
John Mellor-Crummey
Department of Computer Science

Rice University

johnmc@rice.edu

More Shared-memory
Parallel Programming

with Cilk Plus

COMP 422/534 Lecture 5-6 28-30 January 2020

Last Thursday

• Threaded programming models

• Introduction to Cilk Plus
—tasks
—algorithmic complexity measures
—scheduling
—performance and granularity
—task parallelism examples

– vector addition using divide and conquer
– nqueens: exploratory search

2

Outline for Today

• Cilk Plus
—explore speedup and granularity
—task parallelism example

– cilksort
—parallel loops
—reducers

• Data race detection with cilkscreen

• Assessing Cilk Plus performance with cilkview

3

Review: Cilk Plus Parallel Performance Model

4

€

Tp ≤ c1
Ts
P

+ c∞T∞€

c1 =
T1
Ts

work overhead

“Minimize work overhead (c1)
at the expense of a larger
critical path overhead (c∞),

because work overhead
has a more direct impact

on performance”

€

Tp ≈ c1
Ts
P assuming parallel slackness

Speedup Demo
Explore speedup of naive fibonacci program

cp /projects/comp422/cilkplus-examples/fib ~/fib
cd ~/fib
fib.cpp: a program for computing nth fibonacci #
experiment with the fibonacci program

make runp W=n computes fib(44) with n workers
compute fib(44) for different
values of W, 1 ≤ W ≤ 12
what value of W yields the lowest execution time?
what is the speedup vs. the execution time of “./fib-serial 44”?
how does this speedup compare to the total number of HW threads?

5

Granularity Demo
Explore how changing increasing the granularity of parallel
work in fib improves performance (by reducing c1)

fib-trunc.cpp: a program for computing nth fibonacci #
this version differs in that one can execute subtrees of height H
sequentially rather than spawning parallel tasks all the way down

build the examples: make
experiment with the fibonacci program with truncated parallelism

make runt H=h computes fib(44) with lowest H levels serial
compute fib(44) for different
values of H, 2 ≤ H ≤ 44
what value of H yields the lowest
execution time?
what is the speedup vs. the execution time of “./fib-serial 44”?
how does this speedup compare to the total number of HW threads?

6

N
H

Cilk Performance Model in Action

7

Cilksort
Variant of merge sort

 void cilksort(ELM *low, ELM *tmp, long size) {
					long	quarter	=	size	/	4;	
					ELM	*A,	*B,	*C,	*D,	*tmpA,	*tmpB,	*tmpC,	*tmpD;	
					if	(size	<	QUICKSIZE)	{	seqquick(low,	low	+	size	-	1)	return;	}	

					A	=	low;	tmpA	=	tmp;		
					B	=	A	+	quarter;	tmpB	=	tmpA	+	quarter;		
					C	=	B	+	quarter;	tmpC	=	tmpB	+	quarter;		
					D	=	C	+	quarter;	tmpD	=	tmpC	+	quarter;	

					cilk_spawn	cilksort(A,	tmpA,	quarter);	
					cilk_spawn	cilksort(B,	tmpB,	quarter);	
					cilk_spawn	cilksort(C,	tmpC,	quarter);	
					cilksort(D,	tmpD,	size	-	3	*	quarter);	
					cilk_sync;	

					cilk_spawn	cilkmerge(A,	A	+	quarter	-	1,	B,	B	+	quarter	-	1,	tmpA);	
					cilkmerge(C,	C	+	quarter	-	1,	D,	low	+	size	-	1,	tmpC);	
					cilk_sync;	

					cilkmerge(tmpA,	tmpC	-	1,	tmpC,	tmpA	+	size	-	1,	A);	
}

8

Merging in Parallel

• How can you incorporate parallelism into a merge operation?

9

• Assume we are merging two sorted sequences A and B
• Without loss of generality, assume A larger than B

Algorithm Sketch
1. Find median of the elements in A and B (considered together).
2. Do binary search in A and B to find its position. Split A and B at

this place to form A1, A2, B1, and B2

3. In parallel, recursively merge A1 with B1 and A2 with B2

Optimizing Performance of cilksort

• Recursively subdividing all the way to singletons is
expensive

• When size(remaining sequence) to sort or merge is small
(2K)
— use sequential quicksort
— use sequential merge

• Remaining issue: does not optimally use memory hierarchy

10

11

Cilk Plus Parallel Loop: cilk_for

• Loop index v
—type T can be an integer, ptr, or a C++ random access iterator

• Main restrictions
—runtime must be able to compute total # of iterations on entry

to cilk_for
– must compare v with end value using <, <=, !=, >=, or >
– loop increment must use ++, --, +=, v = v + incr, or v = v - incr

 if v is not a signed integer, loop must count up

• Implicit cilk_sync at the end of a cilk_for

cilk_for (T v = begin; v < end; v++) {
statement_1;
statement_2;
...

}

Loop with a cilk_spawn vs. cilk_for

12Figure credits: Intel Cilk++ Programmer’s Guide. Document # 322581-001US.

• for (int i = 0; i < 8; i++) { cilk_spawn work(i); } cilk_sync;

• cilk_for (int i = 0; i < 8; i++) { work(i);}

cilk_for uses
divide-and-

conquer

Note: computation
on edges

13

Restrictions for cilk_for

• No early exit
—no break or return statement within loop
—no goto in loop unless target is within loop body

• Loop induction variable restrictions
—cilk_for (unsigned int i, j = 42; j < 1; i++, j++) { ... }

– only one loop variable allowed
—cilk_for (unsigned int i = 1; i < 16; ++i) i = f();

– can’t modify loop variable within loop
—cilk_for (unsigned int i = 1; i < x; ++i) x = f();

– can’t modify end within loop
—int i; cilk_for (i = 0; i<100; i++) { ... }

– loop variable must be declared in loop header

cilk_for Implementation Sketch

14

• Recursive bisection used to subdivide iteration space
down to chunk size

15

cilk_for Grain Size

• Iterations divided into chunks to be executed serially
— chunk is sequential collection of one or more iterations

• Maximum size of chunk is called grain size
— grain size too small: spawn overhead reduces performance
— grain size too large: reduces parallelism and load balance

• Default grain size
— #pragma cilk grainsize = min(2048, N / (8*p))

• Can override default grain size
— #pragma cilk grainsize = expr

– expr is any C++ expression that yields an integral type (e.g. int,
long)
 e.g. #pragma cilk grainsize = n/(4*__cilkrts_get_nworkers())

— pragma must immediately precede cilk_for to which it applies

16

Parallelizing Vector Addition

C

Cilk
Plus

void vadd (real *A, real *B, int n){
 int i; for (i=0; i<n; i++) A[i]+=B[i];
}

void vadd (real *A, real *B, int n){
 int i; cilk_for (i=0; i<n; i++) A[i]+=B[i];
}

void vadd (real *A, real *B, int n){
 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {
 cilk_spawn vadd (A, B, n/2);
 vadd (A+n/2, B+n/2, n-n/2);
 }
}

The Problem with Non-local Variables

• Nonlocal variables are a common programming construct
— global variables = nonlocal variables in outermost scope
— nonlocal = declared in a scope outside that where it is used

• Example

• Rewriting parallel applications to avoid them is painful

17

int sum = 0;
for(int i=1; i<n; i++) {
 sum += i;
}

18

Understanding a Data Race

• Example

• What can go wrong?
— concurrent reads and writes can interleave in unpredictable

ways

— the update by thread m is lost!

int sum = 0;
cilk_for(int i=1; i<n; i++) {
 sum += i;
}

read sum
read sum
write sum + ij
write sum + ik

legend
thread n
thread m

time

Collision Detection

Automaker: hierarchical 3D
CAD representation of

assemblies

19

Computing a cutaway view
Node *target;
std::list<Node *> output_list;
...
void walk(Node *x) {
 switch (x->kind) {
 case Node::LEAF:
 if (target->collides_with(x))
 output_list.push_back(x);
 break;
 case Node::INTERNAL:
 for (Node::const_iterator
 child = x->begin();
 child != x->end();
 ++child)
 walk(child);
 break;
 }
}

Adding Cilk Plus Parallelism

Global variable
causes data races!

20

Computing a cutaway view in parallel
Node *target;
std::list<Node *> output_list;
...
void walk(Node *x) {
 switch (x->kind) {
 case Node::LEAF:
 if (target->collides_with(x))
 output_list.push_back(x);
 break;
 case Node::INTERNAL:
 cilk_for (Node::const_iterator
 child = x->begin();
 child != x->end();
 ++child)
 walk(child);
 break;
 }
}

Solution 1: Locking

• Add a mutex to
coordinate
accesses to
output_list

• Drawback: lock
contention can
hurt parallelism

21

Computing a cutaway view in parallel
Node *target;
std::list<Node *> output_list;
mutex m;
...
void walk(Node *x) {
 switch (x->kind) {
 case Node::LEAF:
 if (target->collides_with(x))
 { m.lock(); output_list.push_back(x); m.unlock(); }
 break;
 case Node::INTERNAL:
 cilk_for (Node::const_iterator
 child = x->begin();
 child != x->end();
 ++child)
 walk(child);
 break;
 }
}

Solution 2: Refactor the Code
Node *target;

std::list<Node *> output_list;
...
void walk(Node *x, std::list<Node *> &o_list) {
 switch (x->kind) {
 case Node::LEAF:
 if (target->collides_with(x))
 o_list.push_back(x);
 break;
 case Node::INTERNAL:
 std::vector<std::list<Node *>>
 child_list(x.num_children);
 cilk_for (Node::const_iterator
 child = x->begin();
 child != x->end();
 ++child)
 walk(child, child_list[child]);
 for (int i=0; i < x.num_children; ++i)
 o_list.splice(o_list.end(), child_list[i]);
 break;
 } 22

• Have each child
accumulate
results in a
separate list

• Splice them all
together

• Drawback:
development time,
debugging

Solution 3: Cilk Plus Reducers

Node *target;

cilk::reducer_list_append<Node *> output_list;
...
void walk(Node *x) {
 switch (x->kind) {
 case Node::LEAF:
 if (target->collides_with(x))
 output_list.push_back(x);
 break;
 case Node::INTERNAL:
 cilk_for (Node::const_iterator
 child = x->begin();
 child != x->end();
 ++child)q
 walk(child);
 break;
 }
}

23

• Resolve data
races without
locking or
refactoring

• Parallel strands
may see different
views of reducer,
but these views
are combined into
a single
consistent view

Cilk Plus Reducers

• Reducers support update of nonlocal variables without races
—deterministic update using associative operations

– e.g., global sum, list and output stream append, ...
– result using is same as serial version

 independent of # processors or scheduling

• Can be used without significant code restructuring

• Can be used independently of the program's control structure
— unlike constructs defined only over loops

• Implemented efficiently with minimal overhead
—they don’t use locks in their implementation

– avoids loss of parallelism from enforcing mutual exclusion when
updating shared variables

24

Cilk Plus Reducers Operate on Monoids

• Suppose that S is a set and • is some binary operation
—S × S → S

• A monoid is a set that is closed under an associative binary
operation and has an identity element

• S with • is a monoid if it satisfies the following two axioms:
—identity element

– there exists an element 𝚰 in S such that for every element a in S, the
equations 𝚰 • a = a • 𝚰 = a hold

—associativity
– for all a, b and c in S, the equation (a • b) • c = a • (b • c) holds

25

Cilk++ Reducers Under the Hood

• If no steal occurs, a reducer behaves like a normal variable

• If a steal occurs
— the continuation receives a view with an identity value
— the child receives the reducer as it was prior to the spawn
— at the corresponding cilk_sync

– the value in the continuation is merged into the reducer held by
the child using the reducer’s reduce operation

– the new view is destroyed
– the original (updated) object survives

26

Reducers

27

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, Stephen
Lewin-Berlin, Reducers and other Cilk++ hyperobjects. Slides
for SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.

Reducing Over List Concatenation

28

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, Stephen
Lewin-Berlin, Reducers and other Cilk++ hyperobjects. Slides
for SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.

Reducing Over List Concatenation

29

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, Stephen
Lewin-Berlin, Reducers and other Cilk++ hyperobjects. Slides
for SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.

Using Cilk Plus Reducers

• Include the appropriate Cilk Plus reducer header file
 reducer_opadd.h, reducer_min.h, reducer_max.h,
reducer_opor.h, reducer_opand.h, reducer_opxor,  
reducer_list.h, reducer_ostream.h

• Declare a variable as a reducer rather than a standard type
— global sum

– cilk::reducer_opadd<unsigned long> sum

— list reducer
– instead of “std::list<int> sequence”, use
cilk::reducer_list_append<int> sequence

• Use reducers in the midst of work that includes parallelism
created with cilk_spawn or cilk_for

• Retrieve the reducer's terminal value with var.get_value()
after the parallel updates to the reducer are complete

30

Reducer Demo - I
• See /projects/comp422/cilkplus-examples/sum

• Compare a program with a racing reduction, a mutex
protecting the race, and a reducer

• Versions:
—race.cpp: code with a racing sum reduction
—lock.cpp: code with a mutex to avoid the race
—reducer.cpp: code with a reducer to avoid the race

• Compare performance of the various versions
– ./race 100000000
– ./lock 100000000
– ./reducer 100000000

—how does the performance of the parallel summation using
reducers compare to
– the parallel summation with races?
– the parallel summation with locks?
– the serial summation? 31

Reducer Demo - II

• See /projects/comp422/cilkplus-examples/order/order.cpp

• order.cpp is a program containing two parallel loops
—one where iterations race to write output
—one where iterations write output using an ostream reducer

• Look at how the output differs for these loops as loop
iterations are mapped to cores using work stealing

32

33

Concurrency Cautions

• Only limited guarantees between descendants or ancestors
—DAG precedence order maintained and nothing more
—don’t assume atomicity between different procedures!

Race Conditions

• Data race
—two parallel strands access the same data
—at least one access is a write
—no locks held in common

• General determinacy race
—two parallel strands access the same data
—at least one access is a write
—a common lock protects both accesses

34

Cilkscreen

• Detects and reports data races when program terminates
—finds all data races even those by third-party or system libraries

• Does not report determinacy races
—e.g. two concurrent strands use a lock to access a queue

– enqueue & dequeue operations could occur in different order
 potentially leads to different result

35

Race Detection Strategies in Cilkscreen

• Lock covers
—two conflicting accesses to a variable don’t race if some lock L is

held while each of the accesses is performed by a strand

• Access precedence
—two conflicting accesses do not race if one must precede the

other
– access A is by a strand X, which precedes the cilk_spawn of strand

Y which performs access B
– access A is performed by strand X, which precedes a cilk_sync that

is an ancestor of strand Y

36

Cilkscreen Race Example

#include <stdio.h>
#include “mutex.h”

long sum = 0;
mutex m;

#ifdef SYNCH
#define LOCK m.lock()
#define UNLOCK m.unlock()
#else
#define LOCK
#define UNLOCK
#endif

37

void do_accum(int l, int u)
{
 if (u == l) { LOCK; sum += l; UNLOCK; }
 else {
 int mid = (u+l)/2;
 cilk_spawn do_accum(l, mid);
 do_accum(mid+1, u);
 }
}
int main()
{
 do_accum(0, 1000);
 printf("sum = %d\n", sum);

 long ssum = 0;
 for (int i = 0; i <= 1000; i++) ssum +=i;
 printf("serial sum = %d\n", ssum);
}

note: mutex class coded using pthread_mutex lock primitives

Cilkscreen Limitations

• Only detects races between Cilk Plus strands
—depends upon their strict fork/join paradigm

• Only detects races that occur given the input provided
—does not prove the absence of races for other inputs
—choose your testing inputs carefully!

• Runs serially, 15-30x slower

• Increases the memory footprint of an application
—could cause an error if memory demand is too large

• If you build your program with debug information (compile
with -g), cilkscreen will associate races with source line
numbers

38

Cilkscreen Output
Cilkscreen Race Detector V2.0.0, Build 3229
summing integers from 0 to 20000

Race condition on location 0x6016f0
 write access at 0x400b7f: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x169)
 read access at 0x400b78: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x162)
 called by 0x400ca9: (/home/johnmc/examples/races/sum2.c:26, do_accum+0x293)
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 ...
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 called by 0x400e47: (/home/johnmc/examples/races/sum2.c:37, main+0x85)

Race condition on location 0x6016f0
 write access at 0x400b7f: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x169)
 write access at 0x400b7f: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x169)
 called by 0x400ca9: (/home/johnmc/examples/races/sum2.c:26, do_accum+0x293)
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 ...
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279)
 called by 0x400e47: (/home/johnmc/examples/races/sum2.c:37, main+0x85)

sum = 200010000
serial sum = 200010000
2 errors found by Cilkscreen
Cilkscreen suppressed 119998 duplicate error messages

39

cilkscreen Demo
• Explore cilkscreen race detection

—cp /projects/comp422/cilkplus-examples/races ~/races
—cd ~/races
—programs:

– race.c -

 a cilk_for summation with a race

 race can be suppressed with -DSYNCH using a mutex)

– race2.c - a task parallel summation w/ optional mutex

40

41

Performance Measures

• Ts = serial execution time

• T1 = execution time on 1 processor (total work), T1 ≥ Ts

• Tp = execution time on P processors

• T∞ = execution time on infinite number of processors
— longest path in DAG

– length reflects the cost of computation at nodes along the path
— known as “critical path length”

42

Work and Critical Path Example

If all strands run in unit time
• T1 =

• T∞ = (critical path length)

fib(1)

 A B C
fib(4)

A A
fib(0)

 A
fib(1)

 A
fib(0)

A B C
fib(2)

A B C
fib(3)

 A B C
fib(2)

 A
fib(1)

17
8

Procedure oriented view

Execution DAG View

• Cilk Plus uses the word “strand” for a serial section of the
program

• A “knot” is a point where three or more strands meet

• Two kinds of knots
— spawn knots: one input strand, two output strands
— sync knots: two or more input strands, one output strand

43

...
do_stuff1();
cilk_spawn func3();
do_stuff2();
cilk_sync;
do_stuff4();
...

Another Execution DAG

• DAG represents the series-parallel structure of the
execution of a Cilk Plus program

• Example:
— two spawns (A) & (B)
— one sync (C)

44
Note: computation on edges

Work and Span
• Edges represent serial computation (work)

• Span: most expensive path from beginning to end
— also known as critical path length

45

work = 181ms
span = 68ms

Note: computation on edges

cilkview
• Rewrites executable to measure execution in terms of work

and span
— measures

– work - total # instructions executed, w/o parallel ovhd
– span - # instructions executed on the critical path (w/o ovhd)
– burdened span - # instructions executed on critical path (incl ovhd)
– parallelism - work/span (max speedup on infinite cores, w/o ovhd)
– burdened parallelism - work/(burdened span)
– number of spawns/syncs
– average instructions per strand - work/strands
– strands along span - # strands in the critical path
– average instructions / strand on span = work/(strands along span)
– total number of atomic instructions - e.g., used for locks
– frame count

• Predicts speedup on various numbers of processors based
on work and span

46

cilkview Demo
• Explore cilkview for performance analysis using fib example
/projects/comp422/cilkplus-examples/fib

—cilkview ./fib 20
—cilkview ./fib 30
—cilkview ./fib 35
—cilkview ./fib-trunc 35 10

47

Cilk Plus Array Notation

• Elementwise arithmetic
 c[:] = a[:] + 5;

• Set even rows in a 2D array
 b[0:5:2][:] = 12;

• Vector conditionals
 // Check and report each element containing 5 w/ Array Notation
 if (5 == a[:]) an_results[:] = "Matched";
 else an_results[:] = "Not Matched";

• Applying a scalar function to elements in a vector
 // Call a fn on each element of a vector using Array Notation
 fn(a[:]);

48

See /projects/comp422/cilkplus-features-tutorial

More Cilk Plus Features

• See /projects/comp422/cilkplus-features-tutorial
—array_notations: vector notation in Cilk Plus
—reducers: more reducer examples

• Each directory contains a Makefile that can build and run all
examples

49

50

Recall: Task Scheduling in Cilk

Strategies
• Work-stealing: processor looks for work when it becomes

idle

• Lazy parallelism: don’t realize parallelism until necessary
— benefits:

– executes with precisely as much parallelism as needed
– minimizes the number of threads that must be set up
– runs with same efficiency as serial program on uniprocessor

Compilation Strategy

MIT Cilk generates two copies of each procedure

• Fast clone: for optimized execution on a single processor
—spawned threads are fast

• Slow clone: triggered by work stealing, full parallel support
—used to handle execution of “stolen procedure frames”
—supports Cilk’s work-stealing scheduler
—few steals when enough parallel slackness exists

– speed of slow copy is not critical for performance

• “Work-first” principle: minimize cost in fast clone

51

Two Schedulers

• Nanoscheduler: compiled into cilk program
—execute cilk function and spawns in exactly the same order as C
—on one PE: when no microscheduling needed, same order as C
—efficient coordination with microscheduler

• Microscheduler
—schedule procedures across a fixed set of processors
—implementation: randomized work-stealing scheduler

– when a processor runs out of work, it becomes a thief
– steals from victim processor chosen uniformly at random

52

53

Nanscheduler Sketch
• Upon entering a cilk function

— allocate a frame in the heap
— initialize frame to hold function’s

state
— push the frame on the bottom of a

deque
– frame on stack ↔ frame in deque

• At a spawn
— save function state into the frame

– only live, dirty variables
— save the entry number into the frame
— call spawned procedure as a

function

• After each spawn
— check to see if if parent has been

stolen
– if frame is still in the deque, it has not

— if so, clean up C stack

• Each sync becomes a no-op
• When the procedure returns

Fast clone

54

Fast Clone and Nanoscheduler

• Fast clone is never stolen
—converted to slow when steal occurs
—enables optimizations

• No sync needed in fast clone
—no children have been spawned

• Frame saves state:
—PC (entry number)
—live, dirty variables

• Push and pop must be fast

55

Nanoscheduler Overheads

Basis for comparison: serial C

• Allocation and initialization of frame, push onto ‘stack’
— a few assembly instructions

• Procedure’s state needs to be saved before each spawn
— entry number, live variables

• Check whether frame is stolen after each spawn
— two reads, compare, branch

• On return, free frame - a few instructions

• One extra variable to hold frame pointer

56

 Runtime Support for Scheduling

Each processor has a ready deque (doubly ended queue)
—Tail: worker adds or removes procedures (like C call stack)
—Head: thief steals from head of a victim’s deque

57

Deque for a Process

• Deque grows downward

• Stack frame contains local variables for a procedure invocation

• Procedure call → new frame is pushed onto the bottom of the
deque

• Procedure return → bottom frame is popped from the deque

stack
frame

push

pop

deque

steal

58

Cilk’s Cactus Stacks

A cactus stack enables sharing of a C function’s local variables

A

C

D

B

E F

call tree

each procedure’s view of stack

A

A

A

B

B

A

C

C

A

B

D

D

A

B

E

E

A

C

F

F

void A() { B(); C(); }
void B() { D(); E(); }
void C() { F(); }
void D() {}
void E() {}
void F() {}

 Rules
—pointers can be passed down call chain
—only pass pointers up if they point to heap

– functions cannot return ptrs to local variables

59

Microscheduler
Schedule procedures across a fixed set of processors

• When a processor runs out of work, it becomes a thief
— steals from victim processor chosen uniformly at random

• When it finds victim with frames in its deque
— takes the topmost frame (least recently pushed)
— places frame into its own deque
— gives the corresponding procedure to its own nanoscheduler

• Microscheduler executes slow clone
— receives only pointer to frame as argument

– real args and local state in frame
— restores pgm counter to proper place using switch stmt (Duff’s

device)
— at a sync, must wait for children
— before the procedure returns, place return value into frame

60

Coordinating Thief and Worker

Options

• Always use a lock to manipulate each worker’s deque

• Use protocol that only relies on atomicity of read and write
— based on ideas from a locking protocol by Dijkstra

61

Simplified THE Protocol (Without the ‘E’)

• Shared memory
deque
—T: first unused
—H: head
—E: exception

• Work-first
—move costs from

worker to thief

• One worker per
deque

• One thief at a time
—enforced by lock

• actions on tail contribute to work overhead
• actions on head contribute only to critical path overhead

62

Deque Pop

(a) no conflict

(b) At least one
(thief or victim)
finds (H > T) and
backs up; other
succeeds

(c) Deque is empty,
both threads
return

Three cases

63

Work Overhead for fib

Alpha has fast
native function

calls

state saving
overhead

small because
of write buffers

64

References - I

• Matteo Frigo, Charles Leiserson, and Keith Randall. The
implementation of the Cilk-5 multithreaded language. In PLDI
(Montreal, Quebec, Canada, June 17 - 19, 1998), 212-223.

• Mingdong Feng and Charles E. Leiserson. 1997. Efficient
detection of determinacy races in Cilk programs. In
Proceedings of the ninth annual ACM symposium on Parallel
algorithms and architectures (SPAA '97). ACM, New York, NY,
USA, 1-11.

• Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson,
Keith H. Randall, and Andrew F. Stark. 1998. Detecting data
races in Cilk programs that use locks. In Proceedings of the
tenth annual ACM symposium on Parallel algorithms and
architectures (SPAA '98). ACM, New York, NY, USA, 298-309.

65

References - II
• Yuxiong He, Charles E. Leiserson, and William M. Leiserson.

2010. The Cilkview scalability analyzer. In Proc. of the 22nd
annual ACM symposium on Parallelism in algorithms and
architectures (SPAA '10). ACM, New York, NY.

• Charles E. Leiserson. Cilk LECTURE 1. Supercomputing
Technologies Research Group. Computer Science and
Artificial Intelligence Laboratory. http://bit.ly/mit-cilk-lec1

• Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and
Stephen Lewin-Berlin. Reducers and other Cilk++
hyperobjects. SPAA '09, 79-90. Talk Slides. April 11, 2009.
http://bit.ly/reducers

• Charles Leiserson, Bradley Kuzmaul, Michael Bender, and
Hua-wen Jing. MIT 6.895 lecture notes - Theory of Parallel
Systems. http://bit.ly/mit-6895-fall03

• Intel Cilk++ Programmer’s Guide. Document # 322581-001US.

