Using HPCToolkit to Measure and Analyze the Performance of GPU-Accelerated Applications

ECP Project WBS 2.3.2.08

John Mellor-Crummey and Keren Zhou Rice University

ECP Annual Meeting February 5, 2020

Download GPU application examples to run and measure: git clone https://github.com/HPCToolkit/hpctoolkit-tutorial-examples

Acknowledgments

- Current funding
 - DOE Exascale Computing Project (Subcontract 4000151982)
 - NSF Software Infrastructure for Sustained Innovation (Collaborative Agreement 1450273)
 - DOE Labs: ANL (Subcontract 9F-60073), Tri-labs (LLNL Subcontract B633244)
 - Industry: AMD
- Team
 - Lead Institution: Rice University
 - PI: Prof. John Mellor-Crummey
 - Research staff: Laksono Adhianto, Mark Krentel, Xiaozhu Meng, Scott Warren
 - Contractor: Marty Itzkowitz
 - Students: Keren Zhou, Jonathon Anderson, Vladimir Indjic
 - Summer interns: Tijana Jovanovic, Aleksa Simovic
 - Subcontractor: University of Wisconsin Madison
 - Lead: Prof. Barton Miller

Performance Analysis Challenges for GPU-accelerated Supercomputers

Myriad performance concerns

- Computation performance
 - Principal concern: keep GPUs busy and computing productively
 - need extreme-scale data parallelism!
- Data movement costs within and between memory spaces
- Internode communication
- I/O

Many ways to hurt performance

- insufficient parallelism, load imbalance, serialization, replicated work, parallel overheads ...
- Hardware and execution model complexity
 - Multiple compute engines with vastly different characteristics, capabilities, and concerns
 - Multiple memory spaces with different performance characteristics
 - CPU and GPU have different complex memory hierarchies
 - Asynchronous execution

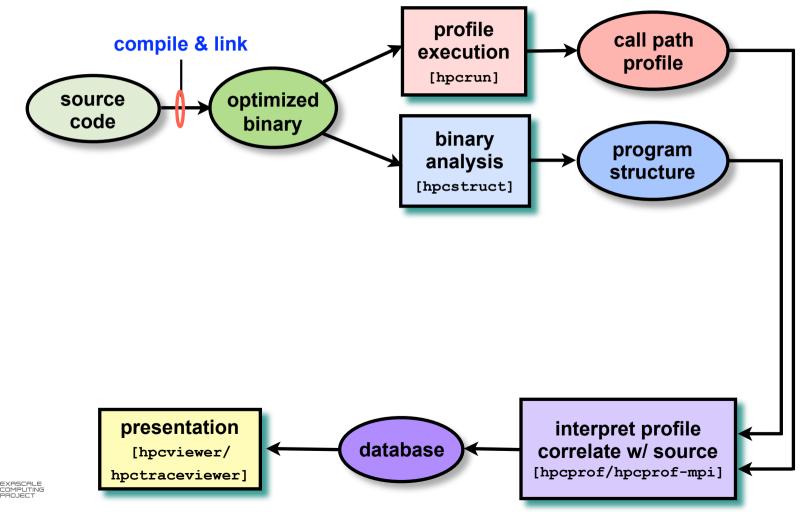
Measurement Challenges for GPU-accelerated Supercomputers

Extreme-scale parallelism

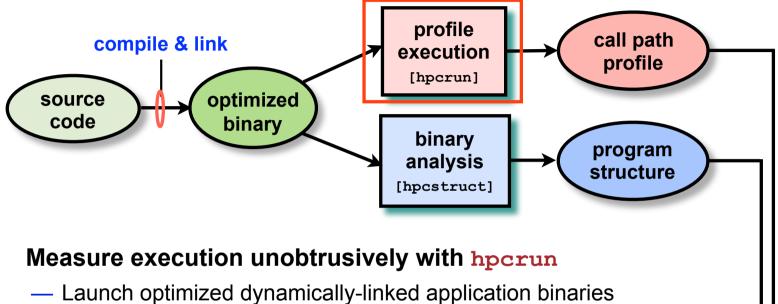
- Serialization within tools will disrupt parallel performance
- Multiple measurement modalities and interfaces
 - Sampling on the CPU
 - Callbacks when GPU operations are launched
 - GPU event stream
- Frequent GPU kernel launches require a low-overhead measurement substrate
- Importance of third-party measurement interfaces
 - Tools can only measure what GPU hardware can monitor
 - support for fine-grain measurement will be essential to diagnose GPU inefficiencies
 - Linux perf_events for kernel measurement
 - GPU monitoring libraries from vendors

Outline

- Performance measurement and analysis challenges for GPU-accelerated supercomputers
- Introduction to HPCToolkit performance tools
 - Overview of HPCToolkit components and their workflow
 - HPCToolkit's graphical user interfaces and using them effectively
- Analyzing the performance of GPU-accelerated supercomputers with HPCToolkit
 - Overview of HPCToolkit's GPU performance measurement capabilities
 - Collecting measurements
 - Analysis and attribution
 - Exploring measurements and analysis results
- Experiences with analysis and tuning of GPU-accelerated codes
 - Computation, memory hierarchy, and data movement issues
- Obtaining HPCToolkit

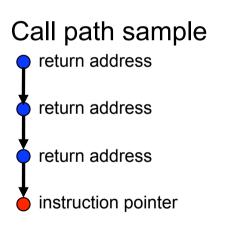

Rice University's HPCToolkit Performance Tools

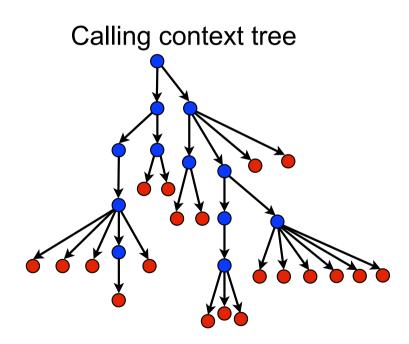
Employs binary-level measurement and analysis


- Observes executions of fully optimized, dynamically-linked applications
- Supports multi-lingual codes with external binary-only libraries
- Collects sampling-based measurements of CPU
 - Controllable overhead
 - Minimize systematic error and avoid blind spots
 - Enable data collection for large-scale parallelism
- GPU performance using measurement APIs provided by vendors
 - Callbacks to monitor launch of GPU operations
 - Activity API to monitor and present information about asynchronous operations on GPU devices
 - PC sampling for fine-grain measurement
- Associates metrics with both static and dynamic context
 - Loop nests, procedures, inlined code, calling context on both CPU and GPU
- Enables one to specify and compute derived CPU and GPU performance metrics of your choosing
 - Diagnosis often requires more than one species of metric
- Supports top-down performance analysis
 - Identify costs of interest and drill down to causes: up and down call chains, over time

HPCToolkit Workflow

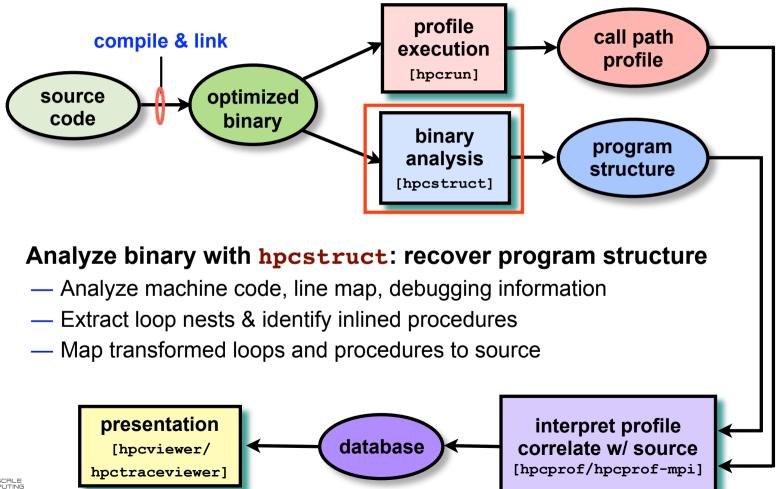
HPCToolkit Workflow

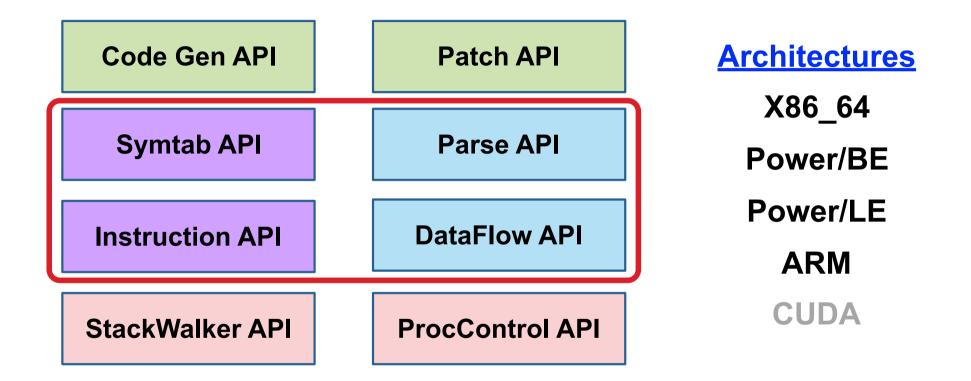



- Collect statistical call path profiles of events of interest
- Where necessary, intercept interfaces for control and measurement

Call Path Profiling

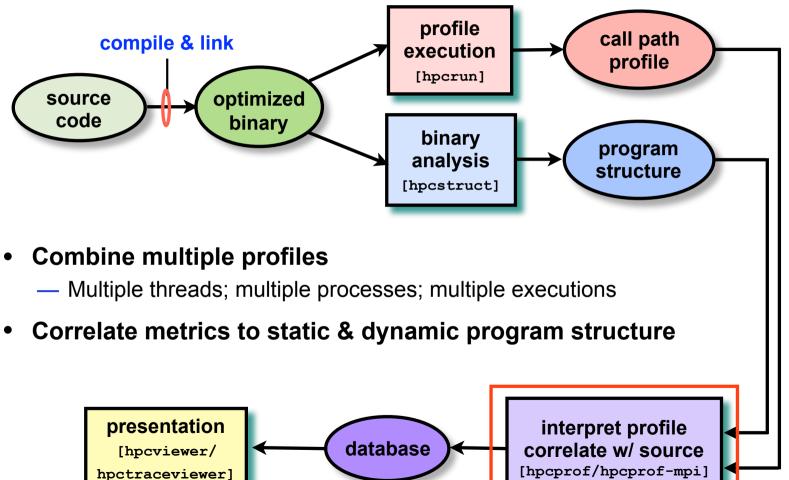
- Measure and attribute costs in context
 - Sample timer or hardware counter overflows
 - Gather CPU calling context using stack unwinding



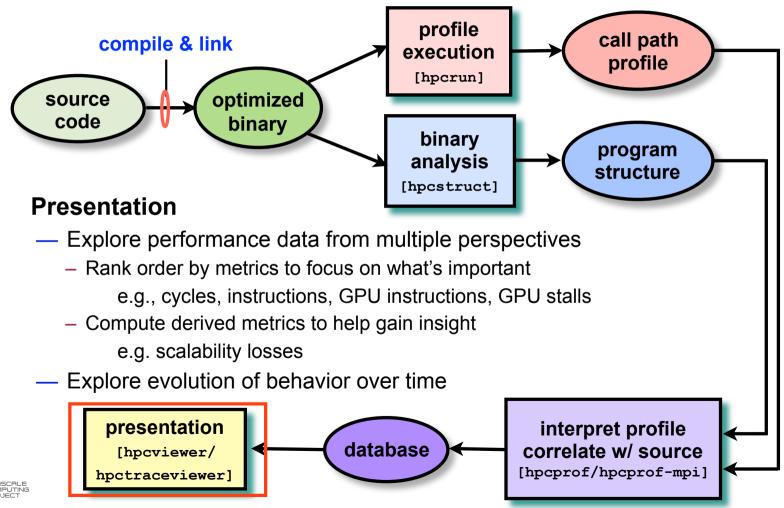


Overhead proportional to sampling frequency, not call frequency

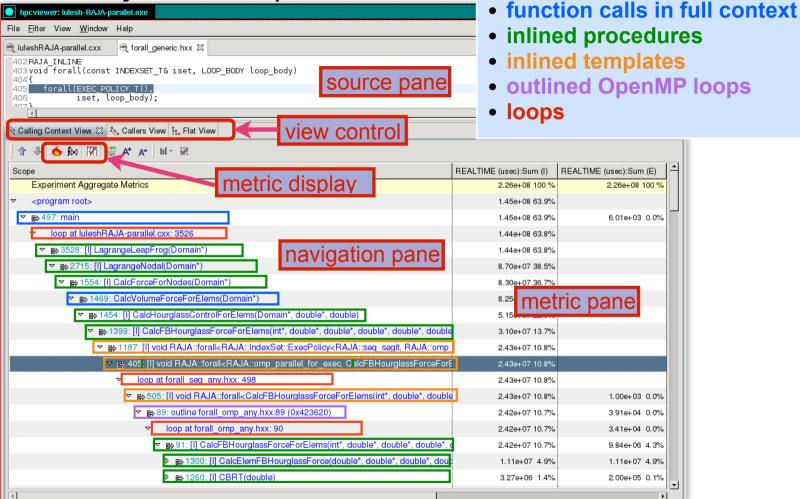
HPCToolkit Workflow



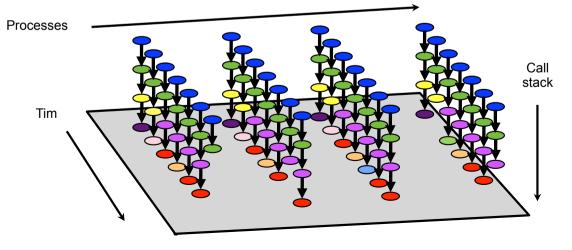
Dyninst: A Toolkit for Binary Analysis and Instrumentation



Lead Institution: University of Wisconsin – Madison


HPCToolkit Workflow

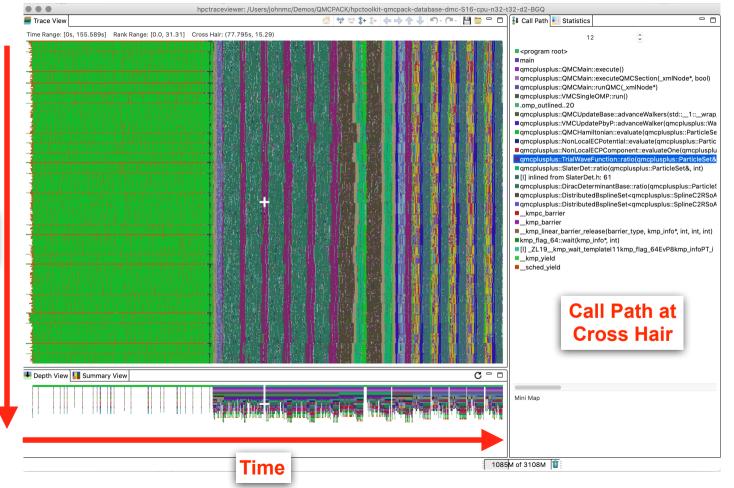
HPCToolkit Workflow



Code-centric Analysis with hpcviewer

Understanding Temporal Behavior

- Profiling compresses out the temporal dimension
 - Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
- What can we do? Trace call path samples
 - N times per second, take a call path sample of each thread
 - Organize the samples for each thread along a time line
 - View how the execution evolves left to right
 - What do we view? assign each procedure a color; view a depth slice of an execution


Time-centric Analysis with hpctraceviewer

Experimental version of QMCPack on Blue Gene Q

Ranks/

Threads

- 32 ranks
- 32 threads each

16

Outline

- Performance measurement and analysis challenges for GPU-accelerated supercomputers
- Introduction to HPCToolkit performance tools
 - Overview of HPCToolkit components and their workflow
 - HPCToolkit's graphical user interfaces and using them effectively
- Analyzing the performance of GPU-accelerated supercomputers with HPCToolkit
 - Overview of HPCToolkit's GPU performance measurement capabilities
 - Collecting measurements
 - Analysis and attribution
 - Exploring measurements and analysis results
- Experiences with analysis and tuning of GPU-accelerated codes
 - Computation, memory hierarchy, and data movement issues
- Obtaining HPCToolkit

hpctraceviewer Panes and their Purposes

- Trace View pane
 - Displays a sequence of samples for each trace line rendered
 - Title bar shows time interval rendered, rank interval rendered, cross hair location
- Call Path pane
 - Show the call path of the selected thread at the cross hair
- Depth View pane
 - Show the call stack over time for the thread marked by the cross hair
 - Unusual changes or clustering of deep call stacks can indicate behaviors of potential interest
- Summary View pane
 - At each point in time, a histogram of colors above in a vertical column of the Trace View

Rendering Traces with hpctraceviewer

- hpctraceviewer renders traces by sampling the [rank x time] rectangle in the viewport
 - Don't try to summarize activity in a time interval represented by a pixel
 - Just pick the last activity before the sample point in time
- Cost of rendering a large execution is [H x T lg N] for traces of length N
 - The number of trace lines that can be rendered is limited by the number of vertical pixels H
 - Binary search along rendered trace lines to extract values for pixels
- It can be used to analyze large data: thousands of ranks and threads
 - Data is kept on disk, memory mapped, and read only as needed

Understanding How hpctraceviewer Paints Traces

- CPU trace lines
 - Given: (procedure f, t) (procedure g, t') (procedure h, t")
 - Default painting algorithm
 - paint color "f" in [t,t'); paint color "g" in [t', t")
 - Midpoint painting algorithm
 - paint color "f" in [t, (t+t')/2); paint color "g" in [(t+t')/2, (t'+t")/2)
- GPU trace lines
 - Given GPU operations "f" in interval [t, t') and and "g" in interval [t", t"")
 - paint color "f" in [t, t'); paint color white in [t', t"); paint color "g" in [t", t"")

Analysis Strategies with Time-centric hpctraceviewer

- Use top-down analysis to understand the broad characteristics of the parallel execution
- Click on a point of interest in the Trace View to see the call path there
- Zoom in on individual phases of the execution or more generally subsets of [rank, time]
 - · The mini-map tracks what subset of the execution you are viewing
- Home, undo, redo buttons allow you to move back and forth in a sequence of zooms
- Drill down the call path to see what is going on at the call path leaves
 - Hold your mouse over the call path depth selector. a tool tip will tell you the maximum depth
 - Type the maximum call stack depth number into the depth selector
- Use the summary view to see a histogram about what fraction of threads or ranks is doing at each time
- The summary view can facilitate analysis of how behavior changes over time
- The statistics view can show you the fraction of [rank x time] spent in each procedure at the selected depth level

Understanding the Navigation Pane in Code-centric hpcviewer

- <program root>: the top of the call chain for the executable
- <thread root>: the top of the call chain for any pthreads
- <partial call paths>
 - The presence of partial call paths indicates that hpcrun was unable to fully unwind the call stack
 - Even if a large fraction of call paths are "partial" unwinds, bottom-up and flat views can be very informative
- Sometimes functions appear in the navigation pane and appear to be a root
 - This means that hpcrun believed that the unwind was complete and successful
 - Ideally, this would have been placed under <partial call paths>

Understanding the Navigation Pane in Code-centric hpcviewer

- Treat inlined functions as if regular functions
- Calling an inlined function

380 [I] boost::unique_lock<Dyninst::dyn_mutex>::unique_lock(Dyninst::dyn_mutex&)

[I] is a tag used to indicate that the called function is inlined

callsite is a hyperlink to the file and source line where the inlined function is called

callee is a hyperlink to the definition of the inlined function

• If no source file is available, the caller line number and the callee will be in black

Analysis Strategies with Code-centric hpcviewer

- Use top-down analysis to understand the broad characteristics of the execution
 - Are there specific unique subtrees in the computation that use or waste a lot of resources?
 - Select a costly node and drill down the "hottest path" rooted there with the flame button
 - One can select a node other than the root and use the flame button to look in its subtree
 - Hold your mouse over a long name in the navigation pane to see the full name in a tool tip
- Use bottom-up analysis to identify costly procedures and their callers
 - Pick a metric of interest, e.g. cycles
 - Sort by cycles in descending order
 - Pick the top routine and use the flame button to look up the call stack to its callers
 - Repeat for a few routines of particular interest, e.g. network wait, lock wait, memory alloc, ...
- Use the flat view to explore the full costs associated with code at various granularities
 - Sort by a cost of interest; use the flame button to explore an interesting load module
 - Use the "flatten" button to melt away load modules, files, and functions to identify the most costly loop

Outline

- Performance measurement and analysis challenges for GPU-accelerated supercomputers
- Introduction to HPCToolkit performance tools
 - Overview of HPCToolkit components and their workflow
 - HPCToolkit's graphical user interfaces and using them effectively
- Analyzing the performance of GPU-accelerated supercomputers with HPCToolkit
 - Overview of HPCToolkit's GPU performance measurement capabilities
 - Collecting measurements
 - Analysis and attribution
 - Exploring measurements and analysis results
- Experiences with analysis and tuning of GPU-accelerated codes
 - Computation, memory hierarchy, and data movement issues
- Obtaining HPCToolkit

Measurement and Analysis of GPU-accelerated Computations

- What HPCToolkit GUIs present for GPU-accelerated applications
 - Profile views displaying call paths that integrate CPU and GPU call paths
 - Trace views that attribute CPU threads and GPU streams to full heterogeneous call paths
- What HPCToolkit collects
 - Heterogeneous call path profiles and call path traces
- How HPCToolkit collects information
 - CPU
 - Sampling-based measurement of application thread activity in user space and in the kernel
 - Measurement of blocking time using Linux perf_events context switch notifications
 - GPU
 - Coarse-grain measurement of GPU operations (memory copies, kernel launches, ...)
 - Fine-grain measurement of GPU kernels using PC Sampling (NVIDIA only)

GPU Monitoring Capabilities of HPCToolkit

Measurement Capability	NVIDIA	AMD			
kernel launches, explicit memory copies, synchronization	callbacks + activity API	callbacks + Activity API			
instruction-level measurement and analysis	PC sampling, analysis of GPU binaries	no			
kernel characteristics	Activity API	(available statically)			

Intel oneAPI Level 0 specification released in December (not widely known) https://spec.oneapi.com/versions/latest/oneL0/index.html

Preparing a GPU-accelerated Program for HPCToolkit

HPCToolkit doesn't need any modifications to your Makefiles

- it can measure fully-optimized code without special preparation
- To get the most from your measurement and analysis
 - Compile your program with line numbers
 - CPU (all compilers)
 - add "-g" to your compiler optimization flags
 - NVIDIA GPUs
 - compiling with nvcc
 - add "-lineinfo" to your optimization flags for GPU line numbers
 - adding -G provides full information about inlining and GPU code structure but disables optimization
 - compiling with xlc
 - · line information is unavailable for optimized code
 - AMD GPUs, no special preparation needed
 - current AMD GPUs and ROCM software stack lack capabilities for fine-grain measurement and attribution
 - Intel GPUs
 - HPCToolkit is currently oblivious to their presence

Using HPCToolkit to Measure an Execution

- Sequential program
 - hpcrun [measurement options] program [program args]
- Parallel program
 - mpirun -n <nodes> [mpi options] hpcrun [measurement options] \ program [program args]
 - Similar launches with job managers
 - LSF: jsrun
 - SLURM: srun

CPU Time-based Sample Sources - Linux thread-centric timers

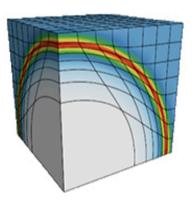
CPUTIME (DEFAULT if no sample source is specified)

- CPU time used by the thread in microseconds
- Does not include time blocked in the kernel
 - disadvantage: completely overlooks time a thread is blocked
 - advantage: a blocked thread is never unblocked by sampling

REALTIME

- Real time used by the thread in microseconds
- Includes time blocked in the kernel
 - advantage: shows where a thread spends its time, even when blocked
 - disadvantages
 - activates a blocked thread to take a sample
 - a blocked thread appears active even when blocked

Note: Only use one Linux timer to measure an execution


CPU Sample Sources - Linux perf_event monitoring subsystem

- Kernel subsystem for performance monitoring
- Access and manipulate
 - Hardware counters: cycles, instructions, ...
 - Software counters: context switches, page faults, ...
- Available in Linux kernels 2.6.31+
- Characteristics
 - Monitors activity in user space and in the kernel
 - Can see costs in GPU drivers

Case Study: Measurement and Analysis of GPU-accelerated Laghos

Laghos (LAGrangian High-Order Solver) is a LLNL ASC co-design mini-app that was developed as part of the CEED software suite, a collection of software benchmarks, miniapps, libraries and APIs for efficient exascale discretization based on high-order finite element and spectral element methods.

High-order Lagrangian Hydrodynamics Miniapp

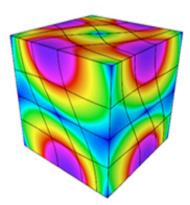


Figure credit: https://computing.llnl.gov/projects/co-design/laghos

Applying the GPU Operation Measurement Workflow to Laghos

```
# measure an execution of laghos
time mpirun -np 4 hpcrun -o $OUT -e cycles -e gpu=nvidia -t \
    ${LAGHOS_DIR}/laghos -p 0 -m ${LAGHOS_DIR}/../data/square01_quad.mesh \
    -rs 3 -tf 0.75 -pa
```

compute program structure information for the laghos binary
hpcstruct -j 16 laghos

compute program structure information for the laghos cubins
hpcstruct -j 16 \$0UT

combine the measurements with the program structure information
mpirun -n 4 hpcprof-mpi -S laghos.hpcstruct \$OUT

Computing Program Structure Information for NVIDIA cubins

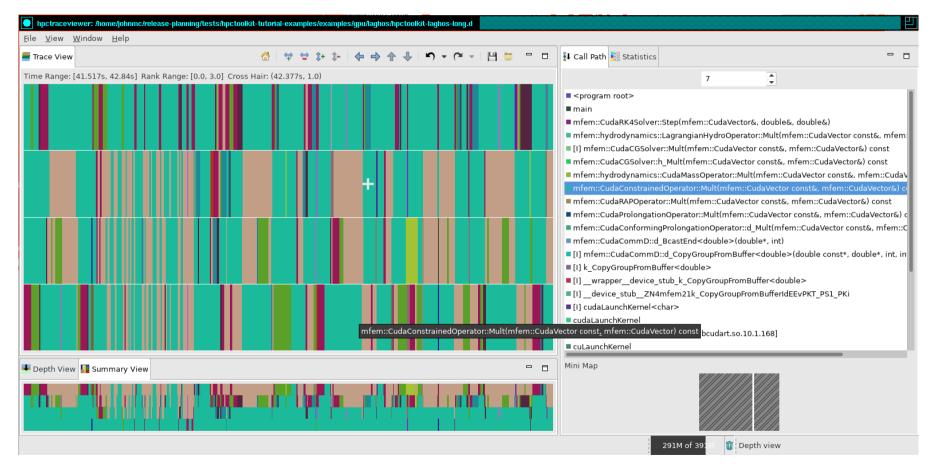
- When a GPU-accelerated application runs, HPCToolkit collects unique GPU binaries
 - Currently, NVIDIA does not provide an API that provides a URI for cubins it launches
 - CUPTI presents cubins to tools as an interval in the heap (starting address, length)
 - HPCToolkit computes an MD5 hash for each cubin and saves one copy
 - stores save cubins in hpcrun's measurement directory: <measurement directory>/cubins
- Analyze the cubins collected during an execution
 - hpcstruct -j 16 <measurement directory>
 - lightweight analysis based only on cubin symbols and line map
 - hpcstruct -j 16 —gpucfg yes <measurement directory>
 - heavyweight analysis based only on cubin symbols, line map, control flow graph
 - uses nvdisasm to compute control flow graph
 - fine-grain analysis only needed to interpret PC sampling experiments
 - hpcstruct analyzes cubins in parallel using thread count specified with -j

Initial hpctraceviewer view of Laghos (long) Execution

MPI	hpctraceviewer: /home/johnmc/	elease-planning/tests/hpctoolkit-t	utorial-examples/examples/	/gpu/laghos/hpctoolkit-	-laghos-long.d							Ľ
Ranks	Trace View		☆ ↓ ☆ ↓ ↓- ↓		∽ - (≃ - ∐ 늘		🕴 Call Path 🛃	Statistics				- 8
	Time Range: [0s, 62.686s] Rank	Range: [0.0, 3.500] Cross Hair:	(58.954s, 0.0)						0	*		
						+	<pre>rogram ro</pre>	ot>				1
							main mfem::Cuda	RK4Solver::Ste	ep(mfem::Cud	aVector&, double&,	double&)	
=							 mfem::hydro [1] mfem::Cu 	odynamics::La daCGSolver::N	grangianHydro Mult(mfem::Cu	oOperator::Mult(mfe daVector const&, m daVector const&, m	em::CudaVector con fem::CudaVector&)	const
										tor::Mult(mfem::Cud		
3							 mfem::Cuda mfem::Cuda mfem::Cuda 	RAPOperator:: ProlongationO ConformingPr	Mult(mfem::Cu)perator::MultTi olongationOpe	nfem::CudaVector c udaVector const&, n ranspose(mfem::Cu rator::d_MultTransp	nfem::CudaVector& daVector const&, m ose(mfem::CudaVe) const fem::Cuda ctor const&
=				■			 [1] mfem::Cu [1] kAtomicA [1]wrappe 	_ daCommD::d_ dd <double> rdevice_stul stubZN4mf</double>	_ReduceGroup b_kAtomicAdd em10kAtomic/	ble>(double*, int, v FromBuffer <double: <double> AddIdEEvPT_PKiS2_</double></double: 	>(double const*, do	
							 cudaLaunchi 		-			
-							<pre><unknown <="" p="" pre="">cuLaunchKer</unknown></pre>		102f3 [libcuda	rt.so.10.1.168]		
	🖊 Depth View 🚺 Summary View	/			C		Mini Map					
GPU Streams	internation of the state of the	יי איז איז איז איז איז איז איז איז איז איז	alarto (Elisto Color)	la binanin u seatain	ուն ու	אן די זיזין (<mark>אַ</mark>						
								12	5M of 375M	Ū		

Hiding the Empty MPI Helper Threads

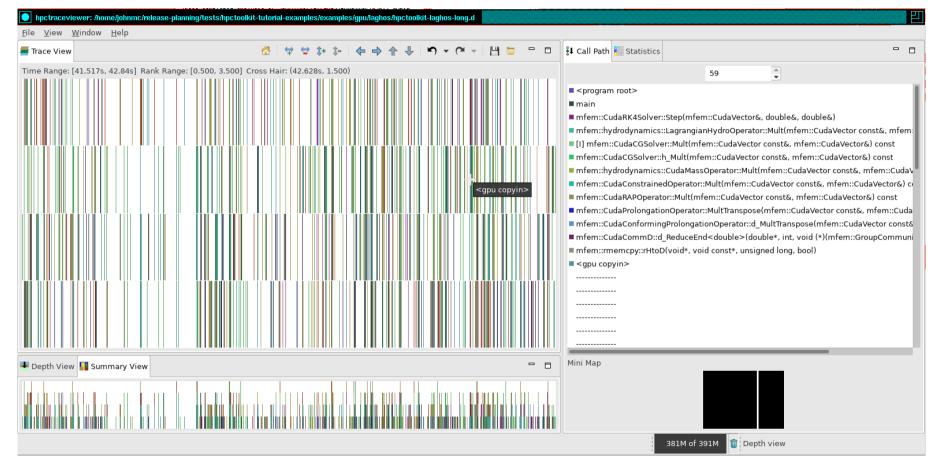
hpctraceviewer: /home/johnmc/release-planning/tests/hpctoolkit-tutorial-examples/examples/gpu/laghos/hpctoolkit-laghos-long.d File View Window Help		
Trace View Window Help Trace View M → 1 ← → ↑ ↓ ∽ → ∩ →	💾 📛 🖻 🖪 💱 Call Path 🔛 Statistics	- 8
	Image: Statistics Image: Statistics <t< td=""><td>Vector const&, mfem: iaVector&) const aVector&) const const&, mfem::Cudav fem::CudaVector&) co daVector&) const const&, mfem::Cuda n::CudaVector const& 5fem::GroupCommuni const*, double*, int,</td></t<>	Vector const&, mfem: iaVector&) const aVector&) const const&, mfem::Cudav fem::CudaVector&) co daVector&) const const&, mfem::Cuda n::CudaVector const& 5fem::GroupCommuni const*, double*, int,
lande ag an taip a philose and a class and alternative starter following a province to the optimized started set of the s	Villay Mill (Martin Villa)	
	1254 of 375M 🗊	



After Hiding the Empty MPI Helper Threads

hpctraceviewer: /home/johnmc/release-plan File View Window Help	ning/tests/hpctoolkit-tutorial-examples/examples/gpu/laghos/hpctool	kit-laghos-long.d			<u> </u>
Trace View		×> - (× - ∐ 📁 = □	🐉 Call Path 📑 Statistics		
Time Range: [0s, 62.686s] Rank Range: [0.	0, 3.500] Cross Hair: (58.954s, 0.0)			0	
		+	 mfem::CudaCGSolver::h_Mult(mfd mfem::hydrodynamics::CudaMass mfem::CudaConstrainedOperator: mfem::CudaRAPOperator::Mult(mi mfem::CudaProlongationOperator mfem::CudaConformingProlongat 	m::CudaVector&, double&, double&) anHydroOperator::Mult(mfem::CudaV fem::CudaVector const&, mfem::Cud em::CudaVector const&, mfem::Cud sOperator::Mult(mfem::CudaVector const&, m fem::CudaVector const&, mfem::Cud r::MultTranspose(mfem::CudaVector tionOperator::d_MultTranspose(mfer	Vector const&, mfem: daVector&) const aVector&) const const&, mfem::Cuda\ fem::CudaVector&) co daVector&) const const&, mfem::Cuda n::CudaVector const&
			<pre>mfem::CudaCommD::d_ReduceEn [1] mfem::CudaCommD::d_Reduce [1] kAtomicAdd<double> [1]wrapperdevice_stub_kAtor [1]device_stub_ZN4mfem10k/ [1] cudaLaunchKernel<char></char></double></pre>	eGroupFromBuffer <double>(double)</double>	
			 cudaLaunchKernel <unknown procedure=""> 0x102f3 [cuLaunchKernel</unknown> 	libcudart.so.10.1.168]	
Depth View Summary View	ייידע איזער איז איזער איז	ען איז איז איז אין אין איז איז איז אין איז	Mini Map		
			132 <mark>4 of 3</mark>	378M 🗊	

A Detail of Only the MPI Threads



Only the MPI Threads - Analysis using the Statistics Panel

hpctraceviewer: /home/johnmc/release-planning/tests/hpctoolkit-tutorial-examples/examples/gpu/laghos/hpctoolkit-laghos-long.d		빈
<u>F</u> ile <u>V</u> iew <u>W</u> indow <u>H</u> elp		
🚝 Trace View	🖁 Call Path 🛃 Statistics	
Time Range: [41.517s, 42.84s] Rank Range: [0.0, 3.0] Cross Hair: (42.377s, 1.0)	Procedure	Percent
	mca_btl_vader_component_progress	22.21 %
	opal_progress	7.55 %
	■ cudbgMain	6.11 %
	cudbgApiDetach	5.55 %
	opal_timer_linux_get_cycles_sys_timer	5.38 %
	cuVDPAUCtxCreate	5.11 %
	pthread_mutex_lock	4.55 %
	cuMemGetAttribute_v2	4.49 %
	III_lock_wait	3.19 %
	cuptiActivityDisable	2.68 %
	sigprocmask	2.57 %
	cuptiOpenACCInitialize	2.52 %
	= ioctl	2.33 %
	<pre>pthread_mutex_unlock</pre>	2.27 %
	<pre>kernel_clock_gettime</pre>	1.81 %
	cuptiEventGroupDisable	1.70 %
	malloc	1.16 %
	nvidia_ioctl [nvidia] [[vmlinux]]	1.06 % 0.81 %
	<pre>pfq_rwlock_read_lock</pre>	0.81 %
	tls_get_addr	0.76 %
	cos memcpy_power7	0.68 %
Depth View II Summary View	exc virt 0x4c00 system call [[vmlinux]	0.57 %
	cfree	0.51 %
	<pre>cree cree cree cree cree cree cree cr</pre>	0.31 %
	<pre>copy_tonom_user_power/ [[vnimux]] </pre>	0.49 %
	cstack_push	0.45 %
	152N of 391M 🗊 Depth view	

Only the GPU Threads - Inspecting the Callpath for a Kernel

Only the GPU Threads - Analysis Using the Statistics Panel

hpctraceviewer: /home/johnmc/release-planning/tests/hpctoolkit	-tutorial-examples/examples/gpu/laghos/hpctoolkit-	laghos-long.d		2010 - 10 Contractor - 10 Cont
<u>F</u> ile <u>V</u> iew <u>W</u> indow <u>H</u> elp				
🚝 Trace View		ი - (* - ‼ 🖕 - 🗉	💱 Call Path 🔠 Statistics	- 8
Time Range: [41.517s, 42.84s] Rank Range: [0.500, 3.500] Cr	oss Hair: (42.628s, 1.500)		Procedure	Percent
			[No activity]	74.19 %
			<pre>vector_xpay0</pre>	6.47 %
			■ <gpu copyin=""></gpu>	4.25 %
			<pre><gpu copy=""></gpu></pre>	2.44 %
			mfem::k_CopyGroupToBuffer <double>(c</double>	2.14 %
			mfem::k_CopyGroupFromBuffer <double< p=""></double<>	1.52 %
			cuKernelDot(unsigned long, double*, doι	
			vector_set_subvector_const0	1.38 %
			■ mfem::kAtomicAdd <double>(double*, ii</double>	1.30 %
			mfem::k_MultTranspose2(double*, doubl	
			rGlobalToLocal0	0.89 %
			<pre><gpu copyout=""></gpu></pre>	0.84 %
			■ rMassMultAdd2D<3, 4>(int, double cons	
			mfem::k_Mult2(double*, double const*, i	0.60 %
			vector_op_eq0	0.49 %
			rLocalToGlobal0	0.32 %
			■ rUpdateQuadratureData2D<2, 16, 4, 3>	0.08 %
			■ rForceMultTranspose2D<2, 3, 4, 2, 3>(in	
			rlniGeom2D<9, 16>(int, double const*, i	0.05 %
			vector_xsy0	0.03 %
			rGridFuncToQuad2D<1, 2, 4>(int, double	0.03 %
Depth View Summary View				
		i di la bi i la di		
			382M of 391M	🗊 Depth view

Some Cautions When Analyzing GPU Traces

- There are overheads introduced by NVIDIA's monitoring API that we can't avoid
- When analyzing traces from your program and compare GPU activity to [no activity]
 - Time your program without any tools
 - Time your program when tracing with HPCToolkit or nvprof
 - Re-weight [no activity] by the ratio of unmonitored time to monitored time
- While this is a concern for traces, this should be less a concern for profiles
 - On the CPU, HPCToolkit compensates for monitoring overhead in profiles by not measuring it

Using hpcviewer to See the Source-centric View

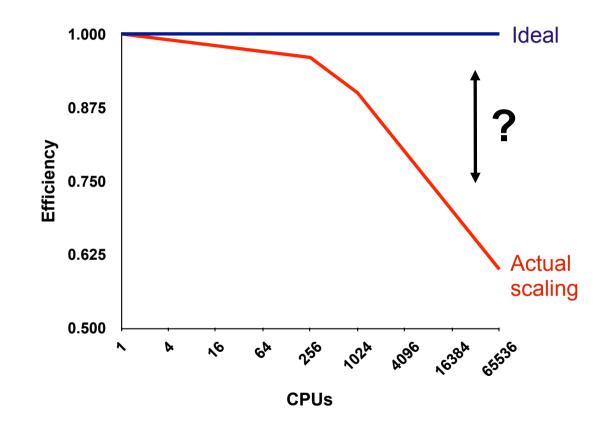
hpcviewer: laghos					
<u>F</u> ile F <u>i</u> lter <u>V</u> iew <u>W</u> indow <u>H</u> elp					
ন্তু laghos_solver.cpp 🛛 জু operator.hpp 🔍 prolong.cpp 🛙					
44 void CudaProlongationOperator::MultTranspose(const CudaVect 45 CudaVector& y 46 (_
<pre>40 47 47 47 48 4 49 y=x; 50 veturn; 51 } 52 if (!rconfig::Get().DoHostConformingProlongationOperator 53 4 53 54 55 55 55 55 55 55 55 55 55 55 55 55</pre>	-())				
🕆 Top-down view 😫 🔧 Bottom-up view † Flat view					- 6
] 🕆 🦊 🍝 fix) 🕅 🗐 A* A*] III - 💥					
Scope	▼ cycles:Sum cycles:Sum (s):Sum GXCOPY (s):St GXCOP		Y:H2D (G)
<pre></pre>	1.82e+14 100.0	1.38e+01 100 %	2.31e+00 100 %	2.67e+07 100 %	3.2
 ▼ ■ 516: main 	1.82e+14 100.0	1.38e+01 100 %	2.31e+00 100 %	2.67e+07 100 %	3.2
 loop at laghos.cpp: 427 	1.80e+14 99.1%	1.38e+01 100.0	2.31e+00 100.0	2.67e+07 99.7%	3.2
✓ ➡ 442: mfem::CudaRK4Solver::Step(mfem::CudaVector&, doub	e&1.80e+14 99.0%	1.38e+01 99.7%	2.30e+00 99.9%	2.67e+07 99.7%	3.1
✓ ➡ 146: mfem::hydrodynamics::LagrangianHydroOperator::N		3.45e+00 25.0%	5.78e-01 25.0%	6.68e+06 25.0%	7.8
 loop at laghos_solver.cpp: 231 	4.40e+13 24.2%	3.30e+00 23.9%	5.58e-01 24.2%	6.33e+06 23.7%	6.9
▼ B 252: [I] mfem::CudaCGSolver::Mult(mfem::CudaVec	tor 4.33e+13 23.8%	3.25e+00 23.5%	5.44e-01 23.6%	6.10e+06 22.8%	6.7
 B 157: mfem::CudaCGSolver::h_Mult(mfem::Cuda) 		3.25e+00 23.5%	5.44e-01 23.6%	6.10e+06 22.8%	6.7
✓ loop at solvers.cpp: 89	4.07e+13 22.4%	3.07e+00 22.3%	5.14e-01 22.3%	5.73e+06 21.4%	6.3
✓ ➡ 137: mfem::hydrodynamics::CudaMassOp	era 2.27e+13 12.5% 3.75e+09 0.	0% 2.26e+00 16.4%	3.87e-01 16.8%	5.73e+06 21.4%	5.7
 B 135: mfem::CudaConstrainedOperator: 	1 1	1.97e+00 14.3%	3.47e-01 15.0%	5.73e+06 21.4%	5.7
 B 210: mfem::CudaRAPOperator::Mult 		0% 1.97e+00 14.3%	3.47e-01 15.0%	5.73e+06 21.4%	5.7
B86: mfem::CudaProlongationOpe		6.42e-01 4.7%	1.73e-01 7.5%	2.86e+06 10.7%	2.8
			126М of 263М	Û	

Selecting Metrics to Display Using the Column Selector

e F <u>i</u> lter <u>V</u> iew <u>W</u> indow <u>H</u> elp		
laghos_solver.cpp 👻 operator.hpp 👻 prolong.cpp	²³ Column Selection	빌
4void CudaProlongationOperator::MultTranspose(co 5	onst C JdaVec Column Selection	
6 <mark>{</mark>	Check columns to be shown and uncheck columns to be hidden	
7 if (rconfig::Get().IAmAlone()) 8 {	Check columns to be shown and uncheck columns to be hidden	
9 y=x;		
9 return; 1 }	Check all Uncheck all 🕑 Apply to all views	
<pre>2 if (!rconfig::Get().DoHostConformingProlonga 4</pre>	ationO	
	Filter: (s)	
Top-down view 🔀 🔧 ይ ttom-up view 🏦 Flat view		
	GKER (s):Sum (I)	
1 🕂 🚯 🕅 🕅 📾 🗛 🖓 🖬 👻	GKER (s):Sum (E)	
cope	GMEM (s):Sum (I) (empty)	GXCOPY (s):St GXCOPY (s):Sum (E)
<pre><pre>cprogram root></pre></pre>	GMEM (s):Sum (E) (empty)	2.31e+00 100 %
▼ 🖶 516: main	GMSET (s):Sum (l) (empty)	2.31e+00 100 %
 loop at laghos.cpp: 427 	GMSET (s):Sum (E) (empty)	2.31e+00 100.0
▼ ♣ 442: mfem::CudaRK4Solver::Step(mfem::CudaRK4Solver::Step)	STOPY (S):SUM (I)	2.30e+00 99.9%
 B 146: mfem::hydrodynamics::LagrangianHy 	droOpe GXCOPY (s):Sum (E)	5.78e-01 25.0% 5.58e-01 24.2%
 loop at laghos_solver.cpp: 231 B> 252: [1] mfem::CudaCGSolver::Mult(r 		5.44e-01 23.6%
 B 157: mfem::CudaCGSolver::h Multi 		5.44e-01 23.6%
 loop at solvers.cpp: 89 	GSYNC (s):Sum (I) (empty)	5.14e-01 22.3%
▼ ■ 137: mfem::hydrodynamics	s::Cuda GSYNC (s):Sum (E) (empty)	3.87e-01 16.8%
▼ 🕒 135: mfem::CudaConstr	ainedo	3.47e-01 15.0%
▼ 🖶 210: mfem::CudaRAF		3.47e-01 15.0%
 ▶ 86: mfem::CudaPi ▶ 84: mfem::CudaPi 		1.73e-01 7.5%

Using GPU Kernel Time to Guide Top-down Exploration

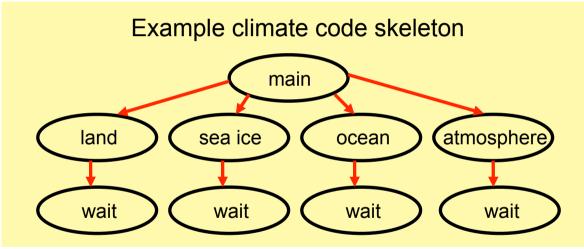
hpcviewer: laghos					
e Filter View Window Help					
laghos_solver.cpp 🛛 🞯 operator.hpp	👳 prolong.cpp 🛛 👰 bilinearform.cpp 🖓 cuda_runtime.h 🏻	3			
209 return ::cudaLaunchKernel	((const void *)func, gridDim, blockDim, args, sharedMer	n, stream);	Select	the head	er to select the column
Top-down view 🛛 🔧 Bottom-up view	t. Flat view		triangle	e indicate	es descending sort
	1				
🕆 🐣 🔥 fixi 🕅 🔚 🕾 🗛				7	
Scope		cycles:Sum (I)	cycles:Sum (E	▼ GKER (s):Su	GKER (s):Sum GXCOPY (s):St GXCOPY (s):Sum (
<program root=""></program>		1.82e+14 100.0		1.38e+01 100 %	2.31e+00 100 %
▼ 🖶 516: main		1.82e+14 100.0		1.38e+01 100 %	2.31e+00 100 %
 loop at laghos.cpp: 427 		1.80e+14 99.1%		1.38e+01 100.0	2.31e+00 100.0
▼ ♣ 442: mfem::CudaRK4Solve	r::Step(mfem::CudaVector&, double&, double&)	1.80e+14 99.0%		1.38e+01 99.7%	2.30e+00 99.9%
🔻 🗈 146: mfem::hydrodynar	nics::LagrangianHydroOperator::Mult(mfem::CudaVector const&, m	fe:4.56e+13 25.1%		3.45e+00 25.0%	5.78e-01 25.0%
 loop at laghos_solve 	r.cpp: 231	4.40e+13 24.2%		3.30e+00 23.9%	5.58e-01 24.2%
▼ 🕒 252: [I] mfem::Cu	daCGSolver::Mult(mfem::CudaVector const&, mfem::CudaVector&)	cc4.33e+13 23.8%		3.25e+00 23.5%	5.44e-01 23.6%
🔻 🕒 157: mfem::Cu	idaCGSolver::h_Mult(mfem::CudaVector const&, mfem::CudaVector	&) 4.33e+13 23.8%		3.25e+00 23.5%	5.44e-01 23.6%
 loop at solv 		4.07e+13 22.4%		3.07e+00 22.3%	5.14e-01 22.3%
▼ 🖶 137: mf	em::hydrodynamics::CudaMassOperator::Mult(mfem::CudaVector co	ons2.27e+13 12.5%	3.75e+09 0.0%	2.26e+00 16.4%	3.87e-01 16.8%
	mfem::CudaConstrainedOperator::Mult(mfem::CudaVector const&,			1.97e+00 14.3%	3.47e-01 15.0%
▼ ₿21	.0: mfem::CudaRAPOperator::Mult(mfem::CudaVector const&, mfen	n::(2.10e+13 11.5%	7.51e+09 0.0%	1.97e+00 14.3%	3.47e-01 15.0%
▼ B	85: mfem::CudaBilinearForm::Mult(mfem::CudaVector const&, mfem::CudaVector const&, mfem::Cuda	en 2.05e+12 1.1%	2.44e+09 0.0%	7.03e-01 5.1%	
•	loop at bilinearform.cpp: 136	4.62e+11 0.3%		1.97e-01 1.4%	
_	💌 🖶 138: mfem::CudaMassIntegrator::MultAdd(mfem::CudaVector	0.3%		1.97e-01 1.4%	
	🔻 🖶 514: rMassMultAdd(int, int, int, int, double const*, double	c .47e+11 0.2%	7.52e+09 0.0%	1.97e-01 1.4%	
GPU Kernel	▼ 🖶 303: rMassMultAdd2D<3, 4>(int, double const*, doub	le 1.36e+11 0.2%		1.97e-01 1.4%	
	▼ B 29: [I]wrapperdevice_stub_rMassMultAdd2D<	3, .36e+11 0.2%		1.97e-01 1.4%	
Launch	▼ ■ 111: [I]device_stubZ14rMassMultAdd2DILi	3E .36e+11 0.2%		1.97e-01 1.4%	
	🔻 📸 110: [I] cudaLaunchKernel <char></char>				



Using GPU Kernel Time to Guide Bottom-up Exploration

	indow Help									
🞅 laghos_solver.cpp	🞅 operator.hpp	👳 prolong.cpp	🞅 bilinearform.cpp	👻 cuda_runtin	ne.h 🞅 comm	id.cpp 蹈				•
38 const int j	= blockDim.x * b	lockIdx.x + thre	adIdx.x;							
🎖 Top-down view 🔧 B	ottom-up view X 🕴	🖡 Flat view								•
🛧 🦊 🌰 fxi	🕅 🔚 🛧 🖛									
]										
Scope								▼ GKER (s):Su		GXCOPY (s):Sum (E) 2.31e+00 100
Experiment Agg	-		and the last second state		1.820+14 100 %	1.820+14 100 %		2.30e+00 16.7%	2.310+00 100 %	2.510+00 100
=	roupToBuffer <double< td=""><td>e>(double*, double</td><td>const*, int const*)</td><td></td><td></td><td></td><td></td><td>2.30e+00 16.7%</td><td></td><td></td></double<>	e>(double*, double	const*, int const*)					2.30e+00 16.7%		
▼ 📲 207: <gpu ke<="" td=""><td>ernei> daLaunchKernel<cha< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2.30e+00 16.7%</td><td></td><td></td></cha<></td></gpu>	ernei> daLaunchKernel <cha< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2.30e+00 16.7%</td><td></td><td></td></cha<>							2.30e+00 16.7%		
				DK:				2.30e+00 16.7%		
-	device_stub2N4i [I]wrapperdevic		IpToBufferIdEEvPT_PKS1_	_PKI				2.30e+00 16.7%		
	[1]wrapperdevic 37: [1] k_CopyGroupTo							2.30e+00 16.7%		
	1 52: [I] d СоруGrou							2.30e+00 16.7%		
			 /GroupToBuffer <double></double>	(double const*				2.30e+00 16.7%		
		=	duceBegin <double>(dou</double>					1.16e+00 8.4%		
		-	astBegin <double>(doub</double>				1.14e+00 8.3	1.14e+00 8.3%		
 vector xpay0 			iotoogini raodoror (dodo	,			1.84e+00 13.49	1.84e+00 13.4%		
▼ 🖷 207: <gpu ke<="" td=""><td>rnel></td><td></td><td></td><td></td><td></td><td></td><td>1.84e+00 13.49</td><td>1.84e+00 13.4%</td><td></td><td></td></gpu>	rnel>						1.84e+00 13.49	1.84e+00 13.4%		
01	daLaunchKernel <cha< td=""><td>ar></td><td></td><td></td><td></td><td></td><td>1.84e+00 13.4</td><td>1.84e+00 13.4%</td><td></td><td></td></cha<>	ar>					1.84e+00 13.4	1.84e+00 13.4%		
			dS1 (int, double, double	*. double const*			1.84e+00 13.4	1.84e+00 13.4%		
	[I] vector xpay0	_ , ,					1.84e+00 13.4	1.84e+00 13.4%		
4 37: vector xpay(int, double, double*, double const*, double const*)					1.84e+00 13.4	1.84e+00 13.4%				
• <	= 201: mfem::add(m	nfem::CudaVector.co	nst&, double, mfem::Cu	daVector const&			1.84e+00 13.4	1.84e+00 13.4%		
cuKernelDot(uns	igned long, double*,	, double const*, doul	ole const*)				1.68e+00 12.2	1.68e+00 12.2%		
vector_set_subv							1.22e+00 8.99	1.22e+00 8.9%		
	- Addedaublo>(double	a* int const* double	*)				1 15e+00 8 33	1.15e+00 8.3%		

The Problem of Scaling

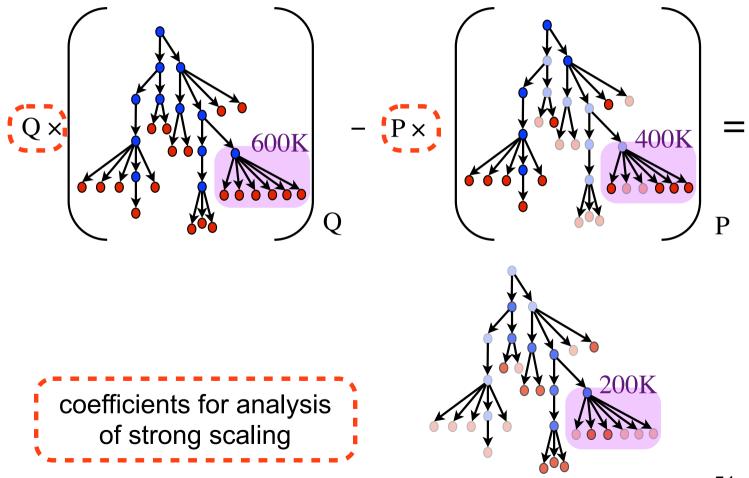

Note: higher is better

Wanted: Scalability Analysis

- Isolate scalability bottlenecks
- Guide user to problems
- Quantify the magnitude of each problem

Challenges for Pinpointing Scalability Bottlenecks

- Parallel applications
 - modern software uses layers of libraries
 - performance is often context dependent

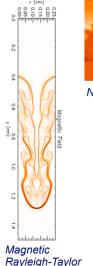


- Monitoring
 - bottleneck nature: computation, data movement, synchronization?
 - 2 pragmatic constraints
 - acceptable data volume
 - low perturbation for use in production runs

Performance Analysis with Expectations

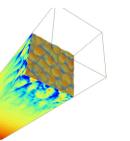
- You have performance expectations for your parallel code
 - strong scaling: linear speedup
 - weak scaling: constant execution time
- Put your expectations to work
 - measure performance under different conditions
 - e.g. different levels of parallelism and/or different problem size
 - express your expectations as an equation
 - compute the deviation from expectations for each calling context
 - for both inclusive and exclusive costs
 - correlate the metrics with the source code
 - explore the annotated call tree interactively

Pinpointing and Quantifying Scalability Bottlenecks

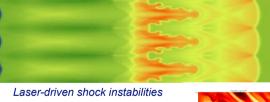

Scalability Analysis Demo: FLASH3

Code: Simulation: **Platform:** Scaling type:

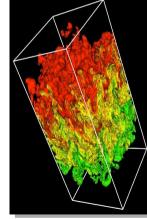
University of Chicago FLASH3 white dwarf detonation Blue Gene/P **Experiment:** 8192 vs. 256 cores weak

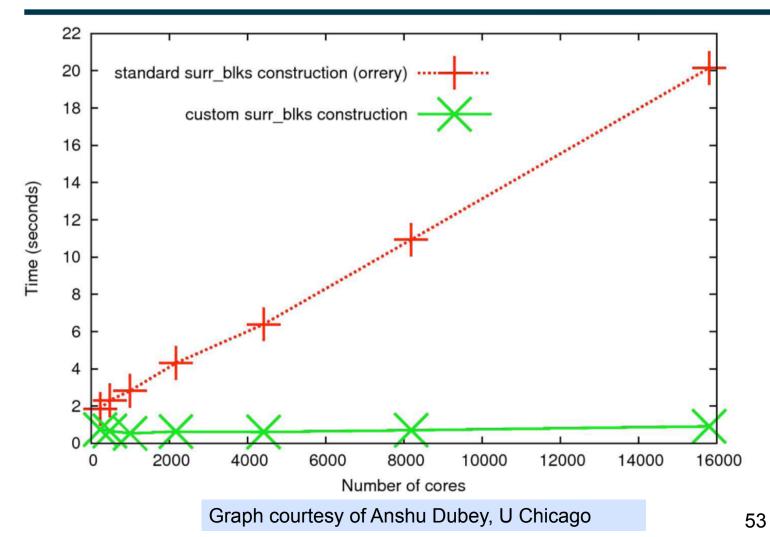

Orzag/Tang MHD

vortex



Nova outbursts on white dwarfs


Cellular detonation


Helium burning on neutron stars

Figures courtesy of FLASH Team, University of Chicago

Rayleigh-Taylor instability

Improved Flash Scaling of AMR Setup

S3D: Multicore Losses at the Procedure Level

getrates.f rhsf.f90 & 1subroutine rhsf(q, rhs 2!		on time es 1.65x in itine rhs	sf			
6! Ignore older comments about conversion to CGS units. 7! This saves a lot of flops. 8! 2. Mixavg and Lewis transport modules have been made interchangeable 9! by adding dummy arguments in both. 10 !			subroutine rhsf accounts for 13.0% of the multicore scaling		% of	
14 ! This routine calcul 15 ! momentum, continuit					he executio	U
16_1	- xe (@ = xe)			1055 111		
Calling Context View 👻 Caller 🙊 🏚 🏤 🤚 🔥 🖗 🕅	1-core (ms) (l)		8-core(1) (ms) (l)	8-core(1) (ms) (E)	Multicore Loss T	
Calling Context View 👻 Caller (A) A 🕀 🔸 🍐 🏍 🕅 Scope Experiment Aggregate Metrics	1-core (ms) (l) 1.11e08 100 %	1.11608 100 %	1.88e08 100 %	8-core(1) (ms) (E) 1.88e08 100 %	Multicore Loss T 7.64e07 100 %	
Calling Context View 👻 Caller (A) (A) (A) (A) (A) Scope Experiment Aggregate Metrics I rhsf	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5%	1.11008 100 % 6.60e06 5.9%	1.88e08 100 % 1.77e08 94.1%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8%	Multicore Loss T 7.64e07 100 % 9.92e06 13.09	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (i) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6%	1.11 c08 100 % 6.60e06 5.9% 2.86e06 2.6%	1.88e08 100 % 1.77e08 94.1% 8.12e06 4.3%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3%	Multicore Loss V 7.64e07 100 % 9.92e06 13.03 5.27e06 6.98	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6% 1.09e08 98.1%	1.11008 100% 6.60006 5.9% 2.86006 2.6% 1.25006 1.1%	1.88e08 100 % 1.77e08 94.1% 8.12e06 4.3% 1.84e08 97.9%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3% 5.94e06 3.2%	Multicore Loss ▼ 7.64e07 100 % 9.92e06 13.03 5.27e06 6.9% 4.70e06 6.1%	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6% 1.09e08 98.1% 5_M1.49e06 1.3%	1.11008 100 % 6.60e06 5.9% 2.86e06 2.6% 1.25e06 1.1% 1.49e06 1.3%	1.88e08 100% 1.77e08 94.1% 8.12e06 4.3% 1.84e08 97.9% 6.08e06 3.2%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3% 5.94e06 3.2% 6.08e06 3.2%	Multicore Loss V 7.64e07 100 % 9.92e06 13.08 5.27e06 6.98 4.70e06 6.18 4.59e06 6.08	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6% 1.09e08 98.1% 5_M1.49e06 1.3% 1.01e07 9.1%	1.12608100% 6.60e065.9% 2.86e062.6% 1.25e061.1% 1.49e061.3% 1.00e079.0%	1.88e08100% 1.77e0894.1% 8.12e064.3% 1.84e0897.9% 6.08e063.2% 4.41e0723.5%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3% 5.94e06 3.2% 6.08e06 3.2% 1.40e07 7.4%	Multicore Loss V 7.64e07 100 % 9.92e06 13.04 5.27e06 6.98 4.70e06 6.18 4.59e06 6.08 3.95e06 5.28	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6% 1.09e08 98.1% 5_M1.49e06 1.3% 1.01e07 9.1% 3.52e06 3.2%	1.11008 100 % 6.60e06 5.9% 2.86e06 2.6% 1.25e06 1.1% 1.49e06 1.3%	1.88e08 100% 1.77e08 94.1% 8.12e06 4.3% 1.84e08 97.9% 6.08e06 3.2%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3% 5.94e06 3.2% 6.08e06 3.2%	Multicore Loss V 7.64e07 100 % 9.92e06 13.0% 5.27e06 6.9% 4.70e06 6.1% 4.59e06 6.0% 3.95e06 5.2% 2.18e06 2.9%	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6% 1.09e08 98.1% 5_M1.49e06 1.3% 1.01e07 9.1% 3.52e06 3.2% 3.26e07 29.2%	1.12608 100% 6.60e06 5.9% 2.86e06 2.6% 1.25e06 1.1% 1.49e06 1.3% 1.00e07 9.0% 3.52e06 3.2% 1.48e07 13.3%	1.88e08100% 1.77e0894.1% 8.12e064.3% 1.84e0897.9% 6.08e063.2% 4.41e0723.5% 5.71e063.0%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3% 5.94e06 3.2% 6.08e06 3.2% 1.40e07 7.4% 5.71e06 3.0%	Multicore Loss V 7.64e07 100 % 9.92e06 13.08 5.27e06 6.98 4.70e06 6.18 4.59e06 6.08 3.95e06 5.28 2.18e06 2.98 1.76e06 2.38	
Calling Context View R Caller Calling Context View R Caller	1-core (ms) (l) 1.11e08 100 % 1.07e08 96.5% 2.86e06 2.6% 1.09e08 98.1% 5_M1.49e06 1.3% 1.01e07 9.1% 3.52e06 3.2% 3.26e07 29.2% HER9.70e05 0.9%	1.12608 100% 6.60e06 5.9% 2.86e06 2.6% 1.25e06 1.1% 1.49e06 1.3% 1.00e07 9.0% 3.52e06 3.2% 1.48e07 13.3%	1.88e08100% 1.77e0894.1% 8.12e064.3% 1.84e0897.9% 6.08e063.2% 4.41e0723.5% 5.71e063.0% 4.38e0723.3%	8-core(1) (ms) (E) 1.88e08 100 % 1.65e07 8.8% 8.12e06 4.3% 5.94e06 3.2% 6.08e06 3.2% 1.40e07 7.4% 5.71e06 3.0% 1.66e07 8.8%	Multicore Loss V 7.64e07 100 % 9.92e06 13.08 5.27e06 6.98 4.70e06 6.18 4.59e06 6.08 3.95e06 5.28 2.18e06 2.98 1.76e06 2.38	

54

Applying the GPU PC Sampling Measurement Workflow to Laghos

measure an execution of laghos using pc sampling time mpirun -np 4 hpcrun -o \$OUT -e cycles -e gpu=nvidia,pc -t \ \${LAGHOS_DIR}/laghos -p 0 -m \${LAGHOS_DIR}/../data/square01_quad.mesh \ -rs 1 -tf 0.05 -pa

compute program structure information for the laghos binary
hpcstruct -j 16 laghos

compute program structure information for the laghos cubins with CFG
hpcstruct --gpucfg yes -j 16 \$OUT

combine the measurements with the program structure information
mpirun -n 4 hpcprof-mpi -S laghos.hpcstruct \$OUT

HPCToolkit's GPU Instruction Sampling Metrics (NVIDIA Only)

Metric	Definition
GINST:STL_ANY	GPU instruction stalls: any (sum of all STALL metrics other than NONE)
GINST:STL_NONE	GPU instruction stalls: no stall
GINST:STL_IFET	GPU instruction stalls: await availability of next instruction (fetch or branch delay)
GINST:STL_IDEP	GPU instruction stalls: await satisfaction of instruction input dependence
GINST:STL_GMEM	GPU instruction stalls: await completion of global memory access
GINST:STL_TMEM	GPU instruction stalls: texture memory request queue full
GINST:STL_SYNC	GPU instruction stalls: await completion of thread or memory synchronization
GINST:STL_CMEM	GPU instruction stalls: await completion of constant or immediate memory access
GINST:STL_PIPE	GPU instruction stalls: await completion of required compute resources
GINST:STL_MTHR	GPU instruction stalls: global memory request queue full
GINST:STL_NSEL	GPU instruction stalls: not selected for issue but ready
GINST:STL_OTHR	GPU instruction stalls: other
GINST:STL_SLP	GPU instruction stalls: sleep

- GPU code from C++ template-based programming models is complex
- NVIDIA GPUs collect flat PC samples
- Flat profiles for instantiations of complex C++ templates are inscrutable
- HPCToolkit reconstructs approximate **GPU** calling contexts
 - Reconstruct call graph from machine code
 - Infer calls at call sites
 - PC samples of call instructions indicate calls
 - Use call counts to apportion costs to call sites
 - PC samples in a routine

s Top-down vie	ew 🕸 🗞 Bottom-up view 📴 Flat view		
🕆 🕂 🍐 foo 1	翌時を		
Scope		GPU INST:Sum (I)	GPU STALL:Sum (I)
	b143: [I] void RAJA::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRangeSegment<long, long="">,nv_</long,></raja::policy::cuda::cuda_exec<256ul,>	7.28e+11 88.5%	6.46e+11 93.19
	 P23: [I] std::enable_if<camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic< li=""> </camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic<>	7.28e+11 88.5%	6.46e+11 93.14
	B 370: [I] std::enable_if <camp::concepts::all_of<camp::concepts::metallb::negate_t<raja::type_traits::is_indexset_pc< p=""></camp::concepts::all_of<camp::concepts::metallb::negate_t<raja::type_traits::is_indexset_pc<>	7.28e+11 88.5%	6.46e+11 93.19
	> ▶ 183: [I] void RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long, long="">,nv_dl_wrapper_t<_nv_</raja::typedrangesegment<long,>	7.28e+11 88.5%	6.46e+11 93.19
	✓ ■ 190: void RAJA::policy::cuda:impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long, lo<="" long,="" p=""></long,>	7.28e+11 88.5%	6.46e+11 93.19
	✓ ▶145: [I]wrapper_device_stub_forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long int="">,n</long>	7.28e+11 88.5%	6.46e+11 93.19
	✓ ▶37: [I]device_stubZN4RAJA6policy4cuda4impl18forall_cuda_kernellLm256ENS_9Iterators16numeric	7.28e+11 88.5%	6.46e+11 93.14
	✓ IP 26: [I] cudaLaunchKernel <char></char>	7.28e+11 88.5%	6.46e+11 93.19
	✓ III 209: cudaLaunchKernel	7.28e+11 88.5%	6.46e+11 93.19
	 → cuda_init_placeholders 	7.28e+11 88.5%	6.46e+11 93.14
	> Image: Reduce_Data <false, raja::reduce::sum<double="">, double>:grid_reduce(double*)</false,>	3.92e+11 47.7%	3.59e+11 51.69
	INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(3.40e+10 4.1%	2.77e+10 4.09
	>	3.01e+10 3.7%	2.38e+10 3.4
	INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(2.83e+10 3.4%	2.30e+10 3.3
	> III void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long< p=""></long<>	2.43e+10 3.0%	2.01e+10 2.9
	> ■ RAJA::cuda::Reduce < false, RAJA::reduce::sum < double, false>::~Reduce()	2.17e+10 2.6%	1.99e+10 2.99
	> ■ RAJA::operators::plus <double, double="" double,="">::operator()(double const&, double const&) c</double,>	1.94e+10 2.4%	1.59e+10 2.3
	> ▶	1.56e+10 1.9%	1.24e+10 1.84
	> III>syncthreads_or	1.38e+10 1.7%	1.32e+10 1.99
	> 🕪 rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::{lambda(long)#1}::operator()(long) <	1.36e+10 1.7%	1.17e+10 1.7
	> Image: Mainternal: Privatizer <rajaperf::stream::dot::runcudavariant(rajaperf::variantid)::(lambda(k< p=""></rajaperf::stream::dot::runcudavariant(rajaperf::variantid)::(lambda(k<>	1.32e+10 1.6%	1.24e+10 1.84
	> >>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1.24e+10 1.5%	1.17e+10 1.79

Top-down view 🕺 🛰 Bottom-up view 陆 Flat	view			
11 ▼ 🔂 🕅 🕅 🖅 🗚 🛛 🖬 👻 🗟				
icope		GPU INST:Sum (I)	GPU STALL:Sum (I)	MIX:INTEGER.ADD3:Sum (
✓ ₩ 143: [I] void RAJA	::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRa</raja::policy::cuda::cuda_exec<256ul,>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
 ₩ 723: [I] std::enal 	ble_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<r< td=""><td>7.25e+11 88.5%</td><td>6.46e+11 93.1%</td><td>4.12e+09 91.</td></camp::concepts::all_of<camp::concepts::metalib::negate_t<r<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
✓ ₱ 370: [I] std::ei	nable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t< td=""><td>7.25e+11 88.5%</td><td>6.46e+11 93.1%</td><td>4.12e+09 91</td></camp::concepts::all_of<camp::concepts::metalib::negate_t<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
 ▶ 183: [I] voi 	d RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long< td=""><td>7.25e+11 88.5%</td><td>6.46e+11 93.1%</td><td>4.12e+09 91</td></raja::typedrangesegment<long<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
 ₩ 190: voi 	d RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterator	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
✓ ₱ 145: []wrapperdevice_stub_forall_cuda_kernel<256ul, RAJA::Iterators	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
× ⊯37:	[I]device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kerne	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
~ ⊪2	6: [I] cudaLaunchKernel <char></char>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
CPU Calling Context	≥209: cudaLaunchKernel	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
GPU API Node ~	r ⊪ <cuda kernel=""></cuda>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
	→ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
	B 151: RAJA::internal::Privatizer <rajaperf::stream::dot::runcu< p=""></rajaperf::stream::dot::runcu<>	6.10e+11 74.5%	5.48e+11 78.9%	3.53e+09 78
	➤ ₱ 54: rajaperf::stream::DOT::runCudaVariant(rajaperf::Varia	5.97e+11 72.9%	5.35e+11 77.1%	3.52e+09 78
	B>129: RAJA::ReduceSum <raja::policy::cuda::cuda_red< p=""></raja::policy::cuda::cuda_red<>	5.85e+11 71.4%	5.24e+11 75.4%	3.51e+09 78
	➤ ₱ 190: RAJA::cuda::Reduce < false, RAJA::reduce::sum	5.73e+11 69.9%	5.12e+11 73.8%	3.50e+09 78
	 B848: RAJA::cuda::Reduce<false, li="" raja::reduce::su<=""> </false,>	5.61e+11 68.5%	5.01e+11 72.2%	3.50e+09 78
GPU Calling Context	✓ ₱ 843: RAJA::cuda::Reduce_Data <false, p="" raja::re<=""></false,>	5.39e+11 65.9%	4.81e+11 69.3%	3.47e+09 77
	 [I] inlined from reduce.hpp: 203 	4.00e+11 48.8%	3.48e+11 50.1%	3.41e+09 76
	reduce.hpp: 293	1.31e+11 16.0%	1.24e+11 17.9%	7.48e+06 0
CDULLARMA	 loop at reduce.hpp: 203 	8.78e+10 10.7%	7.09e+10 10.2%	8.15e+08 18
GPU Loops	 loop at reduce.hpp: 203 	4.02e+10 4.9%	3.25e+10 4.7%	4.35e+08 9
GPU Hotspot	> #> 205: _INTERNAL_43_tmpxft_000131	1.54e+10 1.9%	1.27e+10 1.8%	3.01e+08 6
	reduce.hpp: 205	1.50e+10 1.8%	1.19e+10 1.7%	1.15e+08 2

🕆 Top-down view 🛛 🗞 Bottom-up view 👫 Flat view

	↑ ↓ ♦ fix # A*
	Scope
l	✓ ➡ 143: [I] void RAJA::forall <raja::policy::cuda::cuda_exec< p=""></raja::policy::cuda::cuda_exec<>
	✓ ➡723: [I] std::enable_if <camp::concepts::all_of<camp::co< p=""></camp::concepts::all_of<camp::co<>
	✓ ➡370: []] std::enable_if <camp::concepts::all_of<camp:< p=""></camp::concepts::all_of<camp:<>

✓ ➡ 143: [I] void RAJA::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRangeSegment<long, long="">,nv_</long,></raja::policy::cuda::cuda_exec<256ul,>	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡723: [I] std::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic< p=""></camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic<>	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡ 370: [I] std::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_pc< p=""></camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_pc<>	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡ 183: [I] void RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long, long="">,nv_dl_wrapper_t<nv_< p=""></nv_<></raja::typedrangesegment<long,>	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡ 190: void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long, lo<="" long,="" p=""></long,>	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡ 145: [I]wrapperdevice_stub_forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long int="">,n</long>	7.28e+11 88.5%	6.46e+11 93.1%
37: [I]device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kernellLm256ENS_9Iterators16numeric	7.28e+11 88.5%	6.46e+11 93.1%
✓ ₱ 26: [I] cudaLaunchKernel <char></char>	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡ 209: cudaLaunchKernel	7.28e+11 88.5%	6.46e+11 93.1%
✓ ➡ cuda_init_placeholders	7.28e+11 88.5%	6.46e+11 93.1%
> >> PRAJA::cuda::Reduce_Data <false, raja::reduce::sum<double="">, double>::grid_reduce(double*)</false,>	3.92e+11 47.7%	3.59e+11 51.6%
> INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(3.40e+10 4.1%	2.77e+10 4.0%
>	3.01e+10 3.7%	2.38e+10 3.4%
> > INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(2.83e+10 3.4%	2.30e+10 3.3%
> >> void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long< td=""><td>2.43e+10 3.0%</td><td>2.01e+10 2.9%</td></long<>	2.43e+10 3.0%	2.01e+10 2.9%
> BRAJA::cuda::Reduce <false, raja::reduce::sum<double="">, double, false>::~Reduce()</false,>	2.17e+10 2.6%	1.99e+10 2.9%
>	1.94e+10 2.4%	1.59e+10 2.3%
> ▶cuda_sm20_div_s64	1.56e+10 1.9%	1.24e+10 1.8%
> >syncthreads_or	1.38e+10 1.7%	1.32e+10 1.9%
> > > rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::{lambda(long)#1}::operator()(long) <	1.36e+10 1.7%	1.17e+10 1.7%
$\Rightarrow \ \texttt{B} RAJA::internal:: Privatizer < rajaperf:: stream:: DOT::runCudaVariant(rajaperf:: VariantID):: \{lambda(lcal) \in RAJA:: rajaperf:: rajaper$	1.32e+10 1.6%	1.24e+10 1.8%
> >> prajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::{lambda(long)#1}::~VariantID()	1.24e+10 1.5%	1.17e+10 1.7%

GPU INST:Sum (I)

GPU STALL:Sum (I)

- GPU code from C++ template-based programming models is complex
- NVIDIA GPUs collect flat PC samples
- Flat profiles for instantiations of complex C++ templates are inscrutable
- HPCToolkit reconstructs approximate **GPU** calling contexts
 - Reconstruct call graph from machine code
 - Infer calls at call sites
 - PC samples of call instructions indicate calls
 - Use call counts to apportion costs to call sites
 - PC samples in a routine

: Top-down view 🗵 🗞 Bottom-up view 🏗 Flat view		
金 부 <mark>6 f</mark> øl 閉 / 嗯 A* = 비 ▼ 원		
Scope	GPU INST:Sum (I)	GPU STALL:Sum (I)
> ➡ 143: [I] void RAJA::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRangeSegment<long, long="">,nv_</long,></raja::policy::cuda::cuda_exec<256ul,>	7.28e+11 88.5%	6.46e+11 93.1
✓ ₱723: [i] std::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic< p=""></camp::concepts::all_of<camp::concepts::metalib::negate_t<raja::type_traits::is_indexset_polic<>	7.28e+11 88.5%	6.46e+11 93.1
✓ ₱ 370: [1] std::enable_if <camp::concepts::all_of<camp::concepts::metallb::negate_t<raja::type_traits::is_indexset_pc< p=""></camp::concepts::all_of<camp::concepts::metallb::negate_t<raja::type_traits::is_indexset_pc<>	7.28e+11 88.5%	6.46e+11 93.1
✓ ■ 183: [I] void RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long, long="">, _nv_dl_wrapper_t<_nv_</raja::typedrangesegment<long,>	7.28e+11 88.5%	6.46e+11 93.1
✓ ID: void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long, lo<="" long,="" p=""></long,>	7.28e+11 88.5%	6.46e+11 93.1
✓ ➡ 145: [I]wrapperdevice_stub_forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long int="">,n</long>	7.28e+11 88.5%	6.46e+11 93.1
> >> 37: [I]device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kernellLm256ENS_9Iterators16numeric	7.28e+11 88.5%	6.46e+11 93.1
✓ ID 26: [1] cudaLaunchKernel <char></char>	7.28e+11 88.5%	6.46e+11 93.1
✓ ₱ 209: cudaLaunchKernel	7.28e+11 88.5%	6.46e+11 93.1
✓ III cuda_init_placeholders	7.28e+11 88.5%	6.46e+11 93.1
> III RAJA::cuda::Reduce_Data <false, raja::reduce::sum<double="">.; double>::grid_reduce(double*)</false,>	3.92e+11 47.7%	3.59e+11 51.6
> >> INTERNAL_43_tmpxft_000131b5_00000000_6_DOT_Cuda_cpp1_ii_a3c0234b::shfl_xor_sync(3.40e+10 4.1%	2.77e+10 4.0
> ≫_cuda_sm20_rem_s64	3.01e+10 3.7%	2.38e+10 3.4
INTERNAL_43_tmpxft_000131b5_0000000_6_DOT_Cuda_cpp1_ii_a3c0234b::_shfl_xor_sync(2.83e+10 3.4%	2.30e+10 3.3
> >> void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator <long< p=""></long<>	2.43e+10 3.0%	2.01e+10 2.9
> III RAJA::cuda::Reduce <false, raja::reduce::sum<double="">, double, false>::~Reduce()</false,>	2.17e+10 2.6%	1.99e+10 2.9
> 🔛 RAJA::operators::plus <double, double="" double,="">::operator()(double const&, double const&) c</double,>	1.94e+10 2.4%	1.59e+10 2.3
>	1.56e+10 1.9%	1.24e+10 1.8
> III	1.38e+10 1.7%	1.32e+10 1.9
> ■ rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::{lambda(long)#1)::operator()(long) <	1.36e+10 1.7%	1.17e+10 1.7
> IN RAJA::internal::Privatizer <rajaperf::stream::dot::runcudavariant(rajaperf::variantid)::(lambda(k< p=""></rajaperf::stream::dot::runcudavariant(rajaperf::variantid)::(lambda(k<>	1.32e+10 1.6%	1.24e+10 1.8
> >> prajaperf::stream::DOT::runCudaVariant(rajaperf::VariantID)::(lambda(long)#1)::~VariantID()	1.24e+10 1.5%	1.17e+10 1.7

Top-down view 🕺 🗞 Bottom-up view 🗄 Fl	at view			
1 🕸 📥 🗛 🕅 🐨 🗚 👘 🖬 👻 🗟				
Scope		GPU INST:Sum (I)	GPU STALL:Sum (I)	MIX:INTEGER.ADD3:Sum (I)
✓ ➡ 143: [I] void RA	JA::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRa</raja::policy::cuda::cuda_exec<256ul,>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
✓ ₱ 723: [I] std::er	nable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<r< td=""><td>7.25e+11 88.5%</td><td>6.46e+11 93.1%</td><td>4.12e+09 91.</td></camp::concepts::all_of<camp::concepts::metalib::negate_t<r<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
 ₩ 370: [I] std. 	::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t< td=""><td>7.25e+11 88.5%</td><td>6.46e+11 93.1%</td><td>4.12e+09 91.</td></camp::concepts::all_of<camp::concepts::metalib::negate_t<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
× ⊯ 183: [I] v	oid RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long< td=""><td>7.25e+11 88.5%</td><td>6.46e+11 93.1%</td><td>4.12e+09 91.</td></raja::typedrangesegment<long<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
✓ ₱ 190: v	oid RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterator	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
× ⊯145	: [I]wrapperdevice_stub_forall_cuda_kernel<256ul, RAJA::Iterators	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
~ m-3	7: [I] _device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kerne	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
~ I	26: [I] cudaLaunchKernel <char></char>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.
CPU Calling Context	₽ 209: cudaLaunchKernel	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
GPU API Node	✓ III <cuda kernel=""></cuda>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
	✓ woid RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJ	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91
	B 151: RAJA::internal::Privatizer < rajaperf::stream::DOT::runCi	6.10e+11 74.5%	5.48e+11 78.9%	3.53e+09 78.
	✓ ₱54: rajaperf::stream::DOT::runCudaVariant(rajaperf::Varia	5.97e+11 72.9%	5.35e+11 77.1%	3.52e+09 78
	 	5.85e+11 71.4%	5.24e+11 75.4%	3.51e+09 78
	✓ ₱ 190: RAJA::cuda::Reduce <false, p="" raja::reduce::sum<=""></false,>	5.73e+11 69.9%	5.12e+11 73.8%	3.50e+09 78
	 B848: RAJA::cuda::Reduce<false, li="" raja::reduce::su<=""> </false,>	5.61e+11 68.5%	5.01e+11 72.2%	3.50e+09 78
GPU Calling Context	✓ № 843: RAJA::cuda::Reduce_Data <false, p="" raja::re<=""></false,>	5.39e+11 65.9%	4.81e+11 69.3%	3.47e+09 77
	 [I] inlined from reduce.hpp: 203 	4.00e+11 48.8%	3.48e+11 50.1%	3.41e+09 76
	reduce.hpp: 293	1.31e+11 16.0%	1.24e+11 17.9%	7.48e+06 0
CRUL	 loop at reduce.hpp: 203 	8.78e+10 10.7%	7.09e+10 10.2%	8.15e+08 18.
GPU Loops	 loop at reduce.hpp: 203 	4.02e+10 4.9%	3.25e+10 4.7%	4.35e+08 9.
GPU Hotspot	> #> 205: _INTERNAL_43_tmpxft_000131	1.54e+10 1.9%	1.27e+10 1.8%	3.01e+08 6.
	reduce.hpp: 205	1.50e+10 1.8%	1.19e+10 1.7%	1.15e+08 2.

🕆 Top-down view 🛛 🔧 Bottom-up view 뷲 Flat view

🕆 🖖 🍐 fixi 🕅 📰 🗛 👘 🐨 🔛

Scope	GPU INST:Sum (I)	GPU STALL:Sum (I)	MIX:INTEGER.ADD3:Sum (I)
✓ ➡ 143: [I] void RAJA::forall <raja::policy::cuda::cuda_exec<256ul, true="">, RAJA::TypedRa</raja::policy::cuda::cuda_exec<256ul,>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ₱723: [I] std::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t<r< p=""></camp::concepts::all_of<camp::concepts::metalib::negate_t<r<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ➡ 370: [I] std::enable_if <camp::concepts::all_of<camp::concepts::metalib::negate_t< p=""></camp::concepts::all_of<camp::concepts::metalib::negate_t<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ➡ 183: [I] void RAJA::policy::cuda::forall_impl <raja::typedrangesegment<long< p=""></raja::typedrangesegment<long<>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ➡ 190: void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterator	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ➡ 145: [I]wrapperdevice_stub_forall_cuda_kernel<256ul, RAJA::Iterators	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
B37: [I]device_stub_ZN4RAJA6policy4cuda4impl18forall_cuda_kerne	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ₱26: [I] cudaLaunchKernel <char></char>	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
CPU Calling Context V B 209: cudaLaunchKernel	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
GPU API Node	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ➡void RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJ/	7.25e+11 88.5%	6.46e+11 93.1%	4.12e+09 91.9%
✓ ➡ 151: RAJA::internal::Privatizer < rajaperf::stream::DOT::runCt	6.10e+11 74.5%	5.48e+11 78.9%	3.53e+09 78.8%
✓ ₱ 54: rajaperf::stream::DOT::runCudaVariant(rajaperf::Varia	5.97e+11 72.9%	5.35e+11 77.1%	3.52e+09 78.6%
✓ ➡ 129: RAJA::ReduceSum <raja::policy::cuda::cuda_red< p=""></raja::policy::cuda::cuda_red<>	5.85e+11 71.4%	5.24e+11 75.4%	3.51e+09 78.4%
✓ ➡ 190: RAJA::cuda::Reduce <false, p="" raja::reduce::sum<=""></false,>	5.73e+11 69.9%	5.12e+11 73.8%	3.50e+09 78.2%
✓ ➡ 848: RAJA::cuda::Reduce <false, p="" raja::reduce::su<=""></false,>	5.61e+11 68.5%	5.01e+11 72.2%	3.50e+09 78.0%
GPU Calling Context v 🗈 843: RAJA::cuda::Reduce_Data <false, raja::re<="" td=""><td>5.39e+11 65.9%</td><td>4.81e+11 69.3%</td><td>3.47e+09 77.5%</td></false,>	5.39e+11 65.9%	4.81e+11 69.3%	3.47e+09 77.5%
 [I] inlined from reduce.hpp: 203 	4.00e+11 48.8%	3.48e+11 50.1%	3.41e+09 76.1%
reduce.hpp: 293	1.31e+11 16.0%	1.24e+11 17.9%	7.48e+06 0.2%
 loop at reduce.hpp: 203 	8.78e+10 10.7%	7.09e+10 10.2%	8.15e+08 18.2%
GPU Loops v loop at reduce.hpp: 203	4.02e+10 4.9%	3.25e+10 4.7%	4.35e+08 9.7%
GPU Hotspot > ≥ 205: _INTERNAL_43_tmpxft_000131	1.54e+10 1.9%	1.27e+10 1.8%	3.01e+08 6.7%
reduce.hpp: 205	1.50e+10 1.8%	1.19e+10 1.7%	1.15e+08 2.6%

Accuracy of GPU Calling Context Recovery: Case Studies

- Compute approximate call counts as the basis for partitioning the cost of function invocations across call sites
 - Use call samples at call sites, data flow analysis to propagate call approximation upward
 - if samples were collected in some function f, if no calls to f were sampled, equally attribute f to each of its call sites
 - How accurate is our approximation?
- Evaluation methodology
 - Use NVIDIA's nvbit to
 - instrument call and return for GPU functions
 - instrument basic blocks to collect block histogram

Accuracy of GPU Calling Context Recovery: Case Studies

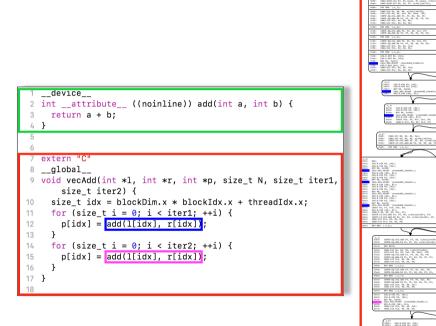
• Error partitioning a function's cost among call sites

$$Error = \sqrt{\sum_{i=0}^{n-1} \frac{\left(\sqrt{\sum_{j=0}^{i_c-1} \frac{(f_N(i,j) - f_H(i,j))^2}{i_c}}\right)^2}{n}}$$

geometric mean across GPU functions of (root mean square error of call attribution across all of a function's call sites comparing our approximation vs. attribution using exact nvbit measurements)

Experimental study

Test Case	Unique Call Paths	Error
Basic_INIT_VIEW1D_OFFSET	9	0
Basic_REDUCE3_INT	113	0.03
Stream_DOT	60	0.006
Stream_TRIAD	5	0
Apps_PRESSURE	6	0
Apps_FIR	5	0
Apps_DEL_DOT_VEC_2D	3	0
Apps_VOL3D	4	0


Costs of GPU Functions Distributed Among Their Call Sites

- Use call site frequency approximation
- Use Gprof assumption: all calls to a function incur exactly the same cost
 - known to not be true in all cases, but a useful assumption nevertheless

GPU call site attribution example

- Case study: call function GPU "vectorAdd"*
 - iter1 = N
 - iter2 = 2N

Note: the computation by the function is synthetic and is not a vector addition. The name came from code that was hacked to do perform an unrelated computation.

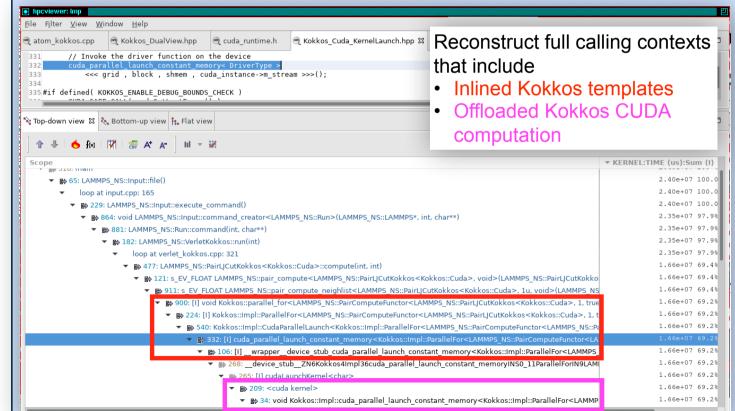
1007 10007 811, 80, 0w1, 80; 10000 811, 80, 0w1, 80;

Profiling Result for GPU-accelerated Example

•••	3-hpcviewer: main
lee vecAdd.cu ⊠	- 0
<pre>11 for (size_t i = 0; i < iter1; ++i) { 12 p[idx] = add(l[idx], r[idx]); 13 } 14 for (size_t i = 0; i < iter2; ++i) {</pre>	GPU kernel
<pre>15 p[idx] = add(l[idx], r[idx]);</pre>	loop 14 loop 11
16 3	device fn calls
💊 Calling Context View 🕱 🗞 Callers View 📊 Flat View	
	device fn calls
Scope	GPU_ISAMP.[0,0] (I'∨ GPU_ISAMP.[0,0] (E)
Experiment Aggregate Metrics	1.78e+07 100 % 1.78e+07 100 %
▼ <program root=""></program>	1.78e+07 100 %
▼ 🖶 500: main	1.78e+07 100 %
▼ 🖶 63: mainomp_fn.0	1.78e+07 100 %
B35: cupti correlation callback cuda	1.78e+07 100 %
V 🔿 301: vecAdd	1.78e+07 100 % 1.52e+07 85.5%
▼loop at vecAdd.cu: 14	1.07e+07 60.3% 8.99e+06 50.6%
vecAdd.cu: 15	1.70e+06 9.6% 1.70e+06 9.6%
▶ 🖶 15: \$vecAdd\$_Z3addii	1.46e+06 8.2% 1.46e+06 8.2%
15: \$vecAdd\$_Z3addii	1.36e+06 7.6% 1.36e+06 7.6%
15: \$vecAdd\$_Z3addii	1.33e+06 7.5% 1.33e+06 7.5%
I5: \$vecAdd\$_Z3addii	1.22e+06 6.9% 1.22e+06 6.9%
vecAdd.cu: 15	9.92e+05 5.6% 9.92e+05 5.6%
vecAdd.cu: 15	9.20e+05 5.2% 9.20e+05 5.2%
vecAdd.cu: 15	9.04e+05 5.1% 9.04e+05 5.1%
vecAdd.cu: 15	8.29e+05 4.7% 8.29e+05 4.7%
▼loop at vecAdd.cu: 11	5.26e+06 29.6% 4.42e+06 24.9%
vecAdd.cu: 12	8.71e+05 4.9% 8.71e+05 4.9%
▶ 🖶 12: \$vecAdd\$_Z3addii	6.95e+05 3.9% 6.95e+05 3.9%
12: \$vecAdd\$_Z3addii	6.70e+05 3.8% 6.70e+05 3.8%
▶ 🗈 12: \$vecAdd\$_Z3addii	6.62e+05 3.7% 6.62e+05 3.7%
▶ 🖶 12: \$vecAdd\$_Z3addii	5.90e+05 3.3% 5.90e+05 3.3%
vecAdd.cu: 12	4.71e+05 2.7% 4.71e+05 2.7%
vecAdd.cu: 12	4.55e+05 2.6% 4.55e+05 2.6%

Support for OpenMP TARGET

- HPCToolkit implementation
 of OMPT OpenMP API
 - host monitoring
 - leverages callbacks for regions, threads, tasks
 - employs OMPT API for call stack introspection
 - GPU monitoring
 - leverages callbacks for device initialization, kernel launch, data operations
 - reconstruction of userlevel calling contexts
- Leverages implementation of OMPT in LLVM OpenMP and libomptarget


ECP QMCPACK Project: miniqmc using OpenMP TARGET (Power9 + NVIDIA V100)

<pre>teinspline_spo_omp.cpp & 309 310 #ifdef ENABLE_OFFLOAD 311 #pragma omp target teams distribute num_teams(NumTeams) thread_lin 312 map(always, from: offload_scratch_ptr[:vgh_dim * padded_size]) 313#else 314 #pragma omp parallel for 315 #endif</pre>	nit (Chunk) • Out	nstruct full ca e lined proced allel regions	J. J	
🕆 Top-down view 🛱 🗞 Bottom-up view 🎋 Flat view	Offle	oaded Open	MP TARGI	ET
] 1 → 1 6 10 11 = A* A*] 11 - ¥		putation and		
Scope	CPUTIME (usec):Sum	KERNEL:TIME (us):Sum	XDMOV:TIME (us):Sum	SYNC: IIME (US):
▼ <program root=""></program>	9.06e+07 74.1%	5.63e+05 100 %	8.87e+04 100 %	1.80e+06 1
🔻 🍺 main	9.06e+07 74.1%	5.57e+05 99.1%	8.80e+04 99.2%	1.78e+06 9
 loop at miniqmc_sync_move.cpp: 432 	1.75e+07 14.3%	4.81e+05 85.4%	6.57e+04 74.0%	1.49e+06 8
▼ 🖶 434: .omp_outlined54	1.68e+07 13.8%	4.81e+05 85.4%	6.57e+04 74.0%	1.49e+06 8
▼ ➡ 435: [1] .omp_outlineddebug53	1.68e+07 13.8%	4.81e+05 85.4%	6.57e+04 74.0%	1.49e+06 8
 loop at miniqmc_sync_move.cpp: 435 	1.68e+07 13.8%	4.81e+05 85.4%	6.57e+04 74.0%	1.49e+06 8
 loop at miniqmc_sync_move.cpp: 459 	1.08e+07 8.8%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
 loop at miniqmc_sync_move.cpp: 461 	1.08e+07 8.8%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
▼ B 480: qmcplusplus::WaveFunction::flex_ratioGrad(std::vecto	8.33e+06 6.8%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
🔻 🖹 415: qmcplusplus::WaveFunction::ratioGrad(qmcplusplu	8.33e+06 6.8%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
🔻 😭 qmcplusplus::DiracDeterminant <qmcplusplus::delay< td=""><td>7.74e+06 6.3%</td><td>3.80e+05 67.6%</td><td>4.84e+04 54.6%</td><td>1.19e+06 6</td></qmcplusplus::delay<>	7.74e+06 6.3%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
▼ B 97: qmcplusplus::einspline_spo_omp <double>::e</double>	7.69e+06 6.3%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
▼ 🖶 340: qmcplusplus::einspline_spo_omp <double< td=""><td>7.69e+06 6.3%</td><td>3.80e+05 67.6%</td><td>4.84e+04 54.6%</td><td>1.19e+06 6</td></double<>	7.69e+06 6.3%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
 loop at einspline spo omp.cpp: 304 	7.65e+06 6.2%	3.80e+05 67.6%	4.84e+04 54.6%	1.19e+06 6
▼ 🖶 311: <omp kernel="" tgt=""></omp>		3.80e+05 67.6%		1.19e+06 6
Bomp_offloading_fd00_88088bZN:		3.80e+05 67.6%		
einspline_spo_omp.cpp: 316		3.80e+05 67.6%		
🕨 🖶 <cuda sync=""></cuda>				1.19e+06 6

Support for RAJA and and Kokkos C++ Template-based Models

- RAJA and Kokkos provide portability layers atop C++ template-based programming abstractions
- HPCToolkit employs binary analysis to recover information about procedures, inlined functions and templates, and loops
 - Enables both developers and users to understand complex template instantiation present with these models

ECP EXAALT Project: lammps using Kokkos over CUDA (Power9 + NVIDIA V100)

Prototype Integration with AMD's Roctracer GPU Monitoring Framework

- Use AMD Roctracer activity API to trace GPU activity
 - kernel launches
 - explicit memory copies
- Current prototype supports AMD's HIP programming model

<pre>116 std::uint32_t sharedMemBytes, hipStream_t stream, 117 hipStream_t stream, 118 void** kernarg) { 119 120 const auto& kd = hip_impl::get_program_state().kernel_descriptor(function_address, 121 target_agent(stream)); 122 123 hipModuleLaunchKernel(kd, numBlocks.x, numBlocks.y, numBlocks.z, 124 dimBlocks.x, dimBlocks.y, dimBlocks.z, 125 stream, nullptr, kernarg); 126 127} // Namespace hip_impl. 128 129 129 129 120 127 // Namespace hip_impl. 128 129 130 template <typename f=""> 131 inline 132 hipError_t hipOccupancyMaxPotentialBlockSize(uint32_t* gridSize, uint32_t* blockSize, 133 F kernel, size_t dynSharedMemPerBlk, uint32_t blockSizeLimit) { 134 135 using namespace hip_impl; 136 137 138 template stypename f> 139 template stypename f> 131 inline 132 hipError_t hipOccupancyMaxPotentialBlockSize(uint32_t* gridSize, uint32_t* blockSize, 138 F kernel, size_t dynSharedMemPerBlk, uint32_t blockSizeLimit) { 139 130 template stypename f> 131 inline 132 hipError_t hipOccupancyMaxPotentialBlockSize(uint32_t* gridSize, uint32_t* blockSize, 131 F kernel, size_t dynSharedMemPerBlk, uint32_t blockSizeLimit) { 130 137 138 139 140 140 140 140 140 140 140 140</typename></pre>	GPU) ibute AMD GPU activity ernel execution lemory copies
<pre>hip_memory.cpp hip_prof_api.h functional_grid_launch.hpp 23 MatrixTranspose.cpp if std::uint32_t sharedMemBytes, hipStream_t stream, hipStream_t stream, it void* kernarg) { const auto& kd = hip_impl::get_program_state().kernel_descriptor(function_address, target_agent(stream)); hipModuleLaunchKernel(kd, numBlocks.x, numBlocks.y, numBlocks.z,</pre>	ibute AMD GPU activity ernel execution
<pre>if std::uint32_t sharedMemBytes, hipStream.t stream, void**kenarg) {</pre>	ibute AMD GPU activity ernel execution
<pre>hipStream_t stream, void** kernarg) { const auto& kd = hip_impl::get_program_state().kernel_descriptor(function_address, target_agent(stream)); hipModuleLaunchKernel(kd, numBlocks.x, numBlocks.y, numBlocks.z,</pre>	ernel execution
129 130 template <typename f=""> 131 inline 132 hipError_t hipOccupancyMaxPotentialBlockSize(uint32_t* gridSize, uint32_t* blockSize, 133 F kernel, size_t dynSharedMemPerBlk, uint32_t blockSizeLimit) { 134 using namespace hip_impl; 135 using namespace hip_impl; 136 templ ·: hin impl ·: hin init(): 137 templ ·: hin impl ·: hin init(): 138 templ ·: hin impl ·: hin init(): 139 templ ·: hin impl ·: hin init(): 139 templ ·: hin impl ·: hin init(): 130 templ ·: hin impl ·: hin init(): 130 templ ·: hin impl ·: hin init(): 131 templ ·: hin impl ·: hin init(): 132 templ ·: hin impl ·: hin init(): 133 templ ·: hin impl ·: hin init(): 134 templ ·: hin impl ·: hin init(): 135 templ ·: hin impl ·: hin init(): 135 templ ·: hin impl ·: hin init(): 136 templ ·: hin impl ·: hin init(): 137 templ ·: hin impl ·: hin init(): 138 templ ·: hin impl ·: hin init(): 139 templ ·: hin impl ·: hin init(): 139 templ ·: hin impl ·: hin init(): 130 templ ·: hin impl ·: hin init(): 130 templ ·: hin impl ·: hin init(): 131 templ ·: hin impl ·: hin init(): 132 templ ·: hin impl ·: hin init(): 132 templ ·: hin impl ·: hin init(): 133 templ ·: hin impl ·: hin init(): 134 templ ·: hin impl ·: hin init(): 135 templ ·: hin impl ·: hin init(): 135 templ ·: hin impl ·: hin init(): 136 templ ·: hin impl ·: hin init(): 137 templ ·: hin impl ·: hin init(): 138 templ ·: hin impl ·: hin init(): 138 templ ·: hin impl ·: hin init(): 139 templ ·: hin impl ·: hin init(): 139 templ ·: hin impl ·: hin init(): 130 templ ·: hin impl ·: hin impl</typename>	
Scope Scope	
Scope ∑ Experiment Aggregate Metrics ▼ <program root=""> ▼ ●516: main ▼ loop at MatrixTranspose.cpp: 84</program>	=
Scope ∑ Experiment Aggregate Metrics ▼ <program root=""> ▼ ●516: main ▼ loop at MatrixTranspose.cpp: 84</program>	
Experiment Aggregate Metrics <program root=""> <pre></pre></program>	KERNEL:TIME (us):5 XDMOV:TIME (us):Sun XDMOV:TIME (us):5
▼	4.93e+03 100 % 1.24e+04 100 % 1.24e+04 100
▼	4.93e+03 100 % 1.24e+04 100 %
▼loop at MatrixTranspose.cpp: 84	4.93e+03 100 % 1.24e+04 100 %
	4.93e+03 100 % 1.24e+04 100 %
▼ ➡175: hip_impl::hipLaunchKernelGGLImpl(unsigned long, dim3 const&, dim3 const&, unsigned int, ihipStream_t*, v	
▼ ≩123: hipModuleLaunchKernel	4.93e+03 100 %
▼ B>287: api_callbacks_spawner_t	4.93e+03 100 %
▶ B)159: <unknown procedure=""></unknown>	
▼ B>106: hipMemcpy	4.93e+03 100 %
▼ ▶1134: api_callbacks_spawner_t	4.93e+03 100 % 6.39e+03 51.6%
▶ ⊯159: <unknown procedure=""></unknown>	

HPCToolkit Challenges and Limitations

- Fine-grain measurement and attribution of GPU performance
 - PC sampling overhead on NIVIDIA GPUs is currently very high: a function of NVIDIA's CUPTI implementation
 - No available hardware support for fine-grain measurement on Intel and AMD GPUs
- GPU tracing in HPCToolkit
 - Creates one tool thread per GPU stream when tracing
 - OK for a small number of streams but many streams can be problematic
- Cost of call path sampling
 - Call path unwinding of GPU kernel invocations is costly (~2x execution dilation for Laghos)
 - Best solution is to avoid some of it, e.g. sample GPU kernel invocations
- Currently, hpcprof and hpcprof-mpi compute dense vectors of metrics
 - Designed for few CPU metrics, not O(100) GPU metrics: space and time problem for analysis

Outline

- Performance measurement and analysis challenges for GPU-accelerated supercomputers
- Introduction to HPCToolkit performance tools
 - Overview of HPCToolkit components and their workflow
 - HPCToolkit's graphical user interfaces and using them effectively
- Analyzing the performance of GPU-accelerated supercomputers with HPCToolkit
 - Overview of HPCToolkit's GPU performance measurement capabilities
 - Collecting measurements
 - Analysis and attribution
 - Exploring measurements and analysis results
- Experiences with analysis and tuning of GPU-accelerated codes
 - Computation, memory hierarchy, and data movement issues
- Obtaining HPCToolkit

Analysis and Optimization Case Studies

- Environments
 - Summit
 - cuda/10.1.168
 - gcc/6.4.0
 - Local
 - cuda/10.1.168
 - gcc/7.3.0

Case 1: Locating expensive GPU APIs with profile view

- Laghos
 - 1 MPI process
 - 1 GPU stream per process

nvprof: missing CPU calling context

Goal: Associate every GPU API with its CPU calling context

0.5 s 0.75 s		1 s
Properties 🛿		
cuMemcpy		
Start	467.06717 ms (467,067,166 ns)	
End	467.08529 ms (467,085,291 ns)	
Duration	18.125 μs	
Description	Memcpy DtoH [sync]	
Start	467.07645 ms (467,076,454 ns)	
End	467.07825 ms (467,078,246 ns)	

Context-aware optimizations

Scope	XDMOV_IMPORTANCE
<cuda copy=""></cuda>	13.23 %
72: mfem::rmemcpy::rDtoD(void*, void const*, unsigned long, bool)	6.83 %
34: [I] mfem::CudaVector::SetSize(unsigned long, void const*)	6.83 %
109: mfem::CudaVector::operator=(mfem::CudaVector const&)	6.83 %
49: mfem::CudaProlongationOperator::MultTranspose(mfem::CudaVector const&, mfer	2.20 %
86: mfem::CudaRAPOperator::Mult(mfem::CudaVector const&, mfem::CudaVector&)	2.14 %
Case 1 4245: mfem::hydrodynamics::LagrangianHydroOperator::Mult(mfem::CudaVector con	. 0.06 1
🖉 🖉 29: mfem::CudaProlongationOperator::Mult(mfem::CudaVector const&, mfem::CudaVector const&,	c 2.20 %
84: mfem::CudaRAPOperator::Mult(mfem::CudaVector const&, mfem::CudaVector&)	2.14 %
256: mfem::hydrodynamics::LagrangianHydroOperator::Mult(mfem::CudaVector con	
Case 2 🛯 130: mfem::hydrodynamics::CudaMassOperator::Mult(mfem::CudaVector const&, mfem	2.14 %
📾 212: mfem::hydrodynamics::LagrangianHydroOperator::Mult(mfem::CudaVector const&	0.15 %
📾 39: mfem::CudaCGSolver::h_Mult(mfem::CudaVector const&, mfem::CudaVector&) const	0.12 %
436: main	0.01 %
e 3 🕫 61: cuVectorDot(unsigned long, double const*, double const*)	6.16 %

Performance insight: Pin host memory page

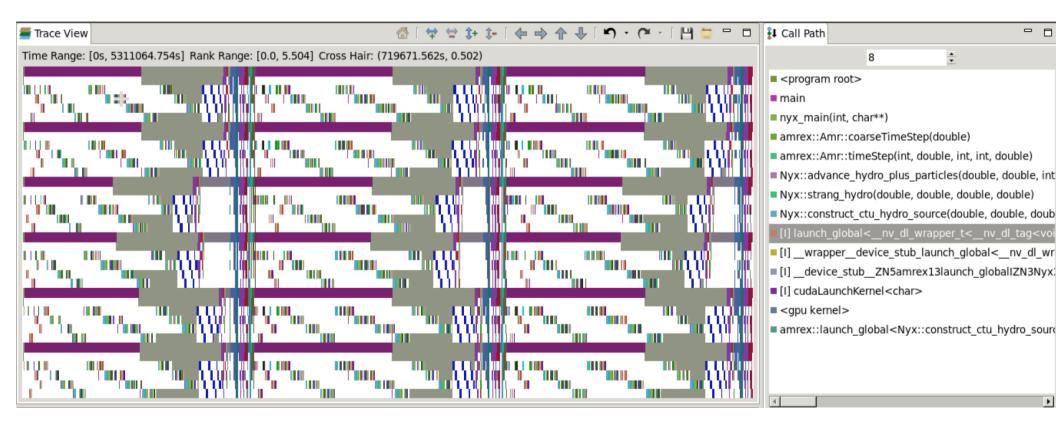
 A small amount of memory is transferred from device to host each time, repeated 197000 times

Scope	▼ GXCOPY (s):Sum (I)	GXCOPY:COUNT:Sum (I)	GXCOPY:D2H (B):Sum (I)
🝷 🕼 61: cuVectorDot(unsigned long, double const*, double const*)	3.67e-01 46.3%	1.97e+05 37.9%	7.81e+06 20.4%

- Avoid the cost of the transfer between pageable and pinned host arrays by directly allocating our host arrays in pinned memory
 - Use pinned memory when data movement frequency is high but size is small

Case 2: Trace Applications at Large-scale

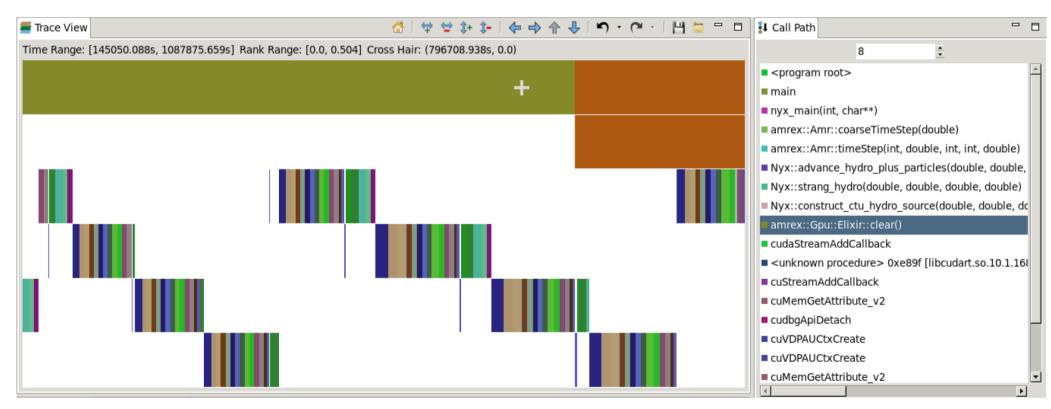
- Nyx
 - 6 MPI processes
 - 16 GPU stream per process
- DCA++
 - 60 MPI processes
 - 128 GPU stream per process


nvprof: Non-scalable Tracing of DCA++

nvprof

- With CPU profiling enabled, hangs on Summit
- Without CPU profiling
 - Collects 1.1 GB data
- Hpctoolkit
 - CPU+GPU hybrid profiling with full calling context
 - Collects 0.13 GB data
 - Data can be further reduced by sampling GPU events

Nyx trace view


DCA++ trace view

Trace View	🚳 [🗢 😂 🄃 (속 今 条 長 [씨 - 🍋 -	- 📔 📛 🖶 🗖 💱 Call Path 🗧
ime Range: [0s, 19774.387s] Rank Ran	ge: [0.0, 59.588] Cross Hair: (10489.564s, 5.574)	19 *
		<pre>rogram root></pre>
		= main
		dca::phys::DcaLoop <dca::phys::parameters< p=""></dca::phys::parameters<>
	- netta-de tito relativativa en al	dca::phys::solver::ctaux::CtauxAccumulator<(dcau)
		void dca::util::callOncePerLoop <dca::phys::solve< p=""></dca::phys::solve<>
		dca::phys::solver::accumulator::TpAccumulator<
		dca::linalg::util::DeviceAllocator <std::complex<col></std::complex<col>
		 <unknown procedure=""> 0x522d7 [libcudart.so.10.1</unknown>
	Control A Control C	 <unknown procedure=""> 0x1154b [libcudart.so.10.1</unknown>
		 <unknown procedure=""> 0x42b8f [libcudart.so.10.1</unknown>
		<unknown procedure=""> 0x2c785b [libcuda.so.418.</unknown>
		 <unknown procedure=""> 0xf1463 [libcuda.so.418.65]</unknown>
		= <unknown procedure=""> 0xf0e6f [libcuda.so.418.67</unknown>
		 <unknown procedure=""> 0x394143 [libcuda.so.418.</unknown>
		<unknown procedure=""> 0x42561b [libcuda.so.418.</unknown>
		ioctl

Nyx insufficient GPU stream parallelism

• On GPU, streams are not working concurrently

Nyx cudaCallBack issue

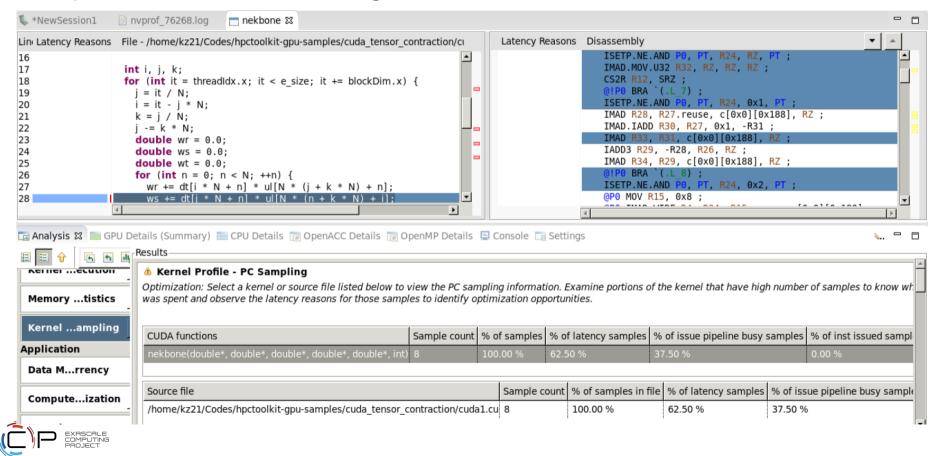
• On CPU, amrex::Gpu::Exlixir::clear() invokes stream callbacks

```
33 void
34 Elixir::clear () noexcept
35 {
36 #ifdef AMREX USE GPU
       if (Gpu::inLaunchRegion())
37
38
       {
39
           if (m p != nullptr) {
               void** p = static cast<void**>(std::malloc(2*sizeof(void*)));
40
               p[\Theta] = m p;
41
               p[1] = (void*)m arena;
42
43
               AMREX HIP OR CUDA(
44
                   AMREX HIP SAFE CALL ( hipStreamAddCallback(Gpu::gpuStream(),
                                                                 amrex elixir delete, p, 0));,
45
                   AMREX CUDA SAFE CALL(cudaStreamAddCallback(Gpu::gpuStream(),
46
47
                                                                 amrex elixir delete, p, 0)););
48
               Gpu::callbackAdded();
49
           }
50
51
       else
52 #endif
```


Nyx performance insight

- A bug present in the current version of CUDA (10.1). If a callBack is called in a place where multiple streams are used, the device kernels artificially synchronize and have no overlap.
- Fixed in CUDA-10.2?
- Workaround
 - The Elixir object holds a copy of the data pointer to prevent it from being destroyed before the related device kernels are completed
 - Allocate new objects outside the compute loop and delete them after the completion of the work

Case 3: Fine-grained GPU Kernel Tuning


Nekbone: A lightweight subset of Nek5000 that mimics the essential computational complexity of Nek5000

nvprof: Limited source level performance metrics

• No loop structure, No GPU calling context,

No instruction mix

Nekbone Profile View

<pre>16 17 int i, j, k; 18 for (int it = threadIdx.x; it < e_size; it += blockDim.x) { 19 j = it / N; 20 i = it - j * N; 21 k = j / N; 22 j -= k * N; 23 double wr = 0.0;</pre>		
Scope	▼ GINS:Sum (I)	GINS:Sum (E)
▼ 🖶 516: main	6.59e+08 100 %	
	6.59e+08 100 %	
¬ B→2:device_stub_Z7nekbonePdS_S_S_S_i(double*, double*, double*, double*, double*, int)	6.59e+08 100 %	
▼	6.59e+08 100 %	
⊽ ⊯209: <gpu kernel=""></gpu>	6.59e+08 100 %	
	6.59e+08 100 %	6.59e+08 100 %
loop at cuda1.cu: 18	3.17e+08 48.1%	3.17e+08 48.1%
Ioop at cuda1.cu: 39	2.21e+08 33.6%	2.21e+08 33.6%
Ioop at cuda1.cu: 11	6.47e+07 9.8%	6.47e+07 9.8%
cuda1.cu: 39	3.30e+07 5.0%	3.30e+07 5.0%
cudal.cu: 11	1.31e+07 2.0%	1.31e+07 2.0%
cuda1.cu: 15	2.76e+06 0.4%	2.76e+06 0.4%

Performance insight 1: Execution dependency

• The hotspot statement is waiting for *j* and *k*

ন্দ্র cudal.cu গ্র				-
<pre>14 15 16 17 int i, j, k; 18 for (int it = threadIdx.x; it < e_size; it += blockDim.x) { 19 j = it / N; 20 i = it - j * N; 21 k = j / N; 22 j -= k * N; 23 double wr = 0.0; 24 double ws = 0.0; 25 double wt = 0.0; 26 for (int n = 0; n < N; ++n) { 27 wr += dt[i * N + n] * ul[N * (j + k * N) + n]]; 28 ws += dt[j * N + n] * ul[N * (n + k * N) + i]; 29 wt += dt[k * N + n] * ul[N * (j + n * N) + i]; 30 } * Top-down view & Bottom-up view } f_* Flat view</pre>				[>]
] 🕆 🖑 [🍝 foo [🕅 [🚟 A* 💦] 🖬 🕣 🔐				
Scope	▼ GINS:Sum (I)	GINS:Sum (E)	GINS:STL_ANY:SL	GINS:STL_ANY:SL GI
∽ ⊯209: <gpu kernel=""></gpu>	6.59e+08 100 %		3.70e+08 100 %	3.0
	6.59e+08 100 %	6.59e+08 100 %	3.70e+08 100 %	3.70e+08 100 % 3.0
✓ loop at cuda1.cu: 18	3.17e+08 48.1%	3.17e+08 48.1%	1.79e+08 48.3%	1.79e+08 48.3% 6.1
cuda1.cu: 27	8.80e+07 13.4%	8.80e+07 13.4%	4.92e+07 13.3%	4.92e+07 13.3% 1.1
cudal.cu: 32	7.72e+07 11.7%	7.72e+07 11.7%	5.36e+07 14.5%	5.36e+07 14.5%
cuda1.cu: 28	5.95e+07 9.0%	5.95e+07 9.0%	3.25e+07 8.8%	3.25e+07 8.8%
eudal eu 20	5 190407 7 98	5 10 <u>0±07</u> 7 08	2 950+07 8 08	2 950107 8 08

Strength reduction

- MISC.CONVERT: I2F, F2I, MUFU instructions
 - NVIDIA GPUs convert integer to float for division
 - High latency and low throughput instruction
- Replace j = it / N by j = it x (1/N) and precompute 1/N

Coming Attraction: Instruction-level Analysis

Separate GPU instructions into classes

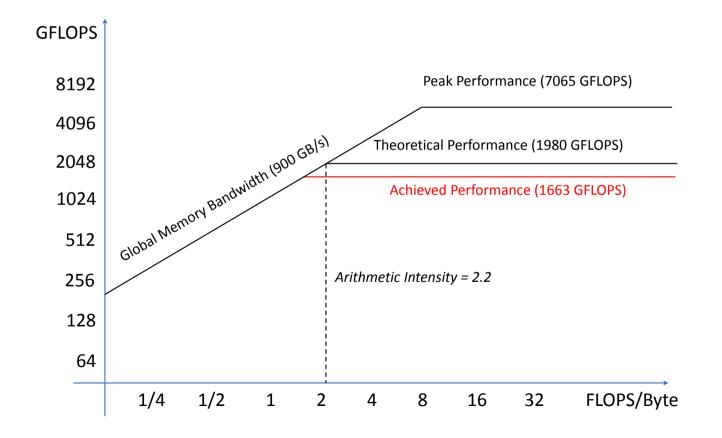
Memory operations

- instruction (load, store)
- size
- memory kind (global memory, texture memory, constant memory)
- Floating point
 - instruction (add, mul, mad)
 - size
 - compute unit (tensor unit, floating point unit)
- Integer operations
- Control operations
 - branches, calls

Performance insight 2: Instruction Throughput

• Estimate instruction throughput based on pc samples

$$.THROUGHPUT = \frac{INS}{TIME}$$


•
$$GFLOPS = THROUGHPUT_{DP}$$

• Arithmetic Intensity = $\frac{THROUGHPUT_{GMEM}}{THROUGHPUT_{DP}}$

Scope		✓ MEMORY.LOAD.GLOBAL.64	MEMORY.STORE.GLOBAL.64	FLOAT.MAD.64:Sum	FLOAT.MUL.64:Sum	FLOAT.ADD.64:Sum
▼ <pro< th=""><th>ogram root></th><th>3.36e+05 100 %</th><th>5.32e+04 100 %</th><th>3.08e+06 100 %</th><th>6.51e+05 100 %</th><th>4.55e+05 100 %</th></pro<>	ogram root>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
- ₽	516: main	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
-	[I] inlined from cuda4.cu: 2	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ 🖶 2:device_stubZ7nekbone	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	 [I] inlined from cuda_runtime. 	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
	▼ 🛱 209: <gpu kernel=""></gpu>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
150 11Pl 1.JE	▼ ➡ 174: nekbone(double*,	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %

Roofline analysis

• 83.9% of peak performance

Performance insight 3: unfused DMUL and DADD

- DMUL: 6.51×10^5
- **DADD:** 4.55×10^5

 3.08×10^{6}

- - 1663 GFLOPS × 114.7% = 1908 GFLOPS (99% of peak)

Scope	▼ MEMORY.LOAD.GLOBAL.64	MEMORY.STORE.GLOBAL.64	FLOAT.MAD.64:Sum	FLOAT.MUL.64:Sum	FLOAT.ADD.64:Sum
<pre>▼ <program root=""></program></pre>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ 🖶 516: main	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
 [I] inlined from cuda4.cu: 2 	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ B 2:device_stub_Z7nekboneF	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
 [I] inlined from cuda_runtime. 	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ 🛱 209: <gpu kernel=""></gpu>	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %
▼ ➡ 174: nekbone(double*,	3.36e+05 100 %	5.32e+04 100 %	3.08e+06 100 %	6.51e+05 100 %	4.55e+05 100 %

Case Study Acknowledgements

- ORNL
 - Ronnie Chatterjee
- IBM
 - Eric Liu
- NERSC
 - Christopher Daley
 - Jean Sexton
 - Kevin Gott

Outline

- Performance measurement and analysis challenges for GPU-accelerated supercomputers
- Introduction to HPCToolkit performance tools
 - Overview of HPCToolkit components and their workflow
 - HPCToolkit's graphical user interfaces and using them effectively
- Analyzing the performance of GPU-accelerated supercomputers with HPCToolkit
 - Overview of HPCToolkit's GPU performance measurement capabilities
 - Collecting measurements
 - Analysis and attribution
 - Exploring measurements and analysis results
- Experiences with analysis and tuning of GPU-accelerated codes
 - Computation, memory hierarchy, and data movement issues
- Obtaining HPCToolkit

Installing HPCToolkit for Analysis of GPU-accelerated Codes

- Full instructions: http://hpctoolkit.org/software-instructions.html
- The short form
 - Clone spack
 - COMMand: git clone https://github.com/spack/spack
 - Configure a packages.yaml file
 - specify your platform's installation of CUDA or ROCM
 - specify your platform's installation of MPI
 - use an appropriate GCC compiler
 - ensure that a GCC version >= 5 is on your path. typically, we use GCC 7.3
 - spack compiler find
 - Install software for your platform using spack
 - NVIDIA GPUS: spack install hpctoolkit@master +cuda +mpi
 - AMD GPUS: spack install hpctoolkit@master +rocm +mpi

