Shared-memory Parallel Programming with Cilk Plus

John Mellor-Crummey

Department of Computer Science
Rice University
johnmc@rice.edu

Outline for Today

- Threaded programming models
- Introduction to Cilk Plus
-tasks
-algorithmic complexity measures
-scheduling
—performance and granularity
-task parallelism examples
- vector addition using divide and conquer
- nqueens: exploratory search

What is a Thread?

- Thread: an independent flow of control
- software entity that executes a sequence of instructions
- Thread requires
- program counter
- a set of registers
— an area in memory, including a call stack
- a thread id
- A process consists of one or more threads that share
- address space
— attributes including user id, open files, working directory, ...

An Abstract Example of Threading

A sequential program for matrix multiply

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++) \\
& \quad \mathrm{c}[\mathrm{i}][\mathrm{j}]=\text { dot_product(get_row(a, i), get_col(b, j)) }
\end{aligned}
$$

can be transformed to use multiple threads

$$
\begin{aligned}
& \text { for (i = 0; i < n; i++) } \\
& \text { for (}(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j++}) \\
& \quad \mathrm{c}[\mathrm{i}][\mathrm{col}]=\text { spawn dot_product(get_row(a, i), get_col(b, j)) }
\end{aligned}
$$

Why Threads?

Well matched to multicore hardware

- Employ parallelism to compute on shared data
-boost performance on a fixed memory footprint (strong scaling)
- Useful for hiding latency
-e.g. latency due to memory, communication, I/O
- Useful for scheduling and load balancing
-especially for dynamic concurrency
- Relatively easy to program
-easier than message-passing? you be the judge!

Threads and Memory

- All memory is globally accessible to every thread
- Each thread's stack is treated as local to the thread
- Additional local storage can be allocated on a perthread basis
- Idealization: treat all memory as equidistant

Threads

OS Thread Scheduler

Schema for SMP Node

Targets for Threaded Programs

Shared-memory parallel systems

- Multicore processor
- Workstations or cluster nodes with multiple processors
- Xeon Phi manycore processor
—about 250 threads
- SGI UV: scalable shared memory system
—up to 4096 threads

Threaded Programming Models

- Library-based models
-all data is shared. unless otherwise specified
-examples: Pthreads $\mathrm{C}++11$ threads, Intel Threading Building Blocks, Java Concurrency Library, Boost
- Directive-based models, e.g.,OpenMP
—shared and private data
—pragma syntax simplifies thread creation and synchronization
- Programming languages
-Cilk Plus(Intel)
-CUDA)(NVIDIA)
—Habanero-Java (Rice/Georgia Tech)

Cilk Plus Programming Model

- A simple and powerful model for writing multithreaded programs
- Extends C/C++ with three new keywords
—cilk_spawn: invoke a function (potentially) in parallel
—cilk_sync: wait for a procedure's spawned functions to finish
—cilk_for: execute a loop in parallel
- Cilk Plus programs specify logical parallelism
-what computations can be performed in parallel, i.e., tasks
-not mapping of work to threads or cores
- Faithful language extension
-if Cilk Plus keywords are elided $\rightarrow \mathrm{C} / \mathrm{C}++$ program semantics
- Availability
-Intel compilers
-GCC (full in versions 5-7; removed in version 8)

Cilk Plus Tasking Example: Fibonacci

Fibonacci sequence
$0+1+1+2+3+5+8+133^{\cdots} 21 \quad 34 \quad 55 \quad 89144233 \quad 377 \quad 610$

- Computing Fibonacci recursively

```
unsigned int fib(unsigned int n) {
    if (n<2) return n;
    else {
        unsigned int n1, n2;
        n1 = fib(n-1);
        n2 = fib(n-2);
        return (n1 + n2);
    }
}
```


Cilk Plus Tasking Example: Fibonacci

Fibonacci sequence

- Computing Fibonacci recursively in parallel with Cilk Plus

```
unsigned int fib(unsigned int n) {
    if (n < 2) return n;
    else {
        unsigned int n1, n2;
        n1 = cilk_spawn fib(n-1);
        n2 = fib(n-2);
        cilk_sync;
        retưrn (n1 + n2);
    }
```


Cilk Plus Terminology

- Parallel control
—cilk_spawn, cilk_sync
_return from spawned function
- Strand
-maximal sequence of instructions not containing parallel control
unsigned int fibs) \{
if ($\mathrm{n}<2$) return n ; else \{ unsigned int ni, ne; n1 = cilk_spawn fib(n-1); n2 = cilk_spawn fib (n - 2); cilk_sync; return ($\mathrm{n} 1+\mathrm{n} 2$); \}
\}
Strand A: code before first spawn

Strand B: compute n-2 before $2^{\text {nd }}$ spawn
Strand C: ni+ ne before the return

Cilk Program Execution as a DAG

Cilk Program Execution as a DAG

Algorithmic Complexity Measures

$T_{P}=$ execution time on P processors

Computation graph abstraction:

- node = arbitrary sequential computation
- edge = dependence (successor node can only execute after predecessor node has completed)
- Directed Acyclic Graph (DAG)

Processor abstraction:

- P identical processors
- each processor executes one node at a time

Algorithmic Complexity Measures

$T_{P}=$ execution time on P processors

$$
T_{1}=\text { work }
$$

Algorithmic Complexity Measures

$T_{P}=$ execution time on P processors

$$
\begin{gathered}
T_{1}=\text { work } \\
T_{\infty}=\text { span }^{*}
\end{gathered}
$$

*Also called critical-path length

Algorithmic Complexity Measures

$T_{P}=$ execution time on P processors

$$
\begin{gathered}
T_{1}=\text { work } \\
T_{\infty}=\text { span }
\end{gathered}
$$

LOWER BOUNDS

- $T_{P} \geq T_{1} / P$
- $T_{P} \geq T_{\infty}$

Speedup

Definition: $T_{1} / T_{P}=$ speedup on P processors

If $T_{1} / T_{P}=\Theta(P)$, we have linear speedup;
$=P$, we have perfect linear speedup;
> P, we have superlinear speedup,
Superlinear speedup is not possible in this model because of the lower bound $T_{P} \geq T_{1} / P$, but it can occur in practice (e.g., due to cache effects)

Parallelism ("Ideal Speedup")

- T_{P} depends on the schedule of computation graph nodes on the processors
- two different schedules can yield different values of T_{P} for the same P
- For convenience, define parallelism (or ideal speedup) as the ratio T_{1} / T_{∞}
- Parallelism is independent of P, and only depends on the computation graph
- Also define parallel slackness as the ratio, $\left(T_{1} / T_{\infty}\right) / P$; the larger the slackness, the less the impact of T_{∞} on
 performance

Example: fib(4)

Assume for simplicity that each strand in fib() takes unit time to execute.
Work: $T_{1}=17$ (T_{P} refers to execution time on P processors)
Span: $T_{\infty}=8 \quad$ (Span = "critical path length")

Example: fib(4)

Assume for simplicity that each strand in fib() takes unit time to execute.
Work: $T_{1}=17$ Span: $T_{\infty}=8$ Ideal Speedup: $T_{1} / T_{\infty}=2.125$

Using more than
2 processors

makes little sense

Task Scheduling

- Popular scheduling strategies
-work-sharing: task scheduled to run in parallel at every spawn
- benefit: maximizes parallelism
- drawback: cost of setting up new tasks is high \rightarrow should be avoided
-work-stealing: processor looks for work when it becomes idle
- lazy parallelism: put off setting up parallel execution until necessary
- benefits: executes with precisely as much parallelism as needed minimizes the number of tasks that must be set up runs with same efficiency as serial program on uniprocessor
- Cilk uses work-stealing rather than work-sharing

Cilk Execution using Work Stealing

- Cilk runtime maps logical tasks to compute cores
- Approach:
- lazy task creation plus work-stealing scheduler
- cilk_spawn: a potentially parallel task is available
- an idle thread steals a task from a random working thread

Possible Execution:

 thread 1 begins thread 2 steals from 1 thread 3 steals from 1 etc...

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a strand from the top of a random victim's deque

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a strand from the top of a random victim's deque

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a strand from the top of a random victim's deque

Cilk's Work-Stealing Scheduler

Each processor maintains a work deque of ready strands, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a strand from the top of a random victim's deque

Performance of Work-Stealing

Theorem: Cilk's work-stealing scheduler achieves an expected running time of $T_{P} \leq T_{1} / P+O\left(T_{\infty}\right)$ on P processors

Greedy Scheduling Theorem

- Types of schedule steps
- complete step
- at least P operations ready to run
- select any P and run them
- incomplete step
- strictly < P operation ready to run
- greedy scheduler runs them all

Theorem: On P processors, a greedy scheduler executes any computation G with work T_{1} and critical path of length T_{∞} in time $T_{p} \leq T_{1} / P+T_{\infty}$

Proof sketch

- only two types of scheduler steps: complete, incomplete
- cannot be more than $\mathrm{T}_{1} / \mathrm{P}$ complete steps, else work $>\mathrm{T}_{1}$
- every incomplete step reduces remaining critical path length by 1
- no more than T_{∞} incomplete steps

Parallel Slackness Revisited

critical path overhead $=$ smallest constant c_{∞} such that

$$
\begin{aligned}
& T_{p} \leq \frac{T_{1}}{P}+c_{\infty} T_{\infty} \\
& T_{p} \leq\left(\frac{T_{1}}{T_{\infty} P}+c_{\infty}\right) T_{\infty}=\left(\frac{\bar{P}}{P}+c_{\infty}\right) T_{\infty}
\end{aligned}
$$

Let $\overline{\mathrm{P}}=\mathrm{T}_{1} / \mathrm{T}_{\infty}=$ parallelism = max speedup on ∞ processors

Parallel slackness assumption

$$
\begin{aligned}
& \bar{P} / P \gg c_{\infty} \quad \text { thus } \\
& T_{p} \approx \frac{T_{1}}{P} \quad \text { linear speedup }
\end{aligned}
$$

$$
\text { thus } \quad \frac{T_{1}}{P} \gg c_{\infty} T_{\infty}
$$

"critical path overhead has
little effect on performance when sufficient parallel slackness exists"

Work Overhead

$$
\begin{aligned}
& c_{1}=\frac{T_{1}}{T_{s}} \text { work overhead } \\
& T_{p} \leq c_{1} \frac{T_{s}}{P}+c_{\infty} T_{\infty} \quad \begin{array}{c}
\text { "Minimize work overhead (c. } \left.c_{1}\right) \\
\text { at the expense of a larger } \\
\text { critical path overhead (c. } c_{\infty} \text {), } \\
\text { because work overhead } \\
\text { has a more direct impact } \\
\text { on performance" }
\end{array} \\
& T_{p} \approx c_{1} \frac{T_{s}}{P} \quad \text { assuming parallel slackness }
\end{aligned}
$$

Parallelizing Vector Addition

C

```
void vadd (real *A, real *B, int n) {
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}
```


Divide and Conquer

- An effective parallelization strategy
-creates a good mix of large and small sub-problems
- Work-stealing scheduler can allocate chunks of work efficiently to the cores, as long as
—not only a few large chunks
- if work is divided into just a few large chunks, there may not be enough parallelism to keep all the cores busy
-not too many very small chunks
- if the chunks are too small, then scheduling overhead may overwhelm the benefit of parallelism

Parallelizing Vector Addition

```
void vadd (real *A, real *B, int n) {
    int i; for (i=O; i<n; i++) A[i]+=B[i];
}
```

```
void vadd (real *A, real *B, int n) {
    if (n<=BASE) {
        int i; for (i=0; i<n; i++) A[i]+=B[i];
    } else {
        vadd (A, B, n/2);
        vadd (A+n/2, B+n/2, n-n/2);
    }
}
```

Parallelization strategy:

1. Convert loops to recursion.

Parallelizing Vector Addition

```
void vadd (real *A, real *B, int n) {
    int i; for (i=O; i<n; i++) A[i]+=B[i];
}
```

Cilk void vadd (real *A, real *B, int n) $\{$ if ($\mathrm{n}<=\mathrm{BASE}$) \{ int i; for ($i=0$; $i<n$; $i++$) $A[i]+=B[i] ;$ \} else \{ vadd \&
$\operatorname{vadd}^{-}(\mathrm{A}+\mathrm{n} / 2, \mathrm{~B}+\mathrm{n} / 2, \mathrm{n}-\mathrm{n} / 2)$;
\} cilk_sync;

Parallelization strategy:

1. Convert loops to recursion. 2. Insert Cilk Plus keywords.

Side benefit:
D\&C is generally good for caches!

Vector Addition

```
void vadd (real *A, real *B, int n) {
    if (n<=BASE)
        int i; for (i=0; i<n; i++) A[i]+=B[i];
        } else {
        cilk_spawn vadd (A, B, n/2);
        vadd-(A+n/2, B+n/2, n-n/2);
        cilk_sync;
    }
}
```


Vector Addition Analysis

To add two vectors of length n, where BASE $=\Theta(1)$:
Work: $T_{1}=\Theta(n)$
Span: $T_{\infty}=\Theta(\lg n)$
Parallelism: $T_{1} / T_{\infty}=\Theta(n / l g n)$

Example: N Queens

- Problem
—place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board
-no 2 queens in same row, column, or diagonal
- Example: a solution to 8 queens problem

One possible solution

N Queens: Many Solutions Possible

Example: 8 queens

- 92 distinct solutions
- 12 unique solutions; others are rotations \& reflections

Unique solution 6

Unique solution 10

Unique solution 8

Unique solution 11

Image credit: http://en.wikipedia.org/wiki/Eight_queens_puzzle

N Queens Solution Sketch

Sequential Recursive Enumeration of All Solutions

int nqueens(n, j, placement) \{
// precondition: placed j queens so far
if $(j==n)$ \{ print placement; return; \}
for ($k=0 ; k<n ; k++$)
if putting $j+1$ queen in $k^{\text {th }}$ position in row $j+1$ is legal
add queen j+1 to placement
nqueens(n, $j+1$, placement)
remove queen j+1 from placement
\}

- Where's the potential for parallelism?
- What issues must we consider?

Parallel N Queens Solution Sketch

void nqueens(n, j, placement) \{
// precondition: placed j queens so far
if ($j==n$) \{ /* found a placement */ process placement; return; \}
for ($k=1 ; k<=n ; k++$)
if putting $j+1$ queen in $k^{\text {th }}$ position in row $j+1$ is legal copy placement into newplacement and add extra queen cilk_spawn nqueens(n,j+1,newplacement)

cilk_sync

discard placement
\}
Issues regarding placements
-how can we report placements?
-what if a single placement suffices?
—no need to compute all legal placements
-so far, no way to terminate children exploring alternate placement

Approaches to Managing Placements

- Choices for reporting multiple legal placements
- count them
- print them on the fly
- collect them on the fly; print them at the end
- If only one placement desired, can skip remaining search

References

- "Introduction to Parallel Computing" by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Addison Wesley, 2003
- Charles E. Leiserson. Cilk LECTURE 1. Supercomputing Technologies Research Group. Computer Science and Artificial Intelligence Laboratory. http://bit.ly/mit-cilk-lec1
- Charles Leiserson, Bradley Kuzmaul, Michael Bender, and Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel Systems. http://bit.ly/mit-6895-fall03
- Intel Cilk++ Programmer's Guide. Document \# 322581-001US.

