
John Mellor-Crummey
Department of Computer Science

Rice University

johnmc@rice.edu

Shared-memory
Parallel Programming

with Cilk Plus

COMP 422/534 Lecture 4 23 January 2020

2

Outline for Today

• Threaded programming models

• Introduction to Cilk Plus
—tasks
—algorithmic complexity measures
—scheduling
—performance and granularity
—task parallelism examples

– vector addition using divide and conquer
– nqueens: exploratory search

3

What is a Thread?
• Thread: an independent flow of control

— software entity that executes a sequence of instructions

• Thread requires
— program counter
— a set of registers
— an area in memory, including a call stack
— a thread id

• A process consists of one or more threads that share
— address space
— attributes including user id, open files, working directory, ...

 A sequential program for matrix multiply
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 c[i][j] = dot_product(get_row(a, i), get_col(b, j))

4

An Abstract Example of Threading

 can be transformed to use multiple threads
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 c[i][col] = spawn dot_product(get_row(a, i), get_col(b, j))

X=

C A B

(i,:)

(:,j)

(i,j)

5

Why Threads?

 Well matched to multicore hardware

• Employ parallelism to compute on shared data
—boost performance on a fixed memory footprint (strong scaling)

• Useful for hiding latency
—e.g. latency due to memory, communication, I/O

• Useful for scheduling and load balancing
—especially for dynamic concurrency

• Relatively easy to program
—easier than message-passing? you be the judge!

6

Threads and Memory

Schema for SMP Node

Shared Address Space

 ...

OS Thread Scheduler

Threads

 P

• All memory is globally
accessible to every thread

• Each thread’s stack is
treated as local to the
thread

• Additional local storage
can be allocated on a per-
thread basis

• Idealization: treat all
memory as equidistant

C CCC

Targets for Threaded Programs

Shared-memory parallel systems

• Multicore processor

• Workstations or cluster nodes with multiple processors

• Xeon Phi manycore processor
—about 250 threads

• SGI UV: scalable shared memory system
—up to 4096 threads

7

8

• Library-based models
—all data is shared, unless otherwise specified
—examples: Pthreads, C++11 threads, Intel Threading Building

Blocks, Java Concurrency Library, Boost

• Directive-based models, e.g., OpenMP
—shared and private data
—pragma syntax simplifies thread creation and synchronization

• Programming languages
—Cilk Plus (Intel)
—CUDA (NVIDIA)
—Habanero-Java (Rice/Georgia Tech)

Threaded Programming Models

Cilk Plus Programming Model
• A simple and powerful model for writing multithreaded

programs

• Extends C/C++ with three new keywords
—cilk_spawn: invoke a function (potentially) in parallel
—cilk_sync: wait for a procedure’s spawned functions to finish
—cilk_for: execute a loop in parallel

• Cilk Plus programs specify logical parallelism
—what computations can be performed in parallel, i.e., tasks
—not mapping of work to threads or cores

• Faithful language extension
—if Cilk Plus keywords are elided → C/C++ program semantics

• Availability
—Intel compilers
—GCC (full in versions 5 — 7; removed in version 8)

9

Cilk Plus Tasking Example: Fibonacci

Fibonacci sequence

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987++ +++ + + ...
...

• Computing Fibonacci recursively

unsigned int fib(unsigned int n) {
 if (n < 2) return n;
 else {
 unsigned int n1, n2;
 n1 =
 n2 = fib(n-2);
 return (n1 + n2);
 }
}

 fib(n-1);

 cilk_spawn

 cilk_sync;

Cilk Plus Tasking Example: Fibonacci

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987++ +++ + + ...
...

 return (n1 + n2);
 }
}

 fib(n-1);

• Computing Fibonacci recursively

Fibonacci sequence

in parallel with Cilk Plus

unsigned int fib(unsigned int n) {
 if (n < 2) return n;
 else {
 unsigned int n1, n2;
 n1 =
 n2 = fib(n-2);

12

Cilk Plus Terminology
• Parallel control

—cilk_spawn, cilk_sync
—return from spawned function

• Strand
—maximal sequence of instructions not containing parallel control

unsigned int fib(n) {
 if (n < 2) return n;
 else {
 unsigned int n1, n2;
 n1 = cilk_spawn fib(n - 1);
 n2 = cilk_spawn fib(n - 2);
 cilk_sync;
 return (n1 + n2);
 }
}

Strand C: n1+ n2 before the return

Strand B: compute n-2 before 2nd spawn

Strand A: code before first spawn

 A B Ccontinuation

fib(n)

13

Cilk Program Execution as a DAG

Legend
continuation
spawn
return

each circle
represents

a strand
 A B Ccontinuation

fib(4)

 A
fib(1)

 A
fib(0)

 A
fib(1)

 A
fib(0)

 A B C
fib(2)

 A B C
fib(3)

 A B C
fib(2)

 A
fib(1)

spawn return

14

Cilk Program Execution as a DAG

Legend
continuation
spawn
return

each circle
represents

a strand

A B C

A A

A AA B C

A B C A B C

A

15

Algorithmic Complexity Measures

Computation graph abstraction:
- node = arbitrary sequential

computation
- edge = dependence (successor

node can only execute after
predecessor node has
completed)

- Directed Acyclic Graph (DAG)

Processor abstraction:
- P identical processors
- each processor executes one

node at a time
PROC0 PROCP-1. . .

TP = execution time on P processors

16

Algorithmic Complexity Measures

TP = execution time on P processors

T1 = work

17

Algorithmic Complexity Measures

T1 = work
T∞ = span*

*Also called critical-path length

TP = execution time on P processors

18

Algorithmic Complexity Measures

T1 = work

LOWER BOUNDS
• TP ≥ T1/P
• TP ≥ T∞

T∞ = span

TP = execution time on P processors

19

Speedup

Definition: T1/TP = speedup on P processors

If T1/TP = Θ(P), we have linear speedup;
 = P, we have perfect linear speedup;
 > P, we have superlinear speedup,

Superlinear speedup is not possible in this model
because of the lower bound TP ≥ T1/P, but it can
occur in practice (e.g., due to cache effects)

20

Parallelism (“Ideal Speedup”)

• TP depends on the schedule of
computation graph nodes on the
processors
- two different schedules can yield different

values of TP for the same P

• For convenience, define parallelism (or
ideal speedup) as the ratio T1/T∞

• Parallelism is independent of P, and
only depends on the computation graph

• Also define parallel slackness as the
ratio, (T1/T∞)/P ; the larger the
slackness, the less the impact of T∞ on
performance

21

Span: T∞ = ?

Example: fib(4)

Assume for simplicity that each strand in
fib() takes unit time to execute.

3 4

5

6

1

2 7

8

Work: T1 = 17 (TP refers to execution time on P processors)

Span: T∞ = 8 (Span = “critical path length”)

22
Ideal Speedup: T1/ T∞ = 2.125
Span: T1 = ?
Work: T1 = ?

Example: fib(4)

Assume for simplicity that each strand in
fib() takes unit time to execute.

Span: T∞ = 8
Work: T1 = 17 Using more than

2 processors
makes little sense

23

Task Scheduling

• Popular scheduling strategies
—work-sharing: task scheduled to run in parallel at every spawn

– benefit: maximizes parallelism
– drawback: cost of setting up new tasks is high → should be avoided

—work-stealing: processor looks for work when it becomes idle
– lazy parallelism: put off setting up parallel execution until necessary
– benefits: executes with precisely as much parallelism as needed
 minimizes the number of tasks that must be set up
 runs with same efficiency as serial program on uniprocessor

• Cilk uses work-stealing rather than work-sharing

Cilk Execution using Work Stealing
• Cilk runtime maps logical tasks to compute cores

• Approach:
— lazy task creation plus work-stealing scheduler

• cilk_spawn: a potentially parallel task is available
• an idle thread steals a task from a random working thread

24

Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f(n-2)

f(n)

f(n-1)

f(n-3)f(n-2) f(n-4)f(n-3)

......

......

25

Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

P P PP
Spawn!

26

Cilk’s Work-Stealing Scheduler

P P PP
Spawn!Spawn!

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

27

Cilk’s Work-Stealing Scheduler

P P PP
Return!

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

28

Cilk’s Work-Stealing Scheduler

P P PP
Return!

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

29

Cilk’s Work-Stealing Scheduler

P P PP
Steal!

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it
steals a strand from the top of a
random victim’s deque

30

Cilk’s Work-Stealing Scheduler

P P PP
Steal!

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it
steals a strand from the top of a
random victim’s deque

31

Cilk’s Work-Stealing Scheduler

P P PP

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it
steals a strand from the top of a
random victim’s deque

32

Cilk’s Work-Stealing Scheduler

P P PP
Spawn!

Each processor maintains a work deque of ready strands,
and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it
steals a strand from the top of a
random victim’s deque

33

Performance of Work-Stealing

Theorem: Cilk’s work-stealing
scheduler achieves an expected
running time of TP ≤ T1/P + O(T∞) on P
processors

• Types of schedule steps
— complete step

– at least P operations ready to run
– select any P and run them

— incomplete step
– strictly < P operation ready to run
– greedy scheduler runs them all

Theorem: On P processors, a greedy scheduler executes any
computation G with work T1 and critical path of length T∞ in
time Tp ≤ T1/P + T∞

Proof sketch
— only two types of scheduler steps: complete, incomplete
— cannot be more than T1/P complete steps, else work > T1

— every incomplete step reduces remaining critical path length by 1
– no more than T∞ incomplete steps 34

Greedy Scheduling Theorem

35

Parallel Slackness Revisited

€

Tp ≤
T1
P

+ c∞T∞

€

c∞

€

Tp ≈
T1
P

linear speedup

€

P /P >> c∞

Parallel slackness assumption

critical path overhead = smallest constant such that

“critical path overhead has
little effect on performance

when sufficient parallel
slackness exists”

€

T1
P

>> c∞T∞thus€

Tp ≤
T1

T∞P
+ c∞

$

%
&

'

(
) T∞ =

P
P

+ c∞
$

%
&

'

(
) T∞

Let P = T1/T∞=
parallelism =

max speedup on
∞ processors

36

Work Overhead

€

Tp ≤ c1
Ts
P

+ c∞T∞€

c1 =
T1
Ts

work overhead

“Minimize work overhead (c1)
at the expense of a larger
critical path overhead (c∞),

because work overhead
has a more direct impact

on performance”

€

Tp ≈ c1
Ts
P assuming parallel slackness

You can reduce c1 by increasing
the granularity of parallel work

37

Parallelizing Vector Addition

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

C

38

Divide and Conquer

• An effective parallelization strategy
—creates a good mix of large and small sub-problems

• Work-stealing scheduler can allocate chunks of work
efficiently to the cores, as long as
—not only a few large chunks

– if work is divided into just a few large chunks, there may not be
enough parallelism to keep all the cores busy

—not too many very small chunks
– if the chunks are too small, then scheduling overhead may

overwhelm the benefit of parallelism

39

Parallelizing Vector Addition

C

C if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {

void vadd (real *A, real *B, int n){

vadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

 }
}

Parallelization strategy:
1. Convert loops to recursion.

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

40

 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {

Parallelizing Vector Addition

C

Parallelization strategy:
1. Convert loops to recursion.
2. Insert Cilk Plus keywords.

void vadd (real *A, real *B, int n){

cilk_spawnvadd (A, B, n/2);
vadd (A+n/2, B+n/2, n-n/2);

Side benefit:
D&C is generally
good for caches!

 }
}

cilk_sync;

C ilk
Plus

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

41

Vector Addition
void vadd (real *A, real *B, int n){
 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {
 cilk_spawn vadd (A, B, n/2);
 vadd (A+n/2, B+n/2, n-n/2);
 cilk_sync;
 }
}

To add two vectors of length n, where BASE = Θ(1):

42

Work: T1 = ?
Span: T∞ = ?
Parallelism: T1/ T∞ = ?Θ(n/lg n)

Θ(n)

Vector Addition Analysis

Θ(lg n)

BASE

43

Example: N Queens

• Problem
—place N queens on an N x N chess board
—no 2 queens in same row, column, or diagonal

• Example: a solution to 8 queens problem

Image credit: http://en.wikipedia.org/wiki/Eight_queens_puzzle

44

N Queens: Many Solutions Possible

Example: 8 queens
— 92 distinct solutions
— 12 unique solutions; others are rotations & reflections

Image credit: http://en.wikipedia.org/wiki/Eight_queens_puzzle

45

N Queens Solution Sketch

Sequential Recursive Enumeration of All Solutions
int nqueens(n, j, placement) {

 // precondition: placed j queens so far

 if (j == n) { print placement; return; }

 for (k = 0; k < n; k++)

 if putting j+1 queen in kth position in row j+1 is legal

 add queen j+1 to placement

 nqueens(n, j+1, placement)

 remove queen j+1 from placement

}

• Where’s the potential for parallelism?
• What issues must we consider?

46

 void nqueens(n, j, placement) {
 // precondition: placed j queens so far
 if (j == n) { /* found a placement */ process placement; return; }
 for (k = 1; k <= n; k++)
 if putting j+1 queen in kth position in row j+1 is legal
 copy placement into newplacement and add extra queen
 cilk_spawn nqueens(n,j+1,newplacement)
 cilk_sync
 discard placement
}

Parallel N Queens Solution Sketch

 Issues regarding placements
—how can we report placements?
—what if a single placement suffices?

—no need to compute all legal placements
—so far, no way to terminate children exploring alternate placement

47

Approaches to Managing Placements

• Choices for reporting multiple legal placements
— count them
— print them on the fly
— collect them on the fly; print them at the end

• If only one placement desired, can skip remaining search

References

• “Introduction to Parallel Computing” by Ananth Grama,
Anshul Gupta, George Karypis, and Vipin Kumar. Addison
Wesley, 2003

• Charles E. Leiserson. Cilk LECTURE 1. Supercomputing
Technologies Research Group. Computer Science and
Artificial Intelligence Laboratory. http://bit.ly/mit-cilk-lec1

• Charles Leiserson, Bradley Kuzmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems. http://bit.ly/mit-6895-fall03

• Intel Cilk++ Programmer’s Guide. Document # 322581-001US.

48

