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• Library-based models 
—all data is shared, unless otherwise specified 
—examples: Pthreads, Intel Threading Building Blocks, Java 

Concurrency, Boost, Microsoft .Net Task Parallel Library 

• Directive-based models, e.g., OpenMP 
—shared and private data 
—pragma syntax simplifies thread creation and synchronization 

• Programming languages 
—Cilk Plus (Intel, GCC) 
—CUDA (NVIDIA) 
—Habanero-Java (Rice/Georgia Tech)

Threaded Programming Models



Topics for Today

• The POSIX thread API (Pthreads) 

• Synchronization primitives in Pthreads  
—mutexes 
—condition variables 
—reader/writer locks 

• Thread-specific data  
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POSIX Thread API (Pthreads) 

• Standard threads API supported on almost all platforms  

• Concepts behind Pthreads interface are broadly applicable 
—largely independent of the API  
—useful for programming with other thread APIs as well  

– Windows threads 
– Java threads 
– … 

• Threads are peers, unlike Linux/Unix processes 
—no parent/child relationship



Why Should I Care About Pthreads?

• Pthreads is the foundation for multithreaded programming 
models 
—used to implement higher-level threading libraries such as Boost 

and Intel’s Threading Building Blocks 
—used to implement runtime systems for directive-and language-

based programming models such as OpenMP and Cilk Plus 

• Pthreads is the foundation of multithreaded applications such 
as web browsers
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PThread Creation

Asynchronously invoke thread_function in a new thread 
   #include <pthread.h>
   int pthread_create(
     pthread_t *thread_handle, /* returns handle here */ 
     const pthread_attr_t *attribute, 

   void * (*thread_function)(void *), 
   void *arg); /* single argument; perhaps a structure */

attribute created by pthread_attr_init:

specifies the size for the thread’s stack and how 
the thread should be managed by the OS
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Thread Attributes 

• Stack size  

• Detach state 
— PTHREAD_CREATE_DETACHED, PTHREAD_CREATE_JOINABLE 

– reclaim storage at termination (detached) or retain (joinable) 

• Scheduling policy 
— SCHED_OTHER: standard round robin (priority must be 0) 
— SCHED_FIFO, SCHED_RR: real time policies 

– FIFO: re-enter priority list at head; RR: re-enter priority list at tail 

• Scheduling parameters 
— only priority 

• Inherit scheduling policy 
— PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED 

• Thread scheduling scope 
— PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS

 Special functions exist for getting/setting each attribute property 
 e.g.,  int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)
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Wait for Pthread Termination

  Suspend execution of calling thread until thread terminates 

   #include <pthread.h>
   int pthread_join ( 

  pthread_t thread, /* thread id */ 
  void **ptr); /* ptr to location for return code a terminating 
                                    thread passes to pthread_exit */



Running Example: Monte Carlo Estimation of Pi

Approximate Pi 
—generate random 

points with x, y ∈ 
[-0.5, 0.5] 

—test if point inside 
the circle, i.e.,  
   x2 + y2 < (0.5)2 

—ratio of circle to 
square =  
πr2 / 4r2 = π / 4 

—π ≈ 4 * (number of 
points inside the 
circle) / (number of 
points total)
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default attributes
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Example: Creation and Termination (main)

#include <pthread.h> 
#include <stdlib.h> 
#define NUM_THREADS 32 
void *compute_pi (void *); 
... 
int main(...) { 

... 
pthread_t p_threads[NUM_THREADS]; 
pthread_attr_t attr; 
pthread_attr_init(&attr); 
for (i=0; i< NUM_THREADS; i++) { 

hits[i] = i; 
pthread_create(&p_threads[i], &attr, compute_pi, 
   (void*) &hits[i]); 

} 
for (i=0; i< NUM_THREADS; i++) { 

pthread_join(p_threads[i], NULL); 
total_hits += hits[i]; 

} 
... 

thread function

thread argument
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Example: Thread Function (compute_pi) 

void *compute_pi (void *s) { 
int seed, i, *hit_pointer; 
double x_coord, y_coord; 
int local_hits; 
hit_pointer = (int *) s; 
seed = *hit_pointer; 
local_hits = 0; 
for (i = 0; i < sample_points_per_thread; i++) { 

x_coord = (double)(rand_r(&seed))/(RAND_MAX) - 0.5; 
y_coord =(double)(rand_r(&seed))/(RAND_MAX) - 0.5; 
if ((x_coord * x_coord + y_coord * y_coord) < 0.25) 

local_hits++;  
} 
*hit_pointer = local_hits; 
pthread_exit(0); 

}

rand_r: reentrant 
random number 

generation in 
[0,RAND_MAX]

tally how many random 
points fall in a unit circle 

centered at the origin
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Example: Thread Function (compute_pi) 

void *compute_pi (void *s) { 
int seed, i, *hit_pointer; 
double x_coord, y_coord; 
int local_hits; 
hit_pointer = (int *) s; 
seed = *hit_pointer; 
local_hits = 0; 
for (i = 0; i < sample_points_per_thread; i++) { 

x_coord = (double)(rand_r(&seed))/(RAND_MAX) - 0.5; 
y_coord =(double)(rand_r(&seed))/(RAND_MAX) - 0.5; 
if ((x_coord * x_coord + y_coord * y_coord) < 0.25) 

local_hits++; 
} 
*hit_pointer = local_hits; 
pthread_exit(0); 

}

avoid false sharing by using a local accumulator
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Critical Sections and Mutual Exclusion
• Critical section = code executed by only one thread at a time 
   /* threads compete to update global variable best_cost */  
   if (my_cost < best_cost) 

   best_cost = my_cost;  

• Mutex locks enforce mutual exclusion in Pthreads 
— mutex lock states: locked and unlocked 
— only one thread can lock a mutex lock at any particular time 

• Using mutex locks 
— request lock before executing critical section 
— enter critical section when lock granted 
— release lock when leaving critical section 

• Operations 
     int pthread_mutex_init (pthread_mutex_t *mutex_lock, 

       const pthread_mutexattr_t *lock_attr)

    int pthread_mutex_lock(pthread_mutex_t *mutex_lock)
    int pthread_mutex_unlock(pthread_mutex_t *mutex_lock)

created by  
pthread_mutex_attr_init

specifies mutex type
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Mutex Types 

• Normal 
— thread deadlocks if tries to lock a mutex it already has locked 

• Recursive  
—  single thread may lock a mutex as many times as it wants 

– increments a count on the number of locks 
— thread relinquishes lock when mutex count becomes zero 

• Errorcheck  
— report error when a thread tries to lock a mutex it already 

locked 
— report error if a thread unlocks a mutex locked by another
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Example: Reduction Using Mutex Locks

   pthread_mutex_t cost_lock; 
... 
int main() { 

... 
pthread_mutex_init(&cost_lock, NULL); 
... 

} 
void *find_best(void *list_ptr) { 

... 
pthread_mutex_lock(&cost_lock);   /* lock the mutex */

  if (my_cost < best_cost) 
   best_cost = my_cost;  
pthread_mutex_unlock(&cost_lock); /* unlock the mutex */ 

} 

critical section

use default (normal) lock type
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Producer-Consumer Using Mutex Locks 

Constraints 

• Producer thread  
— must not overwrite the shared buffer until previous task has 

picked up by a consumer 

• Consumer thread  
— must not pick up a task until one is available in the queue 
— must pick up tasks one at a time



critical section
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Producer-Consumer Using Mutex Locks 
pthread_mutex_t task_queue_lock; 
int task_available; 
... 
main() { 

... 
task_available = 0; 
pthread_mutex_init(&task_queue_lock, NULL); 
... 

} 
void *producer(void *producer_thread_data) { 

...
while (!done()) { 

inserted = 0; 
create_task(&my_task); 
while (inserted == 0) { 

pthread_mutex_lock(&task_queue_lock); 
if (work_available == 0) { 

consumer_work = my_task; work_available = 1; 
inserted = 1; 

} 
pthread_mutex_unlock(&task_queue_lock); 

} 
} 

} 



critical section
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Producer-Consumer Using Locks 

void *consumer(void *consumer_thread_data) { 
int extracted; 
struct task my_task; 
/* local data structure declarations */ 
while (!done()) { 

extracted = 0; 
while (extracted == 0) { 

pthread_mutex_lock(&task_queue_lock); 
if (work_available == 1) { 

my_task = consumer_work; 
work_available = 0; 
extracted = 1; 

} 
pthread_mutex_unlock(&task_queue_lock); 

} 
process_task(my_task); 

} 
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Overheads of Locking 

• Locks enforce serialization 
— threads must execute critical sections one at a time 

• Large critical sections can seriously degrade performance 

• Reduce overhead by overlapping computation with waiting   

         int pthread_mutex_trylock(pthread_mutex_t *mutex_lock)
— acquires lock if available 
— returns EBUSY if not available 
— enables a thread to do something else if a lock is unavailable 
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Condition Variables for Synchronization

Condition variable: associated with a predicate and a mutex 

• Using a condition variable 
— thread can block itself until a condition becomes true 

– thread locks a mutex  
– tests a predicate defined on a shared variable  

 if predicate is false, then wait on the condition variable 
 waiting on condition variable unlocks associated mutex  

— when some thread makes a predicate true 
– that thread can signal the condition variable to either  

 wake one waiting thread 
 wake all waiting threads 

– when thread releases the mutex, it is passed to first waiter
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Pthread Condition Variable API

/* initialize or destroy a condition variable */ 
int pthread_cond_init(pthread_cond_t *cond, 

const pthread_condattr_t *attr); 
int pthread_cond_destroy(pthread_cond_t *cond); 

/* block until a condition is true */ 
int pthread_cond_wait(pthread_cond_t *cond, 

pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, 

pthread_mutex_t *mutex,
const struct timespec *wtime); 

/* signal one or all waiting threads that condition is true */ 
int pthread_cond_signal(pthread_cond_t *cond); 
int pthread_cond_broadcast(pthread_cond_t *cond); 

abort wait if time exceeded

wake one wake all
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Condition Variable Producer-Consumer 

pthread_cond_t cond_queue_empty, cond_queue_full; 

pthread_mutex_t task_queue_cond_lock; 

int task_available; 

/* other data structures here */ 

main() { 
/* declarations and initializations */ 

task_available = 0; 
pthread_init(); 
pthread_cond_init(&cond_queue_empty, NULL); 

pthread_cond_init(&cond_queue_full, NULL); 
pthread_mutex_init(&task_queue_cond_lock, NULL); 
/* create and join producer and consumer threads */ 

} 

default  
initializations



reacquires mutex when woken
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Producer Using Condition Variables

note 
loop

void *producer(void *producer_thread_data) { 
int inserted; task_t *t;
while (!done()) { 

t = create_task(); 
pthread_mutex_lock(&task_queue_cond_lock); 
while (work_available == 1) 

pthread_cond_wait(&cond_queue_empty, 
&task_queue_cond_lock); 

consumer_work = t; 
work_available = 1; 
pthread_cond_signal(&cond_queue_full); 
pthread_mutex_unlock(&task_queue_cond_lock); 

} 

} 

releases mutex on wait
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Why Loop When Awaiting A Condition?

When using condition variables there is always a boolean predicate 
that indicates if the thread should proceed or wait 

Spurious wakeups may occur when waiting on condition variables. 

Thus, waking up from a wait on a condition variable doesn’t imply 
anything about the value of the boolean predicate; the predicate must 
be re-evaluated when a conditional wait completes

... 
pthread_mutex_lock(&task_queue_cond_lock); 
while (work_available == 1) 

pthread_cond_wait(&cond_queue_empty, 
&task_queue_cond_lock); 

...
pthread_cond_signal(&cond_queue_full); 
pthread_mutex_unlock(&task_queue_cond_lock);

note 
loop



Why Allow Spurious Wakeups?

• Defining condition variable waits to permit spurious forces 
correct/robust code by requiring predicate loops.  
— "Religiously" using a loop protects the application against its 

own imperfect coding practices.  

• Making condition wakeup completely predictable might 
substantially slow all condition variable operations.  
— It isn’t difficult to imagine machines and implementation code 

that could exploit this semantics to improve the performance 
of average condition wait operations.
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-- David R. Butenhof - author of "Programming with POSIX Threads" 



releases mutex on wait

reacquires mutex when woken
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Consumer Using Condition Variables 

void *consumer(void *consumer_thread_data) { 
while (!done()) { 
   pthread_mutex_lock(&task_queue_cond_lock); 

   while (work_available == 0) 
    pthread_cond_wait(&cond_queue_full, 

    &task_queue_cond_lock); 
my_task = consumer_work; 
work_available = 0; 
pthread_cond_signal(&cond_queue_empty); 
pthread_mutex_unlock(&task_queue_cond_lock); 
process_task(my_task); 

} 

} 

note 
loop
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Reader-Writer Locks 

• Purpose: access to  data structure when  
— frequent reads 
— infrequent writes 

• Acquire read lock 
— OK to grant when other threads already have acquired read 

locks  
— if write lock on the data or queued write locks 

– reader thread performs a condition wait  

• Acquire write lock  
— if multiple threads request a write lock 

– must perform a condition wait
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Read-Write Lock Sketch 
• While pthreads provides a pthread_rwlock, you could build 

your own using basic primitives 

• Use a data type with the following components  
—a count of the number of active readers  
—0/1 integer specifying whether a writer is active 
—a condition variable readers_proceed  

– signaled when readers can proceed 
—a condition variable writer_proceed  

– signaled when one of the writers can proceed  
—a count pending_writers of pending writers 
—a mutex read_write_lock  

– controls access to the reader/writer data structure
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Thread-Specific Data

Goal: associate some state with a thread 

• Choices 
— pass data as argument to each call thread makes 

– not always an option, e.g. when using predefined libraries 
— store data in a shared variable indexed by thread id 
— using thread-specific keys 

• Why thread-specific keys? 
— libraries want to maintain internal state 
— don’t want to require clients to know about it and pass it back 
— substitute for static data in a threaded environment 

• Operations 
   int pthread_key_create(pthread_key_t *key, void (*destroy)(void *))

   int pthread_setspecific(pthread_key_t key, const void *value)

   void *pthread_getspecific(pthread_key_t key)

associate NULL with key in each active thread

retrieve value for current  
thread from key

associate (key,value)  
with current thread
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Thread-Specific Data Example: Key Creation

Example: remember performance information for a thread 

      #include <pthread.h> 

      static pthread_key_t profiler_state; 

      initialize_profiler_state() { 

         … 

         pthread_key_create(&profiler_state,  
                                      (void *) free_profile); 

         … 

      } 

      void free_profile(profile *my_profile) { 

        free(my_profile); 

      }

opaque handle 
used to locate  

thread-specific data

destructor for key value
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Thread-Specific Data Example: Specific Data

Example: remember profiler state for a thread 

      void init_thread_profile(…) { 

         profile *my_profile = (profile *) malloc(…); 

         pthread_setspecific(profiler_state, (void *) my_profile); 

         … 
      } 

      void update_thread_profile(...) { 

        profile *my_profile = (profile *)  
                                   pthread_getspecific(profiler_state); 
        // update profile 

      }
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