
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Programming Shared-memory
Platforms with Pthreads

COMP 422/534 Lecture 9 11 February 2020

2

• Library-based models
—all data is shared, unless otherwise specified
—examples: Pthreads, Intel Threading Building Blocks, Java

Concurrency, Boost, Microsoft .Net Task Parallel Library

• Directive-based models, e.g., OpenMP
—shared and private data
—pragma syntax simplifies thread creation and synchronization

• Programming languages
—Cilk Plus (Intel, GCC)
—CUDA (NVIDIA)
—Habanero-Java (Rice/Georgia Tech)

Threaded Programming Models

Topics for Today

• The POSIX thread API (Pthreads)

• Synchronization primitives in Pthreads
—mutexes
—condition variables
—reader/writer locks

• Thread-specific data

3

4

POSIX Thread API (Pthreads)

• Standard threads API supported on almost all platforms

• Concepts behind Pthreads interface are broadly applicable
—largely independent of the API
—useful for programming with other thread APIs as well

– Windows threads
– Java threads
– …

• Threads are peers, unlike Linux/Unix processes
—no parent/child relationship

Why Should I Care About Pthreads?

• Pthreads is the foundation for multithreaded programming
models
—used to implement higher-level threading libraries such as Boost

and Intel’s Threading Building Blocks
—used to implement runtime systems for directive-and language-

based programming models such as OpenMP and Cilk Plus

• Pthreads is the foundation of multithreaded applications such
as web browsers

5

6

PThread Creation

Asynchronously invoke thread_function in a new thread
 #include <pthread.h>
 int pthread_create(
 pthread_t *thread_handle, /* returns handle here */
 const pthread_attr_t *attribute,

 void * (*thread_function)(void *),
 void *arg); /* single argument; perhaps a structure */

attribute created by pthread_attr_init:

specifies the size for the thread’s stack and how
the thread should be managed by the OS

7

Thread Attributes

• Stack size

• Detach state
— PTHREAD_CREATE_DETACHED, PTHREAD_CREATE_JOINABLE

– reclaim storage at termination (detached) or retain (joinable)

• Scheduling policy
— SCHED_OTHER: standard round robin (priority must be 0)
— SCHED_FIFO, SCHED_RR: real time policies

– FIFO: re-enter priority list at head; RR: re-enter priority list at tail

• Scheduling parameters
— only priority

• Inherit scheduling policy
— PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED

• Thread scheduling scope
— PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS

 Special functions exist for getting/setting each attribute property
 e.g., int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize)

8

Wait for Pthread Termination

 Suspend execution of calling thread until thread terminates

 #include <pthread.h>
 int pthread_join (

 pthread_t thread, /* thread id */
 void **ptr); /* ptr to location for return code a terminating
 thread passes to pthread_exit */

Running Example: Monte Carlo Estimation of Pi

Approximate Pi
—generate random

points with x, y ∈
[-0.5, 0.5]

—test if point inside
the circle, i.e.,
 x2 + y2 < (0.5)2

—ratio of circle to
square =
πr2 / 4r2 = π / 4

—π ≈ 4 * (number of
points inside the
circle) / (number of
points total)

9

(0,0)
(0.5,0)

(0,0.5)

default attributes

10

Example: Creation and Termination (main)

#include <pthread.h>
#include <stdlib.h>
#define NUM_THREADS 32
void *compute_pi (void *);
...
int main(...) {

...
pthread_t p_threads[NUM_THREADS];
pthread_attr_t attr;
pthread_attr_init(&attr);
for (i=0; i< NUM_THREADS; i++) {

hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,
 (void*) &hits[i]);

}
for (i=0; i< NUM_THREADS; i++) {

pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}
...

thread function

thread argument

11

Example: Thread Function (compute_pi)

void *compute_pi (void *s) {
int seed, i, *hit_pointer;
double x_coord, y_coord;
int local_hits;
hit_pointer = (int *) s;
seed = *hit_pointer;
local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

x_coord = (double)(rand_r(&seed))/(RAND_MAX) - 0.5;
y_coord =(double)(rand_r(&seed))/(RAND_MAX) - 0.5;
if ((x_coord * x_coord + y_coord * y_coord) < 0.25)

local_hits++;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

rand_r: reentrant
random number

generation in
[0,RAND_MAX]

tally how many random
points fall in a unit circle

centered at the origin

12

Example: Thread Function (compute_pi)

void *compute_pi (void *s) {
int seed, i, *hit_pointer;
double x_coord, y_coord;
int local_hits;
hit_pointer = (int *) s;
seed = *hit_pointer;
local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

x_coord = (double)(rand_r(&seed))/(RAND_MAX) - 0.5;
y_coord =(double)(rand_r(&seed))/(RAND_MAX) - 0.5;
if ((x_coord * x_coord + y_coord * y_coord) < 0.25)

local_hits++;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

avoid false sharing by using a local accumulator

atomic operation 13

Critical Sections and Mutual Exclusion
• Critical section = code executed by only one thread at a time
 /* threads compete to update global variable best_cost */
 if (my_cost < best_cost)

 best_cost = my_cost;

• Mutex locks enforce mutual exclusion in Pthreads
— mutex lock states: locked and unlocked
— only one thread can lock a mutex lock at any particular time

• Using mutex locks
— request lock before executing critical section
— enter critical section when lock granted
— release lock when leaving critical section

• Operations
 int pthread_mutex_init (pthread_mutex_t *mutex_lock,

 const pthread_mutexattr_t *lock_attr)

 int pthread_mutex_lock(pthread_mutex_t *mutex_lock)
 int pthread_mutex_unlock(pthread_mutex_t *mutex_lock)

created by
pthread_mutex_attr_init

specifies mutex type

14

Mutex Types

• Normal
— thread deadlocks if tries to lock a mutex it already has locked

• Recursive
— single thread may lock a mutex as many times as it wants

– increments a count on the number of locks
— thread relinquishes lock when mutex count becomes zero

• Errorcheck
— report error when a thread tries to lock a mutex it already

locked
— report error if a thread unlocks a mutex locked by another

15

Example: Reduction Using Mutex Locks

 pthread_mutex_t cost_lock;
...
int main() {

...
pthread_mutex_init(&cost_lock, NULL);
...

}
void *find_best(void *list_ptr) {

...
pthread_mutex_lock(&cost_lock); /* lock the mutex */

 if (my_cost < best_cost)
 best_cost = my_cost;
pthread_mutex_unlock(&cost_lock); /* unlock the mutex */

}

critical section

use default (normal) lock type

16

Producer-Consumer Using Mutex Locks

Constraints

• Producer thread
— must not overwrite the shared buffer until previous task has

picked up by a consumer

• Consumer thread
— must not pick up a task until one is available in the queue
— must pick up tasks one at a time

critical section

17

Producer-Consumer Using Mutex Locks
pthread_mutex_t task_queue_lock;
int task_available;
...
main() {

...
task_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);
...

}
void *producer(void *producer_thread_data) {

...
while (!done()) {

inserted = 0;
create_task(&my_task);
while (inserted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (work_available == 0) {

consumer_work = my_task; work_available = 1;
inserted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
}

}

critical section

18

Producer-Consumer Using Locks

void *consumer(void *consumer_thread_data) {
int extracted;
struct task my_task;
/* local data structure declarations */
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (work_available == 1) {

my_task = consumer_work;
work_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
process_task(my_task);

}

19

Overheads of Locking

• Locks enforce serialization
— threads must execute critical sections one at a time

• Large critical sections can seriously degrade performance

• Reduce overhead by overlapping computation with waiting

 int pthread_mutex_trylock(pthread_mutex_t *mutex_lock)
— acquires lock if available
— returns EBUSY if not available
— enables a thread to do something else if a lock is unavailable

20

Condition Variables for Synchronization

Condition variable: associated with a predicate and a mutex

• Using a condition variable
— thread can block itself until a condition becomes true

– thread locks a mutex
– tests a predicate defined on a shared variable

 if predicate is false, then wait on the condition variable
 waiting on condition variable unlocks associated mutex

— when some thread makes a predicate true
– that thread can signal the condition variable to either

 wake one waiting thread
 wake all waiting threads

– when thread releases the mutex, it is passed to first waiter

21

Pthread Condition Variable API

/* initialize or destroy a condition variable */
int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);

/* block until a condition is true */
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond,

pthread_mutex_t *mutex,
const struct timespec *wtime);

/* signal one or all waiting threads that condition is true */
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

abort wait if time exceeded

wake one wake all

22

Condition Variable Producer-Consumer

pthread_cond_t cond_queue_empty, cond_queue_full;

pthread_mutex_t task_queue_cond_lock;

int task_available;

/* other data structures here */

main() {
/* declarations and initializations */

task_available = 0;
pthread_init();
pthread_cond_init(&cond_queue_empty, NULL);

pthread_cond_init(&cond_queue_full, NULL);
pthread_mutex_init(&task_queue_cond_lock, NULL);
/* create and join producer and consumer threads */

}

default
initializations

reacquires mutex when woken

23

Producer Using Condition Variables

note
loop

void *producer(void *producer_thread_data) {
int inserted; task_t *t;
while (!done()) {

t = create_task();
pthread_mutex_lock(&task_queue_cond_lock);
while (work_available == 1)

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

consumer_work = t;
work_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock);

}

}

releases mutex on wait

24

Why Loop When Awaiting A Condition?

When using condition variables there is always a boolean predicate
that indicates if the thread should proceed or wait

Spurious wakeups may occur when waiting on condition variables.

Thus, waking up from a wait on a condition variable doesn’t imply
anything about the value of the boolean predicate; the predicate must
be re-evaluated when a conditional wait completes

...
pthread_mutex_lock(&task_queue_cond_lock);
while (work_available == 1)

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

...
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock);

note
loop

Why Allow Spurious Wakeups?

• Defining condition variable waits to permit spurious forces
correct/robust code by requiring predicate loops.
— "Religiously" using a loop protects the application against its

own imperfect coding practices.

• Making condition wakeup completely predictable might
substantially slow all condition variable operations.
— It isn’t difficult to imagine machines and implementation code

that could exploit this semantics to improve the performance
of average condition wait operations.

25

-- David R. Butenhof - author of "Programming with POSIX Threads"

releases mutex on wait

reacquires mutex when woken

26

Consumer Using Condition Variables

void *consumer(void *consumer_thread_data) {
while (!done()) {
 pthread_mutex_lock(&task_queue_cond_lock);

 while (work_available == 0)
 pthread_cond_wait(&cond_queue_full,

 &task_queue_cond_lock);
my_task = consumer_work;
work_available = 0;
pthread_cond_signal(&cond_queue_empty);
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

}

}

note
loop

27

Reader-Writer Locks

• Purpose: access to data structure when
— frequent reads
— infrequent writes

• Acquire read lock
— OK to grant when other threads already have acquired read

locks
— if write lock on the data or queued write locks

– reader thread performs a condition wait

• Acquire write lock
— if multiple threads request a write lock

– must perform a condition wait

28

Read-Write Lock Sketch
• While pthreads provides a pthread_rwlock, you could build

your own using basic primitives

• Use a data type with the following components
—a count of the number of active readers
—0/1 integer specifying whether a writer is active
—a condition variable readers_proceed

– signaled when readers can proceed
—a condition variable writer_proceed

– signaled when one of the writers can proceed
—a count pending_writers of pending writers
—a mutex read_write_lock

– controls access to the reader/writer data structure

29

Thread-Specific Data

Goal: associate some state with a thread

• Choices
— pass data as argument to each call thread makes

– not always an option, e.g. when using predefined libraries
— store data in a shared variable indexed by thread id
— using thread-specific keys

• Why thread-specific keys?
— libraries want to maintain internal state
— don’t want to require clients to know about it and pass it back
— substitute for static data in a threaded environment

• Operations
 int pthread_key_create(pthread_key_t *key, void (*destroy)(void *))

 int pthread_setspecific(pthread_key_t key, const void *value)

 void *pthread_getspecific(pthread_key_t key)

associate NULL with key in each active thread

retrieve value for current
thread from key

associate (key,value)
with current thread

30

Thread-Specific Data Example: Key Creation

Example: remember performance information for a thread

 #include <pthread.h>

 static pthread_key_t profiler_state;

 initialize_profiler_state() {

 …

 pthread_key_create(&profiler_state,
 (void *) free_profile);

 …

 }

 void free_profile(profile *my_profile) {

 free(my_profile);

 }

opaque handle
used to locate

thread-specific data

destructor for key value

31

Thread-Specific Data Example: Specific Data

Example: remember profiler state for a thread

 void init_thread_profile(…) {

 profile *my_profile = (profile *) malloc(…);

 pthread_setspecific(profiler_state, (void *) my_profile);

 …
 }

 void update_thread_profile(...) {

 profile *my_profile = (profile *)
 pthread_getspecific(profiler_state);
 // update profile

 }

32

References

• Adapted from slides “Programming Shared Address Space
Platforms” by Ananth Grama.

• Bradford Nichols, Dick Buttlar, Jacqueline Proulx Farrell.
“Pthreads Programming: A POSIX Standard for Better
Multiprocessing.” O'Reilly Media, 1996.

• Chapter 7. “Introduction to Parallel Computing” by Ananth
Grama, Anshul Gupta, George Karypis, and Vipin Kumar.
Addison Wesley, 2003

