
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Programming Shared-memory
Platforms with OpenMP

COMP 422/534 Lecture 7 4 February 2020

2

Topics for Today

• Introduction to OpenMP

• OpenMP directives
—concurrency directives

– parallel regions
– loops, sections, tasks

—synchronization directives
– reductions, barrier, critical, ordered

—data handling clauses
– shared, private, firstprivate, lastprivate

—tasks

• Performance tuning hints

• Library primitives

• Environment variables

3

What is OpenMP?

Open specifications for Multi Processing
• An API for explicit multi-threaded, shared memory

parallelism
• Three components

— compiler directives
— runtime library routines
— environment variables

• Higher-level than library-based programming models
— implicit mapping and load balancing of work

• Portable
— API is specified for C/C++ and Fortran
— implementations on almost all platforms

• Standard

OpenMP at a Glance

4

User

Environment
Variables

Runtime Library

Compiler

OS Threads (e.g., Pthreads)

Application

5

OpenMP Is Not

• An automatic parallel programming model
— parallelism is explicit
— programmer has full control (and responsibility) over

parallelization

• Meant for distributed-memory parallel systems (by itself)
— designed for shared address space machines

• Necessarily implemented identically by all vendors

• Guaranteed to make the most efficient use of the memory
hierarchy

6

OpenMP Targets Ease of Use

• OpenMP does not require that single-threaded code be
changed for threading
— enables incremental parallelization of a serial program

• OpenMP relies primarily on compiler directives
— pragmas (C/C++); significant comments in Fortran

– if a compiler does not recognize a directive, it ignores it
— significant parallelism possible using just 3 or 4 directives

– both coarse-grain and fine-grain parallelism

• If the compiler is not instructed to process OpenMP
directives, the program will execute sequentially

• Runtime routines have default implementations if a
compiler is not instructed to process OpenMP directives

7

OpenMP: Fork-Join Parallelism

• An OpenMP program begins execution as a single master
thread

• Master thread executes sequentially until 1st parallel region

• When a parallel region is encountered, master thread
— creates a group of threads
— becomes the master of this group of threads
— is assigned the thread id 0 within the group

F
o
r
k

J
o
i
n

F
o
r
k

J
o
i
n

F
o
r
k

J
o
i
n

master thread
shown in red

8

OpenMP Directive Format

• OpenMP directive forms
— C and C++ use compiler directives

– prefix: #pragma …
— Fortran uses significant comments

– prefixes: !omp, comp, *$omp

• Components: prefix, directive, optional clauses
– C: #pragma omp parallel num_threads(4)…
– Fortran: !$omp parallel num_threads(4)…

A Simple Example Using parallel

Program
#include	<stdio.h>	
#include	<omp.h>	

int	main()	{	
			#pragma	omp	parallel	num_threads(4)	
			{	
						int	i	=	omp_get_thread_num();	
						printf("Hello	from	thread	%d\n",	i);	
			}	
}

9

Output
Hello from thread 0
Hello from thread 1
Hello from thread 2
Hello from thread 3

order of output may vary!

10

OpenMP parallel Region Directive
#pragma omp parallel [clause list]

Typical clauses in [clause list]
• Conditional parallelization

— if (scalar expression)
– determines whether the parallel construct creates threads

• Degree of concurrency
— num_threads(integer expression): max # threads to create

• Data Scoping
— private (variable list)

– specifies variables local to each thread
— firstprivate (variable list)

– similar to private
– private variables are initialized to variable value before the parallel directive

— shared (variable list)
– specifies that variables are shared among all threads in the region

— default (data scoping specifier)
– default data scoping specifier may be shared or none

A few more clauses
on slide 38

11

Interpreting an OpenMP Parallel Directive
#pragma omp parallel if (n > LARGE) num_threads(k + 1) \
shared(b) private(a) firstprivate(c) default(none)

{
 /* structured block */
}

Meaning
• if (n > LARGE)

—if n > LARGE, the parallel region should create threads
• num_threads(k + 1)

—the value k + 1 is the number of threads requested
• shared(b)

—each thread shares a single copy of variable b
• private(a) firstprivate(c)

—each thread gets private copies of variables a and c
—each private copy of c is initialized with the value of c in the “initial

thread” (the thread that encounters the parallel directive)
• default(none)

—default state of a variable is specified as none (rather than shared)
—signals error if not all variables are specified as shared or private

12

Specifying Worksharing

Within the scope of a parallel directive, a worksharing directive
indicates that threads should cooperatively execute

statements, blocks, iterations or tasks

OpenMP provides four directives
— do/for: threads cooperatively execute loop iterations
— sections: threads cooperatively execute tasks
— single: one arbitrary thread executes the code; others wait
— workshare: partitions execution of statements in a block

13

Worksharing DO/for Directive

for directive partitions parallel iterations across threads

do is the analogous directive for Fortran

• Usage:
#pragma omp for [clause list]
/* for loop */

• Possible clauses in [clause list]
— private, firstprivate, lastprivate
— reduction
— schedule, nowait, and ordered

• Implicit barrier at end of for loop

A Simple Example Using parallel and for

Program
void main() {
#pragma omp parallel num_threads(3)
{

int i;

printf(“Hello world\n”);

#pragma omp for

for (i = 1; i <= 4; i++) {

 printf(“Iteration %d\n”,i);

}

printf(“Goodbye world\n”);

}
}

14

Output
Hello world
Hello world
Hello world
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Goodbye world
Goodbye world
Goodbye world

15

Reduction Clause for Parallel Directive

Specifies how to combine local copies of a variable in different
threads into a single copy at the master when threads exit

• Usage: reduction (operator: variable list)
— variables in list are implicitly private to threads

• Reduction operators: +, *, -, &, |, ^, &&, and ||

• Usage sketch
#pragma omp parallel reduction(+: sum) num_threads(8)
{
/* compute local sum in each thread here */
}
/* sum here contains sum of all local instances of sum */

Running Example: Monte Carlo Estimation of Pi

Approximate Pi
—generate random

points with x, y ∈
[-0.5, 0.5]

—test if point inside
the circle, i.e.,
 x2 + y2 < (0.5)2

—ratio of circle to
square =
πr2 / 4r2 = π / 4

—π ≈ 4 * (number of
points inside the
circle) / (number of
points total)

16

(0,0)
(0.5,0)

(0,0.5)

• a local copy of sum for each thread
• all local copies of sum added together and stored in master 17

OpenMP Reduction Clause Example

OpenMP threaded program to estimate Pi

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)

{
num_threads = omp_get_num_threads();
sample_points_per_thread = npoints / num_threads;
sum = 0; seed = 17 * omp_get_thread_num();
for (i = 0; i < sample_points_per_thread; i++) {

coord_x =(double)(rand_r(&seed))/(double)(RAND_MAX) - 0.5;
coord_y =(double)(rand_r(&seed))/(double)(RAND_MAX) - 0.5;
if ((coord_x * coord_x + coord_y * coord_y) < 0.25)

sum++;
}

}

here, user
manually

divides work

worksharing for
divides work

18

Using Worksharing for Directive
#pragma omp parallel default(private) shared (npoints) \

reduction(+: sum) num_threads(8)
{

sum = 0;
 seed = 17 * omp_get_thread_num();

#pragma omp for
for (i = 0; i < npoints; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)(RAND_MAX);
rand_no_y =(double)(rand_r(&seed))/(double)(RAND_MAX);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

Implicit barrier at end of loop

19

Mapping Iterations to Threads
schedule clause of the for directive

• Recipe for mapping iterations to threads

• Usage: schedule(scheduling_class[,chunk]).

• Four scheduling classes
— static: work partitioned at compile time

– iterations statically divided into pieces of size chunk
– statically assigned to threads

— dynamic: work evenly partitioned at run time
– iterations are divided into pieces of size chunk
– chunks dynamically scheduled among the threads
– when a thread finishes one chunk, it is dynamically assigned another
– default chunk size is 1

— guided: guided self-scheduling
– chunk size is exponentially reduced with each dispatched piece of work
– the default minimum chunk size is 1

— runtime:
– scheduling decision from environment variable OMP_SCHEDULE
– illegal to specify a chunk size for this clause.

20

Statically Mapping Iterations to Threads

 /* static scheduling of matrix multiplication loops */
 #pragma omp parallel default(private) \

 shared (a, b, c, dim) num_threads(4)
#pragma omp for schedule(static)

for (i = 0; i < dim; i++) {

for (j = 0; j < dim; j++) {
c(i,j) = 0;
for (k = 0; k < dim; k++) {

c(i,j) += a(i, k) * b(k, j);
}

}
} static schedule maps iterations

to threads at compile time

21

Avoiding Unwanted Synchronization

• Default: worksharing for loops end with an implicit barrier

• Often, less synchronization is appropriate
— series of independent for-directives within a parallel construct

• nowait clause
— modifies a for directive
— avoids implicit barrier at end of for

22

Avoiding Synchronization with nowait

#pragma omp parallel

{
#pragma omp for nowait

for (i = 0; i < nmax; i++)
a[i] = ...;

#pragma omp for
for (i = 0; i < mmax; i++)

b[i] = ... anything but a ...;

}

any thread can begin second loop immediately without
 waiting for other threads to finish first loop

23

Worksharing sections Directive

sections directive enables specification of task parallelism

• Usage
#pragma omp sections [clause list]
{

[#pragma omp section

/* structured block */
]

[#pragma omp section

/* structured block */
]

...
}

brackets here represent that
section is optional,

not the syntax for using them

24

Using the sections Directive

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

taskA();
}
#pragma omp section
{

taskB();
}
#pragma omp section
{

taskC();
}

}
}

parallel section encloses all parallel work

sections: task parallelism

three concurrent tasks;
tasks need not

be procedure calls

25

Nesting parallel Directives

• Nested parallelism enabled using the OMP_NESTED
environment variable

— OMP_NESTED = TRUE → nested parallelism is enabled

• Each parallel directive creates a new team of threads

F
o
r
k

J
o
i
n

F
o
r
k

J
o
i
n

F
o
r
k

J
o
i
n

J
o
i
n

F
o
r
kmaster thread

shown in red

26

Synchronization Constructs in OpenMP

#pragma omp barrier

#pragma omp single [clause list]
structured block

#pragma omp master
structured block

Use MASTER instead of SINGLE wherever possible
— MASTER = IF-statement with no implicit BARRIER

– equivalent to
IF(omp_get_thread_num() == 0) {...}

— SINGLE: implemented like other worksharing constructs
– keeping track of which thread reached SINGLE first adds

overhead

wait until all threads arrive here

single-threaded
execution

27

Synchronization Constructs in OpenMP

#pragma omp critical [(name)]
structured block

#pragma omp ordered
structured block

critical section: like a named lock

for loops with carried dependences

28

Example Using critical

#pragma omp parallel
{
#pragma omp for nowait shared(best_cost)
 for (i = 0; i < nmax; i++) {
 my_cost = ...;
 …
#pragma omp critical
{
 if (best_cost < my_cost)
 best_cost = my_cost;
}
 …
 }
}

critical ensures mutual exclusion
when accessing shared state

29

Example Using ordered

#pragma omp parallel
{
#pragma omp for nowait shared(a)
 for (k = 0; k < nmax; k++) {
 …
#pragma omp ordered
{
 a[k] = a[k-1] + …;
}
 …
 }
}

ordered ensures carried dependence
does not cause a data race

Orphaned Directives
• Directives may not be lexically nested in a parallel region

— may occur in a separate program unit

• Dynamically bind to enclosing parallel region at run time

• Benefits
— enables parallelism to be added with a minimum of

restructuring
— improves performance: enables single parallel region to bind

with worksharing constructs in multiple called routines

• Execution rules
— an orphaned worksharing construct is executed serially when

not called from within a parallel region
30

...
!$omp parallel
call phase1
call phase2
!$omp end parallel
...

subroutine phase1
!$omp do private(i) shared(n)
do i = 1, n
call some_work(i)
end do
!$omp end do
end

subroutine phase2
!$omp do private(j) shared(n)
do j = 1, n
call more_work(j)
end do
!$omp end do
end

OpenMP 3.0 Tasks

• Motivation: support parallelization of irregular problems
— unbounded loops
— recursive algorithms
— producer consumer

• What is a task?
— work unit

– execution can begin immediately, or be deferred
— components of a task

– code to execute, data environment, internal control variables

• Task execution
— data environment is constructed at creation
— tasks are executed by threads of a team
— a task can be tied to a thread (i.e. migration/stealing not

allowed)
– by default: a task is tied to the first thread that executes it

31

OpenMP 3.0 Tasks

32

#pragma omp task [clause list]

Possible clauses in [clause list]
• Conditional parallelization
— if (scalar expression)

– determines whether the construct creates a task

• Binding to threads
— untied

• Data scoping
— private (variable list)

– specifies variables local to the child task
— firstprivate (variable list)

– similar to the private
– private variables are initialized to value in parent task before the directive

— shared (variable list)
– specifies that variables are shared with the parent task

— default (data handling specifier)
– default data handling specifier may be shared or none

Composing Tasks and Regions

33

 #pragma omp parallel
 {
 #pragma omp task

 x();

#pragma omp barrier

#pragma omp single

 {

#pragma omp task

 y();
 }

 }
•

one x task created for each
thread in the parallel region

all x tasks complete at barrier

one y task created

region end: y task completes

Data Scoping for Tasks is Tricky

If no default clause specified

• Static and global variables are shared

• Automatic (local) variables are private

• Variables for orphaned tasks are firstprivate by default

• Variables for non-orphaned tasks inherit the shared attribute
—task variables are firstprivate unless shared in the enclosing

context

34

Fibonacci using OpenMP 3.0 Tasks

 int fib (int n)
{
 int x,y;
 if (n < 2) return n;
#pragma omp task shared(x)
 x = fib(n - 1);
#pragma omp task shared(y)
 y = fib(n - 2);
#pragma omp taskwait
 return x + y;
}

35

int main (int argc, char **argv)
{
 int n, result;
 n = atoi(argv[1]);
#pragma omp parallel
{
#pragma omp single
{
 result = fib(n);
}
}
 printf(“fib(%d) = %d\n”,
 n, result);
}

need shared for x and y;
default would be
firstprivate

suspend parent task until
children finish

create team
of threads to
execute tasks

only one thread
performs the

outermost call

List Traversal

36

 Element first, e;
#pragma omp parallel
#pragma omp single
{
 for (e = first; e; e = e->next)
#pragma omp task
 process(e);
}

firstprivate(e)

Is the use of variables safe as written?

Task Scheduling

• Tied tasks
— only the thread that the task is tied to may execute it
— task can only be suspended at a suspend point

– task creation
– task finish
– taskwait
– barrier

— if a task is not suspended at a barrier, it can only switch to a
descendant of any task tied to the thread

• Untied tasks
— no scheduling restrictions

– can suspend at any point
– can switch to any task

— implementation may schedule for locality and/or load balance

37

38

Summary of Clause Applicability

39

Slower Faster

Performance Tuning Hints

Parallelize at the highest level, e.g. outermost DO/for loops

!$OMP PARALLEL
....
do j = 1, 20000
!$OMP DO
 do k = 1, 10000
 ...
 enddo !k
!$OMP END DO
enddo !j
...
!$OMP END PARALLEL

!$OMP PARALLEL
....
!$OMP DO
do k = 1, 10000
 do j = 1, 20000
 ...
 enddo !j
enddo !k
!$OMP END DO
...
!$OMP END PARALLEL

40

Slower Faster

!$OMP PARALLEL
....
!$OMP DO
 statement 1
 statement 2
!$OMP END DO
....
!$OMP END PARALLEL

Performance Tuning Hints

Merge independent parallel loops when possible

!$OMP PARALLEL
....
!$OMP DO
 statement 1
!$OMP END DO
!$OMP DO
 statement 2
!$OMP END DO
....
!$OMP END PARALLEL

41

Performance Tuning Hints

Minimize use of synchronization

• BARRIER

• CRITICAL sections
—if necessary, use named CRITICAL for fine-grained locking

• ORDERED regions

• Use NOWAIT clause to avoid unnecessary barriers
— adding NOWAIT to a region’s final DO eliminates a redundant

barrier

• Use explicit FLUSH with care
—flushes can evict cached values
—subsequent data accesses may require reloads from memory

data = ...
#pragma omp flush (data)
data_available = true;

42

OpenMP Library Functions

• Processor count
int omp_get_num_procs(); /* # processors currently available */
int omp_in_parallel(); /* determine whether running in parallel */

• Thread count and identity
/* max # threads for next parallel region. only call in serial region */
void omp_set_num_threads(int num_threads);

int omp_get_num_threads(); /*# threads currently active */
int omp_get_max_threads(); /* max # concurrent threads */

int omp_get_thread_num(); /* thread id */

43

OpenMP Library Functions

• Controlling and monitoring thread creation
void omp_set_dynamic (int dynamic_threads);
int omp_get_dynamic ();
void omp_set_nested (int nested);

int omp_get_nested ();

• Mutual exclusion
void omp_init_lock(omp_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);

void omp_set_lock(omp_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);
int omp_test_lock(omp_lock_t *lock);

— Lock routines have a nested lock counterpart for recursive mutexes

44

OpenMP Environment Variables

• OMP_NUM_THREADS
—specifies the default number of threads for a parallel region

• OMP_DYNAMIC
—specfies if the number of threads can be dynamically changed

• OMP_NESTED
—enables nested parallelism (may be nominal: one thread)

• OMP_SCHEDULE
—specifies scheduling of for-loops if the clause specifies runtime

• OMP_STACKSIZE (for non-master threads)
• OMP_WAIT_POLICY (active or passive)

• OMP_MAX_ACTIVE_LEVELS
— integer value for maximum # nested parallel regions

• OMP_THREAD_LIMIT (# threads for entire program)

45

OpenMP Directives vs. Library-based Models

• Directive advantages
—directives facilitate a variety of thread-related tasks
—frees programmer from

– initializing thread attributes
– setting up thread arguments
– partitioning iteration spaces, …

• Directive disadvantages
—data exchange is less apparent

– leads to mysterious overheads
 data movement, false sharing, and contention

—API is less expressive than Pthreads
– lacks condition waits, locks of different types, and flexibility for

building composite synchronization operations

OpenMP is Continuing to Evolve
• OpenMP 5.0 is the most recent standard (November 2018)

• Features new to OpenMP 4
—SIMD support

– e.g., a[0:n-1] = 0
—locality and affinity

– control mapping of threads to processor cores
– proc_bind (master, spread, close)

—additional synchronization mechanisms
– e.g., taskgroup, taskwait

—offload computation to accelerators, e.g. GPUs

• OpenMP 5.1 will be released in November 2020
changes include full support for C11 and C++11/14/17, extensions
to support C++ attribute specifiers; tile, error and assume
directives; iterator support for data motion clauses, the interop
directive, extensions to task dependences, extensions to SIMD
constructs and the declare variant directive as well as
clarifications and improvements to existing features 46

47

References
• Blaise Barney. LLNL OpenMP tutorial. http://www.llnl.gov/computing/tutorials/

openMP

• Adapted from slides “Programming Shared Address Space Platforms” by Ananth
Grama

• Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to
Parallel Computing. Chapter 7. Addison Wesley, 2003.

• Sun Microsystems. OpenMP OpenMP API User's Guide. Chapter 7 “Performance
Considerations” http://docs.sun.com/source/819-3694/7_tuning.html

• Alberto Duran. OpenMP 3.0: What’s New?. IWOMP 2008. http://
cobweb.ecn.purdue.edu/ParaMount/iwomp2008/documents/omp30

• Stephen Blair-Chappell. “Expressing Parallelism Using the Intel Compiler.” http://
www.polyhedron.com/web_images/documents/
Expressing%20Parallelism%20Using%20Intel%20Compiler.pdf

• Rusty Lusk et al. Programming Models and Runtime Systems, Exascale Software
Center Meeting, ANL, Jan. 2011.

• OpenMP 4.5 Standard, https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

• OpenMP Application Program Interface Examples. https://www.openmp.org/wp-
content/uploads/openmp-examples-4.5.0.pdf

48

References
• OpenMP 5.0 Standard, https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5.0.pdf

• OpenMP TR 8. https://www.openmp.org/wp-content/uploads/openmp-
TR8.pdf

