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Last Thursday

• Threaded programming models 

• Introduction to Cilk Plus 
—tasks 
—algorithmic complexity measures 
—scheduling 
—performance and granularity 
—task parallelism examples 

– vector addition using divide and conquer 
– nqueens: exploratory search
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Outline for Today

• Cilk Plus 
—explore speedup and granularity 
—task parallelism example 

– cilksort 
—parallel loops 
—reducers 

• Data race detection with cilkscreen 

• Assessing Cilk Plus performance with cilkview
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Review: Cilk Plus Parallel Performance Model
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“Minimize work overhead (c1)  
at the expense of a larger  
critical path overhead (c∞),  

because work overhead  
has a more direct impact  

on performance”
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Speedup Demo
Explore speedup of naive fibonacci program 

cp /projects/comp422/cilkplus-examples/fib ~/fib
cd ~/fib
fib.cpp: a program for computing nth fibonacci # 
experiment with the fibonacci program 

make runp W=n           computes fib(44) with n workers 
compute fib(44) for different  
values of W, 1 ≤ W ≤ 12 
what value of W yields the lowest execution time? 
what is the speedup vs. the execution time of “./fib-serial 44”? 
how does this speedup compare to the total number of HW threads?
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Granularity Demo
Explore how changing increasing the granularity of parallel 
work in fib improves performance (by reducing c1) 

fib-trunc.cpp: a program for computing nth fibonacci # 
this version differs in that one can execute subtrees of height H 
sequentially rather than spawning parallel tasks all the way down 

build the examples:                 make 
experiment with the fibonacci program with truncated parallelism 

make runt H=h           computes fib(44) with lowest H levels serial 
compute fib(44) for different  
values of H, 2 ≤ H ≤ 44 
what value of H yields the lowest  
execution time? 
what is the speedup vs. the execution time of “./fib-serial 44”? 
how does this speedup compare to the total number of HW threads?
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Cilk Performance Model in Action
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Cilksort
Variant of merge sort 

 void cilksort(ELM *low, ELM *tmp, long size) { 
					long	quarter	=	size	/	4;	
					ELM	*A,	*B,	*C,	*D,	*tmpA,	*tmpB,	*tmpC,	*tmpD;	
					if	(size	<	QUICKSIZE)	{	seqquick(low,	low	+	size	-	1)	return;	}	

					A	=	low;	tmpA	=	tmp;		
					B	=	A	+	quarter;	tmpB	=	tmpA	+	quarter;		
					C	=	B	+	quarter;	tmpC	=	tmpB	+	quarter;		
					D	=	C	+	quarter;	tmpD	=	tmpC	+	quarter;	

					cilk_spawn	cilksort(A,	tmpA,	quarter);	
					cilk_spawn	cilksort(B,	tmpB,	quarter);	
					cilk_spawn	cilksort(C,	tmpC,	quarter);	
					cilksort(D,	tmpD,	size	-	3	*	quarter);	
					cilk_sync;	

					cilk_spawn	cilkmerge(A,	A	+	quarter	-	1,	B,	B	+	quarter	-	1,	tmpA);	
					cilkmerge(C,	C	+	quarter	-	1,	D,	low	+	size	-	1,	tmpC);	
					cilk_sync;	

					cilkmerge(tmpA,	tmpC	-	1,	tmpC,	tmpA	+	size	-	1,	A);	
}
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Merging in Parallel

• How can you incorporate parallelism into a merge operation?
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• Assume we are merging two sorted sequences A and B 
• Without loss of generality, assume A larger than B 

Algorithm Sketch 
1. Find median of the elements in A and B (considered together). 
2. Do binary search in A and B to find its position. Split A and B at 

this place to form A1, A2, B1, and B2 

3. In parallel, recursively merge A1 with B1 and A2 with B2



Optimizing Performance of cilksort

• Recursively subdividing all the way to singletons is 
expensive 

• When size(remaining sequence) to sort or merge is small 
(2K) 
— use sequential quicksort 
— use sequential merge 

• Remaining issue: does not optimally use memory hierarchy 
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Cilk Plus Parallel Loop: cilk_for

• Loop index v 
—type T can be an integer, ptr, or a C++ random access iterator 

• Main restrictions 
—runtime must be able to compute total # of iterations on entry 

to cilk_for 
– must compare v with end value using <, <=, !=, >=, or >  
– loop increment must use ++, --, +=, v = v + incr, or v = v - incr 

 if v is not a signed integer, loop must count up 

• Implicit cilk_sync at the end of a cilk_for

cilk_for (T v = begin; v < end; v++) { 
statement_1; 
statement_2; 
... 

}



Loop with a cilk_spawn vs. cilk_for

12Figure credits: Intel Cilk++ Programmer’s Guide. Document # 322581-001US.

• for (int i = 0; i < 8; i++) { cilk_spawn work(i); } cilk_sync;  

• cilk_for (int i = 0; i < 8; i++) { work(i);}

cilk_for uses 
divide-and-

conquer

Note: computation 
on edges
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Restrictions for cilk_for

• No early exit 
—no break or return statement within loop 
—no goto in loop unless target is within loop body 

• Loop induction variable restrictions 
—cilk_for (unsigned int i, j = 42; j < 1; i++, j++) { ... } 

– only one loop variable allowed 
—cilk_for (unsigned int i = 1; i < 16; ++i) i = f(); 

– can’t modify loop variable within loop 
—cilk_for (unsigned int i = 1; i < x; ++i) x = f(); 

– can’t modify end within loop 
—int i; cilk_for (i = 0; i<100; i++) { ... } 

– loop variable must be declared in loop header



cilk_for Implementation Sketch
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• Recursive bisection used to subdivide iteration space 
down to chunk size
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cilk_for Grain Size

• Iterations divided into chunks to be executed serially 
— chunk is sequential collection of one or more iterations 

• Maximum size of chunk is called grain size 
— grain size too small: spawn overhead reduces performance 
— grain size too large: reduces parallelism and load balance 

• Default grain size 
— #pragma cilk grainsize = min(2048, N / (8*p)) 

• Can override default grain size 
— #pragma cilk grainsize = expr  

– expr is any C++ expression that yields an integral type (e.g. int, 
long) 
 e.g. #pragma cilk grainsize = n/(4*__cilkrts_get_nworkers()) 

— pragma must immediately precede cilk_for to which it applies
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Parallelizing Vector Addition

C

Cilk 
Plus

void vadd (real *A, real *B, int n){ 
  int i; for (i=0; i<n; i++) A[i]+=B[i]; 
}

void vadd (real *A, real *B, int n){ 
  int i; cilk_for (i=0; i<n; i++) A[i]+=B[i]; 
}

void vadd (real *A, real *B, int n){ 
  if (n<=BASE) { 
    int i; for (i=0; i<n; i++) A[i]+=B[i]; 
  } else { 
    cilk_spawn vadd (A, B, n/2); 
    vadd (A+n/2, B+n/2, n-n/2); 
  } 
}



The Problem with Non-local Variables

• Nonlocal variables are a common programming construct 
— global variables = nonlocal variables in outermost scope 
— nonlocal = declared in a scope outside that where it is used 

• Example 

• Rewriting parallel applications to avoid them is painful
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int sum = 0;
for(int i=1; i<n; i++) {
  sum += i;
}
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Understanding a Data Race

• Example 

• What can go wrong? 
— concurrent reads and writes can interleave in unpredictable 

ways 

—  the update by thread m is lost!

int sum = 0;
cilk_for(int i=1; i<n; i++) {
  sum += i;
}

read sum 
read sum 
write sum + ij 
write sum + ik

legend 
thread n 
thread m

time



Collision Detection

Automaker: hierarchical 3D 
CAD representation of 

assemblies
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Computing a cutaway view 
Node *target; 
std::list<Node *> output_list; 
... 
void walk(Node *x)  { 
  switch (x->kind) { 
  case Node::LEAF: 
    if (target->collides_with(x)) 
        output_list.push_back(x); 
    break; 
  case Node::INTERNAL: 
    for (Node::const_iterator  
                child = x->begin(); 
                child != x->end(); 
                ++child) 
        walk(child); 
    break; 
  } 
}



Adding Cilk Plus Parallelism

Global variable 
causes data races!
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Computing a cutaway view in parallel 
Node *target; 
std::list<Node *> output_list; 
... 
void walk(Node *x)  { 
  switch (x->kind) { 
  case Node::LEAF: 
    if (target->collides_with(x)) 
        output_list.push_back(x); 
    break; 
  case Node::INTERNAL: 
    cilk_for (Node::const_iterator  
                child = x->begin(); 
                child != x->end(); 
                ++child) 
        walk(child); 
    break; 
  } 
}



Solution 1: Locking

• Add a mutex to 
coordinate 
accesses to 
output_list 

• Drawback: lock 
contention can 
hurt parallelism
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Computing a cutaway view in parallel 
Node *target; 
std::list<Node *> output_list; 
mutex m; 
... 
void walk(Node *x)  { 
  switch (x->kind) { 
  case Node::LEAF: 
    if (target->collides_with(x)) 
    { m.lock(); output_list.push_back(x); m.unlock(); }  
    break; 
  case Node::INTERNAL: 
    cilk_for (Node::const_iterator  
                child = x->begin(); 
                child != x->end(); 
                ++child) 
        walk(child); 
    break; 
  } 
}



Solution 2: Refactor the Code
Node *target; 

std::list<Node *> output_list; 
... 
void walk(Node *x, std::list<Node *> &o_list) { 
  switch (x->kind) { 
  case Node::LEAF: 
    if (target->collides_with(x)) 
        o_list.push_back(x); 
    break; 
  case Node::INTERNAL: 
    std::vector<std::list<Node *>>  
          child_list(x.num_children); 
    cilk_for (Node::const_iterator  
                child = x->begin(); 
                child != x->end(); 
                ++child) 
        walk(child, child_list[child]); 
    for (int i=0; i < x.num_children; ++i) 
        o_list.splice(o_list.end(), child_list[i]); 
    break; 
  } 22

• Have each child 
accumulate 
results in a 
separate list 

• Splice them all 
together 

• Drawback: 
development time, 
debugging



Solution 3: Cilk Plus Reducers

Node *target; 

cilk::reducer_list_append<Node *> output_list; 
... 
void walk(Node *x) { 
  switch (x->kind) { 
  case Node::LEAF: 
    if (target->collides_with(x)) 
        output_list.push_back(x);   
    break; 
  case Node::INTERNAL: 
    cilk_for (Node::const_iterator  
                child = x->begin(); 
                child != x->end(); 
                ++child)q 
          walk(child); 
    break; 
  } 
}
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• Resolve data 
races without 
locking or 
refactoring 

• Parallel strands 
may see different 
views of reducer, 
but these views 
are combined into 
a single 
consistent view



Cilk Plus Reducers

• Reducers support update of nonlocal variables without races 
—deterministic update using associative operations 

– e.g., global sum, list and output stream append, ... 
– result using is same as serial version 

 independent of # processors or scheduling 

• Can be used without significant code restructuring 

• Can be used independently of the program's control structure 
— unlike constructs defined only over loops 

• Implemented efficiently with minimal overhead 
—they don’t use locks in their implementation  

– avoids loss of parallelism from enforcing mutual exclusion when 
updating shared variables
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Cilk Plus Reducers Operate on Monoids

• Suppose that S is a set and • is some binary operation  
—S × S → S 

• A monoid is a set that is closed under an associative binary 
operation and has an identity element 

• S with • is a monoid if it satisfies the following two axioms: 
—identity element 

– there exists an element 𝚰 in S such that for every element a in S, the 
equations 𝚰 • a = a • 𝚰 = a hold 

—associativity 
– for all a, b and c in S, the equation (a • b) • c = a • (b • c) holds
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Cilk++ Reducers Under the Hood

• If no steal occurs, a reducer behaves like a normal variable 

• If a steal occurs 
— the continuation receives a view with an identity value 
— the child receives the reducer as it was prior to the spawn 
— at the corresponding cilk_sync 

– the value in the continuation is merged into the reducer held by 
the child using the reducer’s reduce operation 

– the new view is destroyed 
– the original (updated) object survives
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Reducers
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Matteo Frigo, Pablo Halpern, Charles E. Leiserson, Stephen 
Lewin-Berlin, Reducers and other Cilk++ hyperobjects. Slides 
for SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.



Reducing Over List Concatenation
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Matteo Frigo, Pablo Halpern, Charles E. Leiserson, Stephen 
Lewin-Berlin, Reducers and other Cilk++ hyperobjects. Slides 
for SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.



Reducing Over List Concatenation
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Matteo Frigo, Pablo Halpern, Charles E. Leiserson, Stephen 
Lewin-Berlin, Reducers and other Cilk++ hyperobjects. Slides 
for SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.



Using Cilk Plus Reducers

• Include the appropriate Cilk Plus reducer header file 
 reducer_opadd.h, reducer_min.h,    reducer_max.h, 
reducer_opor.h,  reducer_opand.h,  reducer_opxor,  
reducer_list.h,  reducer_ostream.h 

• Declare a variable as a reducer rather than a standard type 
— global sum 

– cilk::reducer_opadd<unsigned long> sum

— list reducer 
– instead of “std::list<int> sequence”, use 
cilk::reducer_list_append<int> sequence  

• Use reducers in the midst of work that includes parallelism 
created with cilk_spawn or cilk_for 

• Retrieve the reducer's terminal value with var.get_value() 
after the parallel updates to the reducer are complete
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Reducer Demo - I
• See /projects/comp422/cilkplus-examples/sum 

• Compare a program with a racing reduction, a mutex 
protecting the race, and a reducer 

• Versions: 
—race.cpp: code with a racing sum reduction 
—lock.cpp: code with a mutex to avoid the race 
—reducer.cpp: code with a reducer to avoid the race 

• Compare performance of the various versions 
– ./race 100000000 
– ./lock 100000000 
– ./reducer 100000000 

—how does the performance of the parallel summation using 
reducers compare to  
– the parallel summation with races? 
– the parallel summation with locks? 
– the serial summation? 31



Reducer Demo - II

• See /projects/comp422/cilkplus-examples/order/order.cpp 

• order.cpp is a program containing two parallel loops 
—one where iterations race to write output 
—one where iterations write output using an ostream reducer 

• Look at how the output differs for these loops as loop 
iterations are mapped to cores using work stealing
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Concurrency Cautions

• Only limited guarantees between descendants or ancestors 
—DAG precedence order maintained and nothing more 
—don’t assume atomicity between different procedures!



Race Conditions

• Data race 
—two parallel strands access the same data 
—at least one access is a write 
—no locks held in common 

• General determinacy race 
—two parallel strands access the same data 
—at least one access is a write 
—a common lock protects both accesses
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Cilkscreen

• Detects and reports data races when program terminates 
—finds all data races even those by third-party or system libraries 

• Does not report determinacy races 
—e.g. two concurrent strands use a lock to access a queue 

– enqueue & dequeue operations could occur in different order  
 potentially leads to different result
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Race Detection Strategies in Cilkscreen

• Lock covers 
—two conflicting accesses to a variable don’t race if some lock L is 

held while each of the accesses is performed by a strand 

• Access precedence 
—two conflicting accesses do not race if one must precede the 

other 
– access A is by a strand X, which precedes the cilk_spawn of strand 

Y which performs access B 
– access A is performed by strand X, which precedes a cilk_sync that 

is an ancestor of strand Y
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Cilkscreen Race Example

#include <stdio.h> 
#include “mutex.h” 

long sum = 0; 
mutex m; 

#ifdef SYNCH 
#define LOCK m.lock() 
#define UNLOCK m.unlock() 
#else 
#define LOCK  
#define UNLOCK  
#endif 

37

void do_accum(int l, int u) 
{ 
        if (u == l) { LOCK; sum += l; UNLOCK; }  
        else { 
          int mid = (u+l)/2; 
          cilk_spawn do_accum(l, mid); 
          do_accum(mid+1, u); 
        } 
} 
int main() 
{ 
        do_accum(0, 1000); 
        printf("sum = %d\n", sum); 

        long ssum = 0; 
        for (int i = 0; i <= 1000; i++) ssum +=i; 
        printf("serial sum = %d\n", ssum); 
} 

note: mutex class coded using pthread_mutex lock primitives



Cilkscreen Limitations

• Only detects races between Cilk Plus strands 
—depends upon their strict fork/join paradigm 

• Only detects races that occur given the input provided 
—does not prove the absence of races for other inputs 
—choose your testing inputs carefully! 

• Runs serially, 15-30x slower 

• Increases the memory footprint of an application 
—could cause an error if memory demand is too large 

• If you build your program with debug information (compile 
with -g), cilkscreen will associate races with source line 
numbers 
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Cilkscreen Output
Cilkscreen Race Detector V2.0.0, Build 3229 
summing integers from 0 to 20000 

Race condition on location 0x6016f0 
  write access at 0x400b7f: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x169) 
  read access at 0x400b78: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x162) 
    called by 0x400ca9: (/home/johnmc/examples/races/sum2.c:26, do_accum+0x293) 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    ... 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    called by 0x400e47: (/home/johnmc/examples/races/sum2.c:37, main+0x85) 

Race condition on location 0x6016f0 
  write access at 0x400b7f: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x169) 
  write access at 0x400b7f: (/home/johnmc/examples/races/sum2.c:22, do_accum+0x169) 
    called by 0x400ca9: (/home/johnmc/examples/races/sum2.c:26, do_accum+0x293) 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    ... 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    called by 0x400c8f: (/home/johnmc/examples/races/sum2.c:25, do_accum+0x279) 
    called by 0x400e47: (/home/johnmc/examples/races/sum2.c:37, main+0x85) 

sum = 200010000 
serial sum = 200010000 
2 errors found by Cilkscreen 
Cilkscreen suppressed 119998 duplicate error messages
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cilkscreen Demo
• Explore cilkscreen race detection 

—cp /projects/comp422/cilkplus-examples/races ~/races
—cd ~/races
—programs:

– race.c - 

 a cilk_for summation with a race

 race can be suppressed with -DSYNCH using a mutex)

– race2.c - a task parallel summation w/ optional mutex

40
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Performance Measures

•  Ts = serial execution time 

•  T1 = execution time on 1 processor (total work), T1 ≥ Ts 

•  Tp = execution time on P processors  

•  T∞ = execution time on infinite number of processors 
— longest path in DAG 

– length reflects the cost of computation at nodes along the path  
— known as “critical path length”
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Work and Critical Path Example

If all strands run in unit time 
• T1 =  

• T∞ =        (critical path length) 

 
fib(1)

 

 

 A B C
fib(4)

A  A
fib(0)

 A
fib(1)

 A
fib(0)

A B C
fib(2)

A B C
fib(3)

 A B C
fib(2)

 A
fib(1)

17
8

Procedure oriented view



Execution DAG View

• Cilk Plus uses the word “strand” for a serial section of the 
program 

•  A “knot” is a point where three or more strands meet 

• Two kinds of knots 
— spawn knots: one input strand, two output strands 
— sync knots: two or more input strands, one output strand
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... 
do_stuff1(); 
cilk_spawn func3(); 
do_stuff2(); 
cilk_sync; 
do_stuff4(); 
...



Another Execution DAG

• DAG represents the series-parallel structure of the 
execution of a Cilk Plus program 

• Example:  
— two spawns (A) & (B) 
— one sync (C)

44
Note: computation on edges



Work and Span
• Edges represent serial computation (work) 

• Span: most expensive path from beginning to end  
— also known as critical path length

45

work = 181ms
span = 68ms

Note: computation on edges



cilkview
• Rewrites executable to measure execution in terms of work 

and span 
— measures 

– work - total # instructions executed, w/o parallel ovhd 
– span - # instructions executed on the critical path (w/o ovhd) 
– burdened span - # instructions executed on critical path (incl ovhd) 
– parallelism - work/span (max speedup on infinite cores, w/o ovhd) 
– burdened parallelism - work/(burdened span) 
– number of spawns/syncs 
– average instructions per strand - work/strands 
– strands along span - # strands in the critical path 
– average instructions / strand on span = work/(strands along span) 
– total number of atomic instructions - e.g., used for locks 
– frame count 

• Predicts speedup on various numbers of processors based 
on work and span
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cilkview Demo
• Explore cilkview for performance analysis using fib example 
/projects/comp422/cilkplus-examples/fib

—cilkview ./fib 20
—cilkview ./fib 30
—cilkview ./fib 35
—cilkview ./fib-trunc 35 10
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Cilk Plus Array Notation

• Elementwise arithmetic 
 c[:] = a[:] + 5; 

• Set even rows in a 2D array 
 b[0:5:2][:] = 12; 

• Vector conditionals 
 // Check and report each element containing 5 w/ Array Notation 
 if (5 == a[:]) an_results[:] = "Matched"; 
 else an_results[:] = "Not Matched"; 

• Applying a scalar function to elements in a vector 
 // Call a fn on each element of a vector using Array Notation 
 fn(a[:]);

48

See /projects/comp422/cilkplus-features-tutorial 



More Cilk Plus Features

• See /projects/comp422/cilkplus-features-tutorial 
—array_notations: vector notation in Cilk Plus 
—reducers: more reducer examples 

• Each directory contains a Makefile that can build and run all 
examples

49
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Recall: Task Scheduling in Cilk

Strategies 
• Work-stealing: processor looks for work when it becomes 

idle 

• Lazy parallelism: don’t realize parallelism until necessary 
— benefits:  

– executes with precisely as much parallelism as needed 
– minimizes the number of threads that must be set up 
– runs with same efficiency as serial program on uniprocessor



Compilation Strategy

MIT Cilk generates two copies of each procedure 

• Fast clone: for optimized execution on a single processor 
—spawned threads are fast 

• Slow clone: triggered by work stealing, full parallel support 
—used to handle execution of “stolen procedure frames” 
—supports Cilk’s work-stealing scheduler  
—few steals when enough parallel slackness exists 

– speed of slow copy is not critical for performance 

• “Work-first” principle: minimize cost in fast clone 

51



Two Schedulers

• Nanoscheduler: compiled into cilk program 
—execute cilk function and spawns in exactly the same order as C 
—on one PE: when no microscheduling needed, same order as C 
—efficient coordination with microscheduler 

• Microscheduler 
—schedule procedures across a fixed set of processors 
—implementation: randomized work-stealing scheduler 

– when a processor runs out of work, it becomes a thief 
– steals from victim processor chosen uniformly at random
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Nanscheduler Sketch
• Upon entering a cilk function 

— allocate a frame in the heap 
— initialize frame to hold function’s 

state 
— push the frame on the bottom of a 

deque  
– frame on stack ↔ frame in deque 

• At a spawn 
— save function state into the frame 

– only live, dirty variables 
— save the entry number into the frame 
— call spawned procedure as a 

function 

• After each spawn 
— check to see if if parent has been 

stolen 
– if frame is still in the deque, it has not 

— if so, clean up C stack 

• Each sync becomes a no-op 
• When the procedure returns 

Fast clone
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Fast Clone and Nanoscheduler

• Fast clone is never stolen 
—converted to slow when steal occurs 
—enables optimizations 

• No sync needed in fast clone 
—no children have been spawned 

• Frame saves state: 
—PC (entry number) 
—live, dirty variables  

• Push and pop must be fast
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Nanoscheduler Overheads

Basis for comparison: serial C 

• Allocation and initialization of frame, push onto ‘stack’ 
— a few assembly instructions 

• Procedure’s state needs to be saved before each spawn 
— entry number, live variables 

• Check whether frame is stolen after each spawn 
— two reads, compare, branch  

• On return, free frame - a few instructions 

• One extra variable to hold frame pointer
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 Runtime Support for Scheduling

Each processor has a ready deque (doubly ended queue)
—Tail:  worker adds or removes procedures (like C call stack)
—Head:  thief steals from head of a victim’s deque 
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Deque for a Process

• Deque grows downward 

• Stack frame contains local variables for a procedure invocation 

• Procedure call → new frame is pushed onto the bottom of the 
deque 

• Procedure return → bottom frame is popped from the deque 

stack 
frame

push

pop

deque

steal
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Cilk’s Cactus Stacks

A cactus stack enables sharing of a C function’s local variables

A

C

D

B

E F

call tree

each procedure’s view of stack

A

A

A

B

B

A

C

C

A

B

D

D

A

B

E

E

A

C

F

F

void A() { B(); C(); } 
void B() { D(); E(); } 
void C() { F(); } 
void D() {} 
void E() {} 
void F() {}

    Rules 
—pointers can be passed down call chain 
—only pass pointers up if they point to heap 

– functions cannot return ptrs to local variables
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Microscheduler
Schedule procedures across a fixed set of processors 

• When a processor runs out of work, it becomes a thief 
— steals from victim processor chosen uniformly at random 

• When it finds victim with frames in its deque 
— takes the topmost frame (least recently pushed) 
— places frame into its own deque 
— gives the corresponding procedure to its own nanoscheduler 

• Microscheduler executes slow clone 
— receives only pointer to frame as argument  

– real args and local state in frame 
— restores pgm counter to proper place using switch stmt (Duff’s 

device) 
— at a sync, must wait for children 
— before the procedure returns, place return value into frame
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Coordinating Thief and Worker

Options 

• Always use a lock to manipulate each worker’s deque 

• Use protocol that only relies on atomicity of read and write 
— based on ideas from a locking protocol by Dijkstra
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Simplified THE Protocol (Without the ‘E’)

• Shared memory 
deque
—T: first unused 
—H: head
—E: exception

• Work-first
—move costs from 

worker to thief 

• One worker per 
deque

• One thief at a time
—enforced by lock

• actions on tail contribute to work overhead 
• actions on head contribute only to critical path overhead
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Deque Pop

(a) no conflict 

(b) At least one 
(thief or victim) 
finds (H > T) and 
backs up; other 
succeeds

(c ) Deque is empty,  
both threads 
return

Three cases
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Work Overhead for fib

Alpha has fast 
native function 

calls

state saving 
overhead 

small because 
of write buffers
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