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Outline for Today

• Threaded programming models 

• Introduction to Cilk Plus 
—tasks 
—algorithmic complexity measures 
—scheduling 
—performance and granularity 
—task parallelism examples 

– vector addition using divide and conquer 
– nqueens: exploratory search
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What is a Thread?
• Thread: an independent flow of control 

— software entity that executes a sequence of instructions  

• Thread requires 
— program counter 
— a set of registers 
— an area in memory, including a call stack 
— a thread id 

• A process consists of one or more threads that share 
— address space 
— attributes including user id, open files, working directory, ...



 A sequential program for matrix multiply 
 for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) 
      c[i][j] = dot_product(get_row(a, i), get_col(b, j))  
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An Abstract Example of Threading

 can be transformed to use multiple threads 
 for (i = 0; i < n; i++)  
   for (j = 0; j < n; j++)  
     c[i][col] = spawn dot_product(get_row(a, i), get_col(b, j))

X=

C A B

(i,:)

(:,j)

(i,j)
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Why Threads? 

 Well matched to multicore hardware 

• Employ parallelism to compute on shared data 
—boost performance on a fixed memory footprint (strong scaling) 

• Useful for hiding latency 
—e.g. latency due to memory, communication, I/O 

• Useful for scheduling and load balancing 
—especially for dynamic concurrency 

• Relatively easy to program 
—easier than message-passing?  you be the judge!
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Threads and Memory

Schema for SMP Node

Shared Address Space

  ...

OS Thread Scheduler

Threads

 P ... ... 

• All memory is globally 
accessible to every thread 

• Each thread’s stack is 
treated as local to the 
thread 

• Additional local storage 
can be allocated on a per-
thread basis 

• Idealization: treat all 
memory as equidistant

C CCC



Targets for Threaded Programs

Shared-memory parallel systems 

• Multicore processor 

• Workstations or cluster nodes with multiple processors 

• Xeon Phi manycore processor 
—about 250 threads 

• SGI UV: scalable shared memory system  
—up to 4096 threads

7
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• Library-based models 
—all data is shared, unless otherwise specified 
—examples: Pthreads, C++11 threads, Intel Threading Building 

Blocks, Java Concurrency Library, Boost 

• Directive-based models, e.g., OpenMP 
—shared and private data 
—pragma syntax simplifies thread creation and synchronization 

• Programming languages 
—Cilk Plus (Intel) 
—CUDA (NVIDIA) 
—Habanero-Java (Rice/Georgia Tech)

Threaded Programming Models



Cilk Plus Programming Model
• A simple and powerful model for writing multithreaded 

programs  

• Extends C/C++ with three new keywords 
—cilk_spawn: invoke a function (potentially) in parallel 
—cilk_sync: wait for a procedure’s spawned functions to finish 
—cilk_for: execute a loop in parallel 

• Cilk Plus programs specify logical parallelism 
—what computations can be performed in parallel, i.e., tasks 
—not mapping of work to threads or cores 

• Faithful language extension  
—if Cilk Plus keywords are elided → C/C++ program semantics 

• Availability 
—Intel compilers 
—GCC (full in versions 5 — 7; removed in version 8)

9



Cilk Plus Tasking Example: Fibonacci

Fibonacci sequence

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987++ +++ + + ...
...

• Computing Fibonacci recursively

unsigned int fib(unsigned int n)  { 
  if (n < 2) return n; 
  else { 
    unsigned int n1, n2; 
    n1 = 
    n2 = fib(n-2); 
   return (n1 + n2); 
  } 
}

 fib(n-1); 



  
            cilk_spawn 

    cilk_sync;

Cilk Plus Tasking Example: Fibonacci

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987++ +++ + + ...
...

   return (n1 + n2); 
  } 
}

 fib(n-1); 

• Computing Fibonacci recursively

Fibonacci sequence

in parallel with Cilk Plus

unsigned int fib(unsigned int n)  { 
  if (n < 2) return n; 
  else { 
    unsigned int n1, n2; 
    n1 = 
    n2 = fib(n-2); 
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Cilk Plus Terminology
• Parallel control  

—cilk_spawn, cilk_sync 
—return from spawned function 

• Strand 
—maximal sequence of instructions not containing parallel control

unsigned int fib(n)  { 
  if (n < 2) return n; 
  else { 
    unsigned int n1, n2; 
    n1 = cilk_spawn fib(n - 1); 
    n2 = cilk_spawn fib(n - 2); 
    cilk_sync; 
   return (n1 + n2); 
  } 
}

Strand C: n1+ n2 before the return

Strand B: compute n-2 before 2nd spawn

Strand A: code before first spawn             

 A B Ccontinuation

fib(n)
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Cilk Program Execution as a DAG

Legend 
continuation 
spawn 
return

each circle  
represents  

a strand
 A B Ccontinuation

fib(4)

 A
fib(1)

 A
fib(0)

 A
fib(1)

 A
fib(0)

 A B C
fib(2)

 A B C
fib(3)

 A B C
fib(2)

 A
fib(1)

spawn return
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Cilk Program Execution as a DAG

Legend 
continuation 
spawn 
return

each circle  
represents  

a strand

A B C

A A

A AA B C

A B C A B C

A
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Algorithmic Complexity Measures

Computation graph abstraction: 
- node = arbitrary sequential 

computation 
- edge = dependence (successor 

node can only execute after 
predecessor node has 
completed) 

- Directed Acyclic Graph (DAG) 

Processor abstraction: 
- P identical processors 
- each processor executes one 

node at a time
PROC0 PROCP-1. . .

TP = execution time on P processors
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Algorithmic Complexity Measures

TP = execution time on P processors

T1 = work
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Algorithmic Complexity Measures

T1 = work
T∞ = span*

*Also called critical-path length

TP = execution time on P processors
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Algorithmic Complexity Measures

T1 = work

LOWER BOUNDS 
• TP  ≥ T1/P
• TP  ≥  T∞

T∞ = span

TP = execution time on P processors
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Speedup

Definition: T1/TP = speedup on P processors

If T1/TP = Θ(P), we have linear speedup; 
 = P, we have perfect linear speedup; 
 > P, we have superlinear speedup,  

Superlinear speedup is not possible in this model 
because of the lower bound TP ≥ T1/P, but it can 
occur in practice (e.g., due to cache effects) 
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Parallelism (“Ideal Speedup”)

• TP  depends on the schedule of 
computation graph nodes on the 
processors 
- two different schedules can yield different 

values of TP  for the same P  

• For convenience, define parallelism (or 
ideal speedup) as the ratio T1/T∞ 

• Parallelism is independent of P, and 
only depends on the computation graph 

• Also define parallel slackness as the 
ratio, (T1/T∞ )/P ; the larger the 
slackness, the less the impact of T∞ on 
performance
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Span: T∞ = ?

Example: fib(4)

Assume for simplicity that each strand in 
fib() takes unit time to execute.

3 4

5

6

1

2 7

8

Work: T1 = 17  (TP refers to execution time on P processors)

Span: T∞ = 8    (Span = “critical path length”) 
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Ideal Speedup: T1/ T∞ = 2.125
Span: T1 = ?
Work: T1 =  ?

Example: fib(4)

Assume for simplicity that each strand in 
fib() takes unit time to execute.

Span: T∞ = 8
Work: T1 = 17 Using more than 

2 processors 
makes little sense
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Task Scheduling

• Popular scheduling strategies 
—work-sharing: task scheduled to run in parallel at every spawn 

– benefit: maximizes parallelism 
– drawback: cost of setting up new tasks is high → should be avoided 

—work-stealing: processor looks for work when it becomes idle 
– lazy parallelism: put off setting up parallel execution until necessary 
– benefits: executes with precisely as much parallelism as needed 
                      minimizes the number of tasks that must be set up 
                      runs with same efficiency as serial program on uniprocessor 

• Cilk uses work-stealing rather than work-sharing



Cilk Execution using Work Stealing
• Cilk runtime maps logical tasks to compute cores  

• Approach:  
— lazy task creation plus work-stealing scheduler 

• cilk_spawn: a potentially parallel task is available 
• an idle thread steals a task from a random working thread
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Possible Execution: 
thread 1 begins 
thread 2 steals from 1 
thread 3 steals from 1 
etc...

f(n-2)

f(n)

f(n-1)

f(n-3)f(n-2) f(n-4)f(n-3)

...... ...... ......

......
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Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.

P P PP
Spawn!
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Cilk’s Work-Stealing Scheduler

P P PP
Spawn!Spawn!

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.
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Cilk’s Work-Stealing Scheduler

P P PP
Return!

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.
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Cilk’s Work-Stealing Scheduler

P P PP
Return!

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.
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Cilk’s Work-Stealing Scheduler

P P PP
Steal!

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it 
steals a strand from the top of a 
random victim’s deque
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Cilk’s Work-Stealing Scheduler

P P PP
Steal!

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it 
steals a strand from the top of a 
random victim’s deque
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Cilk’s Work-Stealing Scheduler

P P PP

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it 
steals a strand from the top of a 
random victim’s deque
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Cilk’s Work-Stealing Scheduler

P P PP
Spawn!

Each processor maintains a work deque of ready strands, 
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it 
steals a strand from the top of a 
random victim’s deque



33

Performance of Work-Stealing

Theorem: Cilk’s work-stealing 
scheduler achieves an expected 
running time of TP ≤ T1/P + O(T∞) on P 
processors



• Types of schedule steps 
— complete step 

– at least P operations ready to run 
– select any P and run them 

— incomplete step 
– strictly < P operation ready to run 
– greedy scheduler runs them all 

Theorem: On P processors, a greedy scheduler executes any 
computation G with work T1 and critical path of length T∞ in 
time Tp ≤ T1/P + T∞ 

Proof sketch 
— only two types of scheduler steps: complete, incomplete 
— cannot be more than T1/P complete steps, else work > T1 

— every incomplete step reduces remaining critical path length by 1 
– no more than T∞ incomplete steps 34

Greedy Scheduling Theorem
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Parallel Slackness Revisited

€ 

Tp ≤
T1
P

+ c∞T∞

€ 

c∞

€ 

Tp ≈
T1
P

linear speedup

€ 

P /P >> c∞

Parallel slackness assumption

critical path overhead = smallest constant        such that

“critical path overhead has 
little effect on performance 

when sufficient parallel 
slackness exists”
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Let P = T1/T∞=  
parallelism =  

max speedup on 
∞ processors
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Work Overhead

€ 

Tp ≤ c1
Ts
P

+ c∞T∞€ 

c1 =
T1
Ts

work overhead

“Minimize work overhead (c1)  
at the expense of a larger  
critical path overhead (c∞),  

because work overhead  
has a more direct impact  

on performance”

€ 

Tp ≈ c1
Ts
P assuming parallel slackness

You can reduce c1 by increasing 
the granularity of parallel work
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Parallelizing Vector Addition

void vadd (real *A, real *B, int n){ 
  int i; for (i=0; i<n; i++) A[i]+=B[i]; 
}

C
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Divide and Conquer

• An effective parallelization strategy 
—creates a good mix of large and small sub-problems 

• Work-stealing scheduler can allocate chunks of work 
efficiently to the cores, as long as 
—not only a few large chunks  

– if work is divided into just a few large chunks, there may not be 
enough parallelism to keep all the cores busy 

—not too many very small chunks 
– if the chunks are too small, then scheduling overhead may 

overwhelm the benefit of parallelism
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Parallelizing Vector Addition

C

C   if (n<=BASE) { 
    int i; for (i=0; i<n; i++) A[i]+=B[i]; 
  } else { 
           
     
    
 

void vadd (real *A, real *B, int n){

vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

  } 
}

Parallelization strategy:  
1. Convert loops to recursion.

void vadd (real *A, real *B, int n){ 
  int i; for (i=0; i<n; i++) A[i]+=B[i]; 
}
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  if (n<=BASE) { 
    int i; for (i=0; i<n; i++) A[i]+=B[i]; 
  } else { 
           
     
    
 

Parallelizing Vector Addition

C

Parallelization strategy:  
1. Convert loops to recursion. 
2. Insert Cilk Plus keywords.

void vadd (real *A, real *B, int n){

cilk_spawnvadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

Side benefit:  
D&C is generally 
good for caches!

  } 
}

cilk_sync;

C ilk 
Plus

void vadd (real *A, real *B, int n){ 
  int i; for (i=0; i<n; i++) A[i]+=B[i]; 
}
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Vector Addition
void vadd (real *A, real *B, int n){ 
  if (n<=BASE) { 
    int i; for (i=0; i<n; i++) A[i]+=B[i]; 
  } else { 
    cilk_spawn vadd (A, B, n/2); 
    vadd (A+n/2, B+n/2, n-n/2); 
    cilk_sync; 
  } 
}



To add two vectors of length n, where BASE = Θ(1):
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Work: T1 =   ?
Span: T∞ =   ?
Parallelism: T1/ T∞ =   ?Θ(n/lg n)

Θ(n)

Vector Addition Analysis

Θ(lg n)

BASE
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Example: N Queens

• Problem 
—place N queens on an N x N chess board 
—no 2 queens in same row, column, or diagonal

• Example: a solution to 8 queens problem

Image credit: http://en.wikipedia.org/wiki/Eight_queens_puzzle
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N Queens: Many Solutions Possible

Example: 8 queens 
— 92 distinct solutions 
— 12 unique solutions; others are rotations & reflections

Image credit: http://en.wikipedia.org/wiki/Eight_queens_puzzle



45

N Queens Solution Sketch

Sequential Recursive Enumeration of All Solutions 
int nqueens(n, j, placement) { 

    // precondition: placed j queens so far 

    if (j == n)  { print placement; return; } 

   for (k = 0; k < n; k++) 

     if putting j+1 queen in kth position in row j+1 is legal  

      add queen j+1 to placement 

         nqueens(n, j+1, placement) 

         remove queen j+1 from placement 

}

•  Where’s the potential for parallelism? 
•  What issues must we consider? 
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          void nqueens(n, j, placement) { 
   // precondition: placed j queens so far 
   if (j == n) {  /* found a placement  */ process placement; return; } 
   for (k = 1; k <= n; k++)  
      if putting j+1 queen in kth position in row j+1 is legal 
         copy placement into newplacement and add extra queen 
         cilk_spawn nqueens(n,j+1,newplacement) 
   cilk_sync 
   discard placement 
}

Parallel N Queens Solution Sketch

 Issues regarding placements  
—how can we report placements?  
—what if a single placement suffices? 

—no need to compute all legal placements 
—so far, no way to terminate children exploring alternate placement
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Approaches to Managing Placements

• Choices for reporting multiple legal placements 
— count them 
— print them on the fly 
— collect them on the fly; print them at the end 

• If only one placement desired, can skip remaining search
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