bit.ly/twos-94

e A new operating system for military simulations

—eXxpensive computational tasks
—composed of many interacting subsystems
—highly irregular temporal behavior

e Optimistic execution and process rollback

—don't treat rollback as a special case for handling exceptions,
breaking deadlock, aborting transactions, ...

—use rollback as frequently as other systems use blocking

e Why a new 0S?

—rollback forces a rethinking of all OS issues

— scheduling, synchronization, message queueing, flow control,
memory management, error handling, /O, and commitment

—building Time Warp on top of an OS would require two levels of
synchronization, two levels of message queues, ...
11

Optimistic Simulation

The CODES Project

Enabling C

Sam Lang

Chris Caro

The goal of
by providing
will develop
models will k
event simula
time of mass
our new high
exascale sto
exploration o

To enable these capabilities requires a number of
innovations across the fronts of modeling, simulation
engine design and design of experiments (DOE). On
the modeling and simulation front, ROSS.Net enables,
(i) optimistic parallel simulation engine (called ROSS
which stands for Rensselaer’s Optimistic Simulation
System) which leverages memory-efficient reversible

computation instead of using traditional state-saving to
support rollback recovery (ii) systemic memory-efficient

methodology for model construction using a combina-
tion of library interfaces to key data structures and al-
gorithms, and (iii) measurement.

David Bauer et al. “ROSS.NET: Optimistic Simulation
Framework For Large-scale Internet Models,” Proc. of
the 2003 Winter Simulation Conference

atory

2 systems
prage. We
ds. These
a discrete-
l[ation run
and using
r nature of
3 “what if”

12

Hybrid Decomposition

Use multiple decomposition strategies together

Often necessary for adequate concurrency

e Quicksort
—recursive decomposition alone limits concurrency

|5 12111 |10]6 |8 |3 |7 |a|0]| 2]

l1][3|a]2] | 5 [12]|11]10]| 6 |8 | 7 | 9|

1] 2 3|a |s|e6e|8]| 7| | 9 [12]11]10]

1] |4 | |5 |6] L7 |8] Lo] [10]12][11]

s] Lle] [7z] Ls] [10] [11]a12]

[11] [12]

13

Hybrid Decomposition for Climate Simulation

Data decomposition within atmosphere, ocean, land, and sea-ice tasks

140 km ATM/LND, CCSM4 physics
100 km OCN/ICE

POP 384
(64 x 6)

CAM 3072
(512 x 6)

time

CICE 3072
(512 x 6)

CLM 384
(64x6)

I ——
processors

32.7 SYPD on 3,844 cores
(P processes x T threads)

time

70 km ATM/LND, CCSM4 physics
10 km OCN/ICE

CLM 96
(32x3)

CICE 5400

(1800 x 3)

>
processors

3.9 SYPD on 37,104 cores
(P processes x T threads)

Performance Limiters: Left is CAM; Right is POP.
Figure courtesy of Pat Worley (ORNL) 14

Topics for Today

e Decomposition techniques - part 2

— data decomposition
— exploratory decomposition
— hybrid decomposition

@@ ¢ Characteristics of tasks and interactions

e Mapping techniques for load balancing
— static mappings
— dynamic mappings

e Methods for minimizing interaction overheads

e Parallel algorithm design templates

15

Characteristics of Tasks

e Key characteristics

—generation strategy
—associated work
—associated data size

e |Impact choice and performance of parallel algorithms

16

Task Generation

e Static task generation

—identify concurrent tasks a-priori
—typically decompose using data or recursive decomposition

—examples
— matrix operations

— graph algorithms on static graphs
— image processing applications
— other regularly structured problems

e Dynamic task generation

—identify concurrent tasks as a computation unfolds

—typically decompose using exploratory or speculative
decompositions

—examples
— puzzle solving
— game playing
17

Task Size

e Uniform: all the same size

e Non-uniform

— sometimes sizes known or can be estimated a-priori

— sometimes not
— example: tasks in quicksort

size of each partition depends upon pivot selected

| 5 [12]/11[1]|10]6 |8 |3 |7 |a| 9] 2]

l1]3|a]2] | 5 [12]|11]10]| 6 |8 |7 | 9|
1] 2 3|a |s|6|8]| 7| | o [12]11]10]
L1 (3] [a] (5] 6] L7]8] Le] [10][12]11]
ls] [e] [7z] L8] [1o] [11]12]

A1) [z

18

Size of Data Associated with Tasks

e Data may be small or large compared to the computation
— size(input) < size(computation), e.g., 15 puzzle
— size(input) = size(computation) > size(output), e.g., min
— size(input) = size(output) < size(computation), e.g., sort

e Implications

— small data: task can easily migrate to another thread

— large data: ties the task to a thread
— possibly can avoid communicating the task context

reconstruct/recompute the context elsewhere

19

Characteristics of Task Interactions

Orthogonal classification criteria
e Static vs. dynamic
e Regular vs. irregular
e Read-only vs. read-write

e One-sided vs. two-sided

20

Characteristics of Task Interactions

Static interactions

—tasks and interactions are known a-priori
—simpler to code

Dynamic interactions

—timing or interacting tasks cannot be determined a-priori

—harder to code
— especially using two-sided message passing APIs

21

Characteristics of Task Interactions

Regular interactions

—interactions have a pattern that can be described with a function
— e.g. mesh, ring

—regular patterns can be exploited for efficient implementation
— e.g. schedule communication to avoid conflicts on network links

Irregular interactions
—lack a well-defined topology
—modeled by a graph

22

Static Regular Task Interaction Pattern

Image operations, e.g., edge detection

Nearest neighbor interactions on a 2D mesh

0000 0000 0000
Sobel Edge
8888 8888 8888 Detection Stencils
0000 0000 0 00 ol%, 10 ot
. B n
> Tasks
cooo0|] [0ooo0] [0o0o0o0]/ G,=|-2 0 +2
0000 0000 ©000Q -1 0 +1
0000 0000 © 0 0 O},
0000 0000 00o0aQl- "1 —9 _1]
*» Pixels
/’:’/, Gy: 0 0 0
0000 0000 ocood. 1 42 41
0000 0000 0 00 o/ . i
0000 0000 000d
OO000 O00O0 OO0OO0O0

23

Static Irregular Task Interaction Pattern

Sparse matrix-vector multiply

Task 11

e (o >

~
tav)
N’

24

Characteristics of Task Interactions

Read-only interactions
—tasks only read data associated with other tasks

Read-write interactions

—read and modify data associated with other tasks

—harder to code: requires synchronization
— need to avoid read-write and write-write ordering races

25

Characteristics of Task Interactions

¢ One-sided

—initiated & completed independently by 1 of 2 interacting tasks
— READ or WRITE

— GET or PUT

e Two-sided

—both tasks coordinate in an interaction
— SEND and RECV

26

-

Topics for Today

Decomposition techniques - part 2

— data decomposition
— exploratory decomposition
— hybrid decomposition

Characteristics of tasks and interactions

Mapping techniques for load balancing
— static mappings
— dynamic mappings

Methods for minimizing interaction overheads

Parallel algorithm design templates

27

Mapping Techniques

Map concurrent tasks to threads for execution

Overheads of mappings
—serialization (idling)
—communication

Select mapping to minimize overheads

Conflicting objectives: minimizing one increases the other

—assigning all work to one thread
— minimizes communication

— significant idling
—minimizing serialization introduces communication

28

Mapping Techniques for Minimum Idling

* Must simultaneously minimize idling and load balance

e Balancing load alone does not minimize idling

P1

P2

start

synchronization finish
)
|
5 : 9
D I
|
6| 1 |10
TS I
|
7 : 11
A
|
8| |12
¢
t=2 t=3

Pl
P2

P3

P4

start

synchronization finish
A
|
1 2 3 :
coleeeiiietseecssocess .o
|
4 5 6|
e R i
|
7 8 : 9
................. b e eeeeoeeosoosososoodss
|
o] |11 |12
&
t=3 t=6
T|me #
(b)

29

Mapping Techniques for Minimum Idling

Static vs. dynamic mappings

e Static mapping
—a-priori mapping of tasks to threads or processes

— requirements
— a good estimate of task size
— even so, computing an optimal mapping may be NP hard
e.d., even decomposition analogous to bin packing

e Dynamic mapping
— map tasks to threads or processes at runtime
— why?
— tasks are generated at runtime, or
— their sizes are unknown

Factors that influence choice of mapping
» size of data associated with a task
e nature of underlying domain

30

Schemes for Static Mapping

e Data partitionings
e Task graph partitionings
* Hybrid strategies

31

Mappings Based on Data Partitioning

Partition computation using a combination of
—data partitioning
—owner-computes rule

Example: 1-D block distribution for dense matrices

row-wise distribution column-wise distribution

32

Block Array Distribution Schemes

Multi-dimensional block distributions

Multi-dimensional partitioning enables larger # of threads

33

Block Array Distribution Example

Multiplying two dense matrices C=A x B
¢ Partition the output matrix C using a block decomposition

e Give each task the same number of elements of C

— each element of C corresponds to a dot product
— even load balance

® Obvious choices: 1D or 2D decomposition

e Select to minimize associated communication overhead

34

Data Usage in Dense Matrix Multiplication

35

Consider: Gaussian Elimination

. E g active for step k
Inactive part :2) S active for step k+1
SRk [e] - Al AKVAKK
Active part | g 1
e e | - Alij] = Afij] - ATk x Alk,j]

Active submatrix shrinks as elimination progresses

36

Imbalance and Block Array Distributions

e Consider a block distribution for Gaussian Elimination

— amount of computation per data item varies

— a block decomposition would lead to significant load
imbalance

37

Block Cyclic Distribution

Variant of the block distribution scheme that can be used to
alleviate the load-imbalance and idling

Steps

1. partition an array into many more blocks than the number
of available threads or processes

2. round-robin assighment of blocks to threads or processes
— each thread or process gets several non-adjacent blocks

38

Block-Cyclic Distribution

1D block-cyclic 2D block-cyclic

e Cyclic distribution: special case with block size = 1

* Block distribution: special case with block size is n/p

—n is the dimension of the matrix; p is the # of threads 39

Decomposition by Graph Partitioning

Sparse-matrix vector multiply

¢ Graph of the matrix is useful for decomposition

— work ~ number of edges
— communication for a node ~ node degree

e Goal: balance work & minimize communication
e Partition the graph

— assign equal number of nodes to each thread
— minimize edge count of the graph partition

40

Partitioning a Graph of Lake Superior

F‘ e

. SRR 3
p 7 AR ¥
gL ATEE,
..‘-@'é'a) VA KT <
‘, "‘ﬂ"» é \ :
7S L 4 ‘»VA(
'45\4

Partitioning for minimum edge-cut

41

Mappings Based on Task Partitioning

Partitioning a task-dependency graph

e Optimal partitioning for general task-dependency graph
— NP-hard problem

e Excellent heuristics exist for structured graphs

42

Mapping a Sparse Matrix

Sparse matrix-vector product

A b

0123456789101
SOOEEOOEE N

Process 0) o0 ___
NOROOCEED N

Process 1 olo| [(oojojeeee []
Process 2 ": :: —
® o [

sparse matrix structure

mapping
partitioning

17 items to
communicate

C0=(4,5,6,7,8)

C1=(0,1,2,3,8,9,10,11)

C2=(04,5,6)

43

Mapping a Sparse Matrix

Sparse matrix-vector product

A b 17 items to
0123456789101 communicate
oo [[® D]
Process0 [“lgielel (ele - |co=@56798)
RSO E 13 items to
Process1 [elo | [eeielee [] | C1=(0123389,10,11) communicate
Process 2 009 olel M | C2=(04,56)
° o || C1=(0,5,6) Process 1

sparse matrix structure

Process 0

C0=(1,2,6,9)

mapping
partitioning

Process 2 C2=(1,2,4,5,7,8) 44

Hierarchical Mappings

e Sometimes a single-level mapping is inadequate

e Hierarchical approach

— use a task mapping at the top level
— data partitioning within each task

Example:
Hybrid Decomposition
+ Data Partitioning for
Community Earth System Model

time

70 km ATM/LND, CCSM4 physics
10 km OCN/ICE

CLM 96
(32x3)

CAM 4992
(1664 x 3)

CICE 5400
(1800 x 3)

processors

3.9 SYPD on 37,104 cores
(P processes x T threads)

45

-

Topics for Today

e Decomposition techniques - part 2

— data decomposition
— exploratory decomposition
— hybrid decomposition

e Characteristics of tasks and interactions

e Mapping techniques for load balancing
— static mappings
— dynamic mappings

e Methods for minimizing interaction overheads

e Parallel algorithm design templates

46

Schemes for Dynamic Mapping

e Dynamic mapping AKA dynamic load balancing
—load balancing is the primary motivation for dynamic mapping

e Styles

—centralized
—distributed

47

Centralized Dynamic Mapping

* Threads types: masters or slaves

e General strategy
—when a slave runs out of work — request more from master

e Challenge
—master may become bottleneck for large # of threads

e Approach

—chunk scheduling: thread picks up several of tasks at once
—however

— large chunk sizes may cause significant load imbalances

— gradually decrease chunk size as the computation progresses

48

Distributed Dynamic Mapping

e All threads as peers

e Each thread can send or receive work from other threads
—avoids centralized bottleneck

e Four critical design questions

—how are sending and receiving threads paired together?
—who initiates work transfer?

—how much work is transferred?

—when is a transfer triggered?

e |deal answers can be application specific

e Cilk uses a distributed dynamic mapping: “work stealing”

49

-

Topics for Today

Decomposition techniques - part 2

— data decomposition
— exploratory decomposition
— hybrid decomposition

Characteristics of tasks and interactions

Mapping techniques for load balancing
— static mappings
— dynamic mappings

Methods for minimizing interaction overheads

Parallel algorithm design templates

50

Minimizing Interaction Overheads (1)

“Rules of thumb”

e Maximize data locality

— don’t fetch data you already have
— restructure computation to reuse data promptly

¢ Minimize volume of data exchange
— partition interaction graph to minimize edge crossings

¢ Minimize frequency of communication
— try to aggregate messages where possible

e Minimize contention and hot-spots
— use decentralized techniques (avoidance)

51

Minimizing Interaction Overheads (2)

Techniques

e Overlap communication with computation

— use non-blocking communication primitives
— overlap communication with your own computation

— one-sided: prefetch remote data to hide latency

— multithread code
— overlap communication with another thread’s computation

e Replicate data or computation to reduce communication
e Use group communication instead of point-to-point primitives

¢ |ssue multiple communications and overlap their latency
(reduces exposed latency)

52

Topics for Today

e Decomposition techniques - part 2

— data decomposition
— exploratory decomposition
— hybrid decomposition

e Characteristics of tasks and interactions

e Mapping techniques for load balancing
— static mappings
— dynamic mappings

e Methods for minimizing interaction overheads

«~ °® Parallel algorithm design templates

53

Parallel Algorithm Model

e Definition: ways of structuring a parallel algorithm

e Aspects of a model
— decomposition
— mapping technique
— strategy to minimize interactions

54

Common Parallel Algorithm Templates

e Data parallel

— each task performs similar operations on different data
— typically statically map tasks to threads or processes

e Task graph

— use task dependency graph relationships to promote locality,
or reduce interaction costs

e Master-slave

— one or more master threads generate work
— allocate it to worker threads
— allocation may be static or dynamic

* Pipeline / producer-consumer
— pass a stream of data through a sequence of workers
— each performs some operation on it

e Hybrid
— apply multiple models hierarchically, or

— apply multiple models in sequence to different phases
95

Topics for Tuesday

e Threaded programming models

¢ [ntroduction to Cilk Plus

—tasks

—algorithmic complexity measures
—scheduling

—performance and granularity
—task parallelism examples

56

References

e Adapted from slides “Principles of Parallel Algorithm
Design” by Ananth Grama

e Based on Chapter 3 of “Introduction to Parallel
Computing” by Ananth Grama, Anshul Gupta, George
Karypis, and Vipin Kumar. Addison Wesley, 2003

S7

