
CUDA FOR TEGRA

DA-06762-001_v10.1 | April 2019

Application Note

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | ii

TABLE OF CONTENTS

Chapter 1. Overview.. 1
Chapter 2. Memory Management... 2
Chapter 3. Porting Considerations..4

3.1. Memory Selection...4
3.2. Pinned Memory.. 5
3.3. Effective Usage of Unified Memory on Tegra.. 8
3.4. GPU Selection... 9
3.5. Synchronization Mechanism Selection... 10
3.6. GPUDirect RDMA on Tegra... 10
3.7. CUDA Features Not Supported on Tegra...10

Chapter 4. EGL Interoperability... 12
4.1. EGLStream.. 12

4.1.1. EGLStream Flow..13
4.1.2. CUDA as Producer..14
4.1.3. CUDA as Consumer...15
4.1.4. Implicit Synchronization.. 16
4.1.5. Data Transfer Between Producer and Consumer..17
4.1.6. EGLStream Pipeline..17

4.2. EGLImage... 18
4.2.1. CUDA interop with EGLImage.. 18

4.3. EGLSync... 20
4.3.1. CUDA Interop with EGLSync..20
4.3.2. Creating EGLSync from a CUDA Event..21
4.3.3. Creating a CUDA Event from EGLSync..21

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 1

Chapter 1.
OVERVIEW

This document provides an overview of NVIDIA® Tegra® memory architecture and
considerations for porting code from a discrete GPU (dGPU) attached to an x86 system
to the Tegra® integrated GPU (iGPU). It also discusses EGL interoperability.

This guide is for developers who are already familiar with programming in CUDA, and
C/C++, and who want to develop applications for the Tegra® SoC.

Performance guidelines, best practices, terminology, and general information provided
in the CUDA C Programming Guide and the CUDA C Best Practices Guide are applicable to
all CUDA-capable GPU architectures, including Tegra® devices.

The CUDA C Programming Guide and the CUDA C Best Practices Guide are available at the
following web sites:

CUDA C Programming Guide:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA C Best Practices Guide:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 2

Chapter 2.
MEMORY MANAGEMENT

In Tegra® devices, both the CPU (Host) and the iGPU share SoC DRAM memory. A
dGPU with separate DRAM memory can be connected to the Tegra® device over PCIe or
NVLink.

An overview of a dGPU-connected Tegra® memory system is shown in Figure 1.

Figure 1 dGPU-connected Tegra Memory System

In Tegra®, device memory, host memory, and unified memory are allocated on the same
physical SoC DRAM. On a dGPU, device memory is allocated on the dGPU DRAM.
The caching behavior in a Tegra® system is different from that of an x86 system with
a dGPU. The caching and accessing behavior of different memory types in a Tegra®
system is shown in Table 1.

Table 1 Characteristics of Different Memory Types in a Tegra System

Memory Type CPU iGPU Tegra®-connected dGPU

Device memory Not directly accessible Cached Cached

Pageable host
memory

Cached Not directly accessible Not directly accessible

Pinned host memory Uncached where
compute capability is
less than 7.2.

Uncached Uncached

Memory Management

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 3

Cached where compute
capability is greater
than or equal to 7.2.

Unified memory Cached Cached Not supported

On Tegra®, because device memory, host memory, and unified memory are allocated on
the same physical SoC DRAM, duplicate memory allocations and data transfers can be
avoided.

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 4

Chapter 3.
PORTING CONSIDERATIONS

CUDA applications originally developed for dGPUs attached to x86 systems may
require modifications to perform efficiently on Tegra® systems. This section describes
the considerations for porting such applications to a Tegra® system, such as selecting
an appropriate memory buffer type (pinned memory, unified memory, and others) and
selecting between iGPU and dGPU, to achieve efficient performance for the application.

3.1. Memory Selection
CUDA applications can use various kinds of memory buffers, such as device memory,
pageable host memory, pinned memory, and unified memory. Even though these
memory buffer types are allocated on the same physical device, each has different
accessing and caching behaviors, as shown in Table 1. It is important to select the most
appropriate memory buffer type for efficient application execution.

Device Memory

Use device memory for buffers whose accessibility is limited to the iGPU. For example,
in an application with multiple kernels, there may be buffers that are used only by the
intermediate kernels of the application as input or output. These buffers are accessed
only by the iGPU. Such buffers should be allocated with device memory.

Pageable Host Memory

Use pageable host memory for buffers whose accessibility is limited to the CPU.

Pinned Memory

Tegra® systems with different compute capabilities exhibit different behavior in terms
of I/O coherency. For example, Tegra® systems with compute capability greater than
or equal to 7.2 are I/O coherent and others are not I/O coherent. On Tegra® systems
with I/O coherency, the CPU access time of pinned memory is as good as pageable host
memory because it is cached on the CPU. However, on Tegra® systems without I/O

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 5

coherency, the CPU access time of pinned memory is higher, because it is not cached on
the CPU.

Pinned memory is recommended for small buffers because the caching effect is
negligible for such buffers and also because pinned memory does not involve any
additional overhead, unlike Unified Memory. With no additional overhead, pinned
memory is also preferable for large buffers if the access pattern is not cache friendly on
iGPU. For large buffers, when the buffer is accessed only once on iGPU in a coalescing
manner, performance on iGPU can be as good as unified memory on iGPU.

Unified Memory

Unified memory is cached on the iGPU and the CPU. On Tegra®, using unified memory
in applications requires additional coherency and cache maintenance operations
during the kernel launch, synchronization and prefetching hint calls. This coherency
maintenance overhead is slightly higher on a Tegra® system with compute capability
less than 7.2 as they lack I/O coherency.

On Tegra® devices with I/O coherency (with a compute capability of 7.2 or greater)
where unified memory is cached on both CPU and iGPU, for large buffers which are
frequently accessed by the iGPU and the CPU and the accesses on iGPU are repetitive,
unified memory is preferable since repetitive accesses can offset the cache maintenance
cost. On Tegra® devices without I/O coherency (with a compute capability of less than
7.2), for large buffers which are frequently accessed by the CPU and the iGPU and the
accesses on iGPU are not repetitive, unified memory is still preferable over pinned memory
because pinned memory is not cached on both CPU and iGPU. That way, the application
can take advantage of unified memory caching on the CPU.

Pinned memory or unified memory can be used to reduce the data transfer overhead
between CPU and iGPU as both memories are directly accessible from the CPU and the
iGPU. In an application, input and output buffers that must be accessible on both the
host and the iGPU can be allocated using either unified memory or pinned memory.

The unified memory model requires the driver and system software to manage
coherence on the current Tegra SOC. Software managed coherence is by nature non-
deterministic and not recommended in a safe context. Zero-copy memory (pinned
memory) is preferable in these applications.

Evaluate the impact of unified memory overheads, pinned memory cache misses, and
device memory data transfers in applications to determine the correct memory selection.

3.2. Pinned Memory
This section provides guidelines for porting applications that use pinned memory
allocations in x86 systems with dGPUs to Tegra®. CUDA applications developed for a

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 6

dGPU attached to x86 system use pinned memory to reduce data transfer time and to
overlap data transfers with kernel execution time. For specific information on this topic,
see “Data Transfer Between Host and Device” and “Asynchronous and Overlapping
Transfers with Computation” at the following websites.

“Data Transfer Between Host and Device”:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-
between-host-and-device

“Asynchronous and Overlapping Transfers with Computation”:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-
transfers-and-overlapping-transfers-with-computation

On Tegra® systems with no I/O coherency, repetitive access of pinned memory degrades
application performance, because pinned memory is not cached on the CPU in such
systems.

A sample application is shown below in which a set of filters and operations (k1, k2,
and k3) are applied to an image. Pinned memory is allocated to reduce data transfer
time on an x86 system with a dGPU, increasing the overall application speed. However,
targeting a Tegra® device with the same code causes a drastic increase in the execution
time of the readImage() function because it repeatedly accesses an uncached buffer.
This increases the overall application time. If the time taken by readImage() is
significantly higher compared to kernels execution time, it is recommended to use
unified memory to reduce the readImage() time. Otherwise, evaluate the application
with pinned memory and unified memory by removing unnecessary data transfer calls
to decide best suited memory.

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 7

// Sample code for an x86 system with a discrete GPU
int main()
{
 int *h_a,*d_a,*d_b,*d_c,*d_d,*h_d;
 int height = 1024;
 int width = 1024;
 size_t sizeOfImage = width * height * sizeof(int); // 4MB image

 //Pinned memory allocated to reduce data transfer time
 cudaMallocHost(h_a, sizeOfImage);
 cudaMallocHost(h_d, sizeOfImage);

 //Allocate buffers on GPU
 cudaMalloc(&d_a, sizeOfImage);
 cudaMalloc(&d_b, sizeOfImage);
 cudaMalloc(&d_c, sizeOfImage);
 cudaMalloc(&d_d, sizeOfImage);

 //CPU reads Image;
 readImage(h_a); // Intialize the h_a buffer

 // Transfer image to GPU
 cudaMemcpy(d_a, h_a, sizeOfImage, cudaMemcpyHostToDevice);

 // Data transfer is fast as we used pinned memory
 // ----- CUDA Application pipeline start ----
 k1<<<..>>>(d_a,d_b) // Apply filter 1
 k2<<<..>>>(d_b,d_c)// Apply filter 2
 k3<<<..>>>(d_c,d_d)// Some operation on image data
 // ----- CUDA Application pipeline end ----

 // Transfer processed image to CPU
 cudaMemcpy(h_d, d_d, sizeOfImage, cudaMemcpyDeviceToHost);
 // Data transfer is fast as we used pinned memory

 // Use processed Image i.e h_d in later computations on CPU.
 UseImageonCPU(h_d);
}

// Porting the code on Tegra
int main()
{
 int *h_a,*d_b,*d_c,*h_d;
 int height = 1024;
 int width = 1024;
 size_t sizeOfImage = width * height * sizeof(int); // 4MB image

 //Unified memory allocated for input and output
 //buffer of application pipeline
 cudaMallocManaged(h_a, sizeOfImage,cudaMemAttachHost);
 cudaMallocManaged(h_d, sizeOfImage);

 //Intermediate buffers not needed on CPU side.
 //So allocate them on device memory
 cudaMalloc(&d_b, sizeOfImage);
 cudaMalloc(&d_c, sizeOfImage);

 //CPU reads Image;
 readImage (h_a); // Intialize the h_a buffer
 // ----- CUDA Application pipeline start ----
 // Prefetch input image data to GPU
 cudaStreamAttachMemAsync(NULL, h_a, 0, cudaMemAttachGlobal);
 k1<<<..>>>(h_a,d_b)
 k2<<<..>>>(d_b,d_c)
 k3<<<..>>>(d_c,h_d)
 // Prefetch output image data to CPU
 cudaStreamAttachMemAsync(NULL, h_d, 0, cudaMemAttachHost);
 cudaStreamSynchronize(NULL);
 // ----- CUDA Application pipeline end ----

 // Use processed Image i.e h_d on CPU side.
 UseImageonCPU(h_d);
}

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 8

The cudaHostRegister() function

The cudaHostRegister() function is not supported on Tegra® devices with
compute capability less than 7.2, because those devices do not have I/O coherency.
Use other pinned memory allocation functions such as cudaMallocHost() and
cudaHostAlloc() if cudaHostRegister() is not supported on the device.

GNU Atomic operations on pinned memory

The GNU atomic operations on uncached memory is not supported on Tegra® CPU. As
pinned memory is not cached on Tegra® devices with compute capability less than 7.2,
GNU atomic operations is not supported on pinned memory.

3.3. Effective Usage of Unified Memory on Tegra
Using unified memory in applications requires additional coherency and cache
maintenance operations at kernel launch, synchronization, and prefetching hint calls.
These operations are performed synchronously with other GPU work which can cause
unpredictable latencies in the application.

The performance of unified memory on Tegra® can be improved by providing data
prefetching hints. The driver can use these prefetching hints to optimize the coherence
operations. To prefetch the data, the cudaStreamAttachMemAsync() function can
be used, in addition to the techniques described in the “Coherency and Concurrency”
section of the CUDA C Programming Guide at the following link:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd

to prefetch the data. The prefetching behavior of unified memory, as triggered by the
changing states of the attachment flag, is shown in Table 2.

Table 2 Unified Memory Prefetching Behavior per Changing Attachment
Flag States

Previous Flag Current Flag Prefetching Behavior

cudaMemAttachGlobal/
cudaMemAttachSingle

cudaMemAttachHost Causes prefetch to CPU

cudaMemAttachHost cudaMemAttachGlobal/

cudaMemAttachSingle

Causes prefetch to GPU

cudaMemAttachGlobal cudaMemAttachSingle No prefetch to GPU

cudaMemAttachSingle cudaMemAttachGlobal No prefetch to GPU

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 9

The following example shows usage of cudaStreamAttachMemAsync() to prefetch
data.

However, not supported on Tegra® devices are the data prefetching techniques that
use cudaMemPrefetchAsync() as described in the “Performance Tuning” section of
the CUDA C Programming Guide at the following web site:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html�um-
performance-tuning

There are limitations in QNX system software which prevent implementation of
all UVM optimizations. Because of this, using cudaStreamAttachMemAsync() to
prefetch hints on QNX does not benefit performance.

__global__ void matrixMul(int *p, int *q, int*r, int hp, int hq, int wp, int wq)
{
// Matrix multiplication kernel code
}
void MatrixMul(int hp, int hq, int wp, int wq)
{
 int *p,*q,*r;
 int i;
 size_t sizeP = hp*wp*sizeof(int);
 size_t sizeQ = hq*wq*sizeof(int);
 size_t sizeR = hp*wq*sizeof(int);

 //Attach buffers ‘p’ and ‘q’ to CPU and buffer ‘r’ to GPU
 cudaMallocManaged(&p, sizeP, cudaMemAttachHost);
 cudaMallocManaged(&q, sizeQ, cudaMemAttachHost);
 cudaMallocManaged(&r, sizeR);
 //Intialize with random values
 randFill(p,q,hp,wp,hq,wq);

 // Prefetch p,q to GPU as they are needed in computation
 cudaStreamAttachMemAsync(NULL, p, 0, cudaMemAttachGlobal);
 cudaStreamAttachMemAsync(NULL, q, 0, cudaMemAttachGlobal);
 matrixMul<<<....>>>(p,q,r, hp,hq,wp,wq);

 // Prefetch 'r' to CPU as only 'r' is needed
 cudaStreamAttachMemAsync(NULL, r, 0, cudaMemAttachHost);
 cudaStreamSynchronize(NULL);

 // Print buffer ‘r’ values
 for(i = 0; i < hp*wq; i++)
 printf("%d ", r[i]);
}

An additional cudaStreamSynchronize(NULL) call can be added after the
matrixMul kernel code to avoid callback threads that cause unpredictability in a
cudaStreamAttachMemAsync() call.

3.4. GPU Selection
On a Tegra system with a dGPU, deciding whether a CUDA application runs on the
iGPU or the dGPU can have implications for the performance of the application. Some of
the factors that need to be considered while making such a decision are kernel execution

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 10

time, data transfer time, data locality, and latency. For example, to run an application on
a dGPU, data must be transferred between the SoC and the dGPU. This data transfer can
be avoided if the application runs on an iGPU.

3.5. Synchronization Mechanism Selection
The cudaSetDeviceFlags API is used to control the synchronization behaviour of CPU
thread.

Prior to CUDA 10.1, by default, the synchronization mechanism on iGPU uses
cudaDeviceBlockingSync flag, which blocks the CPU thread on a synchronization
primitive when waiting for the device to finish work. The cudaDeviceBlockingSync
flag is suited for platforms with power constraints. But on platforms which require low
latency, the cudaDeviceScheduleSpin flag must be set manually.

In CUDA 10.1 and later releases, the default synchronization flag is determined based on
what is optimized for each platform.

More information about the synchronization flags is given at cudaSetDeviceFlags API
documentation.

3.6. GPUDirect RDMA on Tegra
Starting CUDA 10.1, GPUDirect RDMA is supported on Jetson platform. This feature
enables iGPU and PCIe devices to access the same memory. This will eliminate the
overhead of extra memory copies from PCIe accessible memory to iGPU accessible
memory, and vice versa.

Applications developed for Linux Desktop must be modified slightly while porting
to Jetson. See Developing a Linux Kernel Module using GPUDirect RDMA for more
information.

3.7. CUDA Features Not Supported on Tegra
All core features of CUDA are supported on Tegra platforms. The exceptions are listed
below.

‣ The cudaHostRegister() function is not supported on QNX systems. This is
due to the limitations on QNX OS. It is supported in Linux systems with compute
capability greater than or equal to 7.2.

‣ System wide atomics are not supported on Tegra devices with compute capability
less than 7.2.

‣ Unified memory is not supported on dGPU attached to Tegra.
‣ cudaMemPrefetchAsync() function is not supported since unified memory with

concurrent access is not yet supported on iGPU.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gf01347c3dafebf07e1a0b4321a030a63
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

Porting Considerations

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 11

‣ NVIDIA management library (NVML) library is not supported on Tegra. However,
as an alternative to monitor the resource utilization, tegrastats can be used.

‣ CUDA IPC (CUDA Inter-process communication) is not supported on Tegra devices.
EGLStream can be used communicate between CUDA contexts in two processes.

‣ Remote direct memory access (RDMA) is supported only on Jetson AGX Xavier
platform. On other Tegra platforms, this feature remains unsupported. See
GPUDirect RDMA on Tegra for details.

‣ JIT compilation might require a considerable amount of CPU and bandwidth
resources, potentially interfering with other workloads in the system. Thus,
JIT compilations such as PTX-JIT and NVRTC JIT are not recommended for
deterministic automotive applications and can be bypassed completely by compiling
for specific GPU targets. JIT compilation is not supported on Tegra devices in the
safe context.

‣ Multi process service (MPS) is not supported on Tegra.
‣ Peer to peer (P2P) communication calls are not supported on Tegra.
‣ The cuSOLVER library is not supported on in Tegra® systems running QNX.
‣ The nvGRAPH library is not supported.

More information on some of these features can be found at the following web sites:

IPC:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-
communication

RDMA:

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

MPS:

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

P2P:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-
memory-access

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 12

Chapter 4.
EGL INTEROPERABILITY

An interop is an efficient mechanism to share resources between two APIs. To share data
with multiple APIs, an API must implement an individual interop for each.

EGL provides interop extensions that allow it to function as a hub connecting APIs,
removing the need for multiple interops, and encapsulating the shared resource. An
API must implement these extensions to interoperate with any other API via EGL. The
CUDA supported EGL interops are EGLStream, EGLImage, and EGLSync.

EGL interop extensions allow applications to switch between APIs without the need to
rewrite code. For example, an EGLStream-based application in which NvMedia is the
producer and CUDA is the consumer can be modified to use OpenGL as the consumer
without modifying the producer code.

4.1. EGLStream
EGLStream interoperability facilitates efficient transfer of a sequence of frames from one
API to another API, allowing use of multiple Tegra® engines such as CPU, GPU, ISP,
and others.

Consider an application where a camera captures images continuously, shares them
with CUDA for processing, and then later renders those images using OpenGL. In this
application, the image frames are shared across NvMedia, CUDA and OpenGL. The
absence of EGLStream interoperability would require the application to include multiple
interops and redundant data transfers between APIs. EGLStream has one producer and
one consumer.

EGLStream offers the following benefits:

‣ Efficient transfer of frames between a producer and a consumer.
‣ Implicit synchronization handling.
‣ Cross-process support.
‣ dGPU and iGPU support.
‣ Linux, QNX, and Android operating system support.

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 13

4.1.1. EGLStream Flow
The EGLStream flow has the following steps:

 1. Initialize producer and consumer APIs
 2. Create an EGLStream and connect the consumer and the producer.

EGLStream is created using eglCreateStreamKHR() and destroyed using
eglDestroyStreamKHR().

The consumer should always connect to EGLStream before the producer.

For more information see the EGLStream specification at the following web site:
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

 3. Allocate memory used for EGL frames.
 4. The producer populates an EGL frame and presents it to EGLStream.
 5. The consumer acquires the frame from EGLStream and releases it back to

EGLStream after processing.
 6. The producer collects the consumer-released frame from EGLStream.
 7. The producer presents the same frame, or a new frame to EGLStream.
 8. Steps 4-7 are repeated until completion of the task, with an old frame or a new

frame.
 9. The consumer and the producer disconnect from EGLStream.
 10. Deallocate the memory used for EGL frames.
 11. De-initialize the producer and consumer APIs.

EGLStream application flow is shown in Figure 2.

Figure 2 EGLStream Flow

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 14

CUDA producer and consumer functions are listed in Table 3.

Table 3 CUDA Producer and Consumer Functions

Role Functionality API

To connect a producer to
EGLStream

cuEGLStreamProducerConnect()

cudaEGLStreamProducerConnect()

To present frame to
EGLStream

cuEGLStreamProducerPresentFrame()

cudaEGLStreamProducerPresentFrame()

Obtain released frames cuEGLStreamProducerReturnFrame()

cudaEGLStreamProducerReturnFrame()

Producer

To disconnect from EGLStream cuEGLStreamProducerDisconnect()

cudaEGLStreamProducerDisconnect()

To connect a consumer to
EGLStream

cuEGLStreamConsumerConnect()

cuEGLStreamConsumeConnectWithFlags()

cudaEGLStreamConsumerConnect()

cudaEGLStreamConsumerConnectWithFlags()

To acquire frame from
EGLStream

cuEGLStreamConsumerAcquireFrame()

cudaEGLStreamConsumerAcquireFrame()

To release the consumed
frame

cuEGLStreamConsumerReleaseFrame()

cudaEGLStreamConsumerReleaseFrame()

Consumer

To disconnect from EGLStream cuEGLStreamConsumerDisconnect()

cudaEGLStreamConsumerDisconnect()

4.1.2. CUDA as Producer
When CUDA is the producer, the supported consumers are CUDA, NvMedia and
OpenGL. API functions to be used when CUDA is the producer are listed in Table
3. Except for connecting and disconnecting from EGLStream, all API calls are non-
blocking.

The following producer side steps are shown in the example code that follows:

 1. Prepare a frame (lines 3-19).
 2. Connect the producer to EGLStream (line 21).
 3. Populate the frame and present to EGLStream (lines 23-25).
 4. Get the released frame back from EGLStream (Line 27).

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g7993b0e3802420547e3f403549be65a1
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g3ab15cff9be3b25447714101ecda6a61
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1gb2ef252e72ad2419506f3cf305753c6a

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 15

 5. Disconnect the consumer after completion of the task. (Line 31).
void ProducerThread(EGLStreamKHR eglStream) {
 //Prepares frame
 cudaEglFrame* cudaEgl = (cudaEglFrame *)malloc(sizeof(cudaEglFrame));
 cudaEgl->planeDesc[0].width = WIDTH;
 cudaEgl->planeDesc[0].depth = 0;
 cudaEgl->planeDesc[0].height = HEIGHT;
 cudaEgl->planeDesc[0].numChannels = 4;
 cudaEgl->planeDesc[0].pitch = WIDTH * cudaEgl->planeDesc[0].numChannels;
 cudaEgl->frameType = cudaEglFrameTypePitch;
 cudaEgl->planeCount = 1;
 cudaEgl->eglColorFormat = cudaEglColorFormatARGB;
 cudaEgl->planeDesc[0].channelDesc.f=cudaChannelFormatKindUnsigned
 cudaEgl->planeDesc[0].channelDesc.w = 8;
 cudaEgl->planeDesc[0].channelDesc.x = 8;
 cudaEgl->planeDesc[0].channelDesc.y = 8;
 cudaEgl->planeDesc[0].channelDesc.z = 8;
 size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
 // Buffer allocated by producer
 cudaMalloc(&(cudaEgl->pPitch[0].ptr), numElem);
 //CUDA producer connects to EGLStream
 cudaEGLStreamProducerConnect(&conn, eglStream, WIDTH, HEIGHT))
 // Sets all elements in the buffer to 1
 K1<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem);
 // Present frame to EGLStream
 cudaEGLStreamProducerPresentFrame(&conn, *cudaEgl, NULL);

 cudaEGLStreamProducerReturnFrame(&conn, cudaEgl, eglStream);
 .
 .
 //clean up
 cudaEGLStreamProducerDisconnect(&conn);

 .
}

A frame is represented as a cudaEglFramestructure. The frameType parameter
in cudaEglFrame indicates the memory layout of the frame. The supported memory
layouts are CUDA Array and device pointer. Any mismatch in the width and height
values of frame with the values specified in cudaEGLStreamProducerConnect() leads
to undefined behavior. In the sample, the CUDA producer is sending a single frame,
but it can send multiple frames over a loop. CUDA cannot present more than 64 active
frames to EGLStream.

The cudaEGLStreamProducerReturnFrame() call waits until it receives the released
frame from the consumer. Once the CUDA producer presents the first frame to
EGLstream, at least one frame is always available for consumer acquisition until the
producer disconnects. This prevents the removal of the last frame from EGLStream,
which would block cudaEGLStreamProducerReturnFrame().

Use the EGL_NV_stream_reset extension to set EGLStream attribute
EGL_SUPPORT_REUSE_NV to false to allow the last frame to be removed from
EGLStream. This allows removing or returning the last frame from EGLStream.

4.1.3. CUDA as Consumer
When CUDA is the consumer, the supported producers are CUDA, OpenGL, NvMedia,
Argus, and Camera. API functions to be used when CUDA is the consumer are listed in

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g70c84d9d01f343fc07cd632f9cfc3a06

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 16

Table 3. Except for connecting and disconnecting from EGLStream, all API calls are non-
blocking.

The following consumer side steps are shown in the sample code that follows:

 1. Connect consumer to EGLStream (line 5).
 2. Acquire frame from EGLStream (lines 8-10).
 3. Process the frame on consumer (line 16).
 4. Release frame back to EGLStream (line 19).
 5. Disconnect the consumer after completion of the task (line 22).
void ConsumerThread(EGLStreamKHR eglStream) {
.
.
//Connect consumer to EGLStream
cudaEGLStreamConsumerConnect(&conn, eglStream);
// consumer acquires a frame
unsigned int timeout = 16000;
cudaEGLStreamConsumerAcquireFrame(& conn, &cudaResource, eglStream, timeout);
//consumer gets a cuda object pointer
cudaGraphicsResourceGetMappedEglFrame(&cudaEgl, cudaResource, 0, 0);
size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
.
.
int checkIfOne = 1;
// Checks if each value in the buffer is 1, if any value is not 1, it sets
 checkIfOne = 0.
K2<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem, checkIfOne);
.
.
cudaEGLStreamConsumerReleaseFrame(&conn, cudaResource, &eglStream);
.
.
cudaEGLStreamConsumerDisconnect(&conn);
.
}

In the sample code, the CUDA consumer receives a single frame, but it can also receive
multiple frames over a loop. If a CUDA consumer fails to receive a new frame in the
specified time limit using cudaEGLStreamConsumerAcquireFrame(), it reacquires the
previous frame from EGLStream. The time limit is indicated by the timeout parameter.

The application can use eglQueryStreamKHR() to query for the availability of new
frames using. If the consumer uses already released frames, it results in undefined
behavior. The consumer behavior is defined only for read operations. Behavior is
undefined when the consumer writes to a frame.

If the CUDA context is destroyed while connected to EGLStream, the stream is placed
in the EGL_STREAM_STATE_DISCONNECTED_KHR state and the connection handle is
invalidated.

4.1.4. Implicit Synchronization
EGLStream provides implicit synchronization in an application. For example, in the
previous code samples, both the producer and consumer threads are running in parallel
and the K1 and K2 kernel processes access the same frame, but K2 execution in the
consumer thread is guaranteed to occur only after kernel K1 in the producer thread
finishes. The cudaEGLStreamConsumerAcquireFrame() function waits on the GPU

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 17

side until K1 finishes and ensures synchronization between producer and consumer. The
variable checkIfOne is never set to 0 inside the K2 kernel in the consumer thread.

Similarly, cudaEGLStreamProducerReturnFrame() in the producer thread is
guaranteed to get the frame only after K2 finishes and the consumer releases the
frame. These non-blocking calls allow the CPU to do other computation in between, as
synchronization is taken care of on the GPU side.

The EGLStreams_CUDA_Interop CUDA sample code shows the usage of EGLStream
in detail.

4.1.5. Data Transfer Between Producer and Consumer
Data transfer between producer and consumer is avoided when they are present on the
same device. In a Tegra® platform that includes a dGPU however, such as is in NVIDIA
DRIVE™ PX 2, the producer and consumer can be present on different devices. In that
case, an additional memory copy is required internally to move the frame between
Tegra® SoC DRAM and dGPU DRAM. EGLStream allows producer and consumer to
run on any GPU without code modification.

On systems where a Tegra® device is connected to a dGPU, if a producer frame
uses CUDA array, both producer and consumer should be on the same GPU. But if a
producer frame uses CUDA device pointers, the consumer can be present on any GPU.

4.1.6. EGLStream Pipeline
An application can use multiple EGL streams in a pipeline to pass the frames from
one API to another. For an application where NvMedia sends a frame to CUDA
for computation, CUDA sends the same frame to OpenGL for rendering after the
computation.

The EGLStream pipeline is illustrated in Figure 3.

Figure 3 EGLStream Pipeline

NvMedia and CUDA connect as producer and consumer respectively to one EGLStream.
CUDA and OpenGL connect as producer and consumer respectively to another
EGLStream.

Using multiple EGLStreams in pipeline fashion gives the flexibility to send frames across
multiple APIs without allocating additional memory or requiring explicit data transfers.
Sending a frame across the above EGLStream pipeline involves the following steps.

 1. NvMedia sends a frame to CUDA for processing.
 2. CUDA uses the frame for computation and sends to OpenGL for rendering.
 3. OpenGL consumes the frame and releases it back to CUDA.
 4. CUDA releases the frame back to NvMedia.

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 18

The above steps can be performed in a loop to facilitate the transfer of multiple frames in
the EGLStream pipeline.

4.2. EGLImage
An EGLImage interop allows an EGL client API to share image data with other EGL
client APIs. For example, an application can use an EGLImage interop to share an
OpenGL texture with CUDA without allocating any additional memory. A single
EGLImage object can be shared across multiple client APIs for modification.

An EGLImage interop does not provide implicit synchronization. Applications must
maintain synchronization to avoid race conditions.

An EGLImage is created using eglCreateImageKHR() and destroyed using
eglDestroyImageKHR().

For more information see the EGLImage specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

4.2.1. CUDA interop with EGLImage
CUDA supports interoperation with EGLImage, allowing CUDA to read or modify the
data of an EGLImage. An EGLImage can be a single or multi-planar resource. In CUDA,
a single-planar EGLImage object is represented as a CUDA array or device pointer.
Similarly, a multi-planar EGLImage object is represented as an array of device pointers
or CUDA arrays. EGLImage is supported on Tegra® devices running the Linux, QNX, or
Android operating systems.

Use the cudaGraphicsEGLRegisterImage() API to register an EGLImage object
with CUDA. Registering an EGLImage with CUDA creates a graphics resource
object. An application can use cudaGraphicsResourceGetMappedEglFrame()
to get a frame from the graphics resource object. In CUDA, a frame is represented
as a cudaEglFrame structure. The frameType parameter in cudaEglFrame
indicates if the frame is a CUDA device pointer or a CUDA array. For a single
planar graphics resource, an application can directly obtain a device pointer
or CUDA array using cudaGraphicsResourceGetMappedPointer() or
cudaGraphicsSubResourceGetMappedArray() respectively. A CUDA array can
be bound to a texture or surface reference to access inside a kernel. Also, a multi-
dimensional CUDA array can be read and written via cudaMemcpy3D().

An EGLImage cannot be created from a CUDA object. The
cudaGraphicsEGLRegisterImage() function is only supported on Tegra® devices.

The following sample code shows EGLImage interoperability. In the code, an EGLImage
object eglImage is created using OpenGL texture. The eglImage object is mapped as a
CUDA array pArray in CUDA. The pArray array is bound to a surface object to allow

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 19

modification of the OpenGL texture in the changeTexture. The function checkBuf()
checks if the texture is updated with new values.
int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 CUarray pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Initialize the buffer
 for(int y = 0; y < HEIGHT; y++)
 {
 for(int x = 0; x < WIDTH; x++)
 {
 pSurf[(y*WIDTH + x) * 4] = 0; pSurf[(y*WIDTH + x) * 4 + 1] = 0;
 pSurf[(y*WIDTH + x) * 4 + 2] = 0; pSurf[(y*WIDTH + x) * 4 + 3] = 0;
 }
 }

 // NOP call to error-check the above glut calls
 GL_SAFE_CALL({});

 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));

 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();

 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE,
 EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);
 glFinish();
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf);
 glFinish();

 // Register buffer with CUDA
 cuGraphicsEGLRegisterImage(&pResource, eglImage,
 CU_GRAPHICS_REGISTER_FLAGS_NONE);
 //Get CUDA array from graphics resource object
 cuGraphicsSubResourceGetMappedArray(&pArray, pResource, 0, 0);

 cuCtxSynchronize();

 //Create a CUDA surface object from pArray
 CUresult status = CUDA_SUCCESS;
 CUDA_RESOURCE_DESC wdsc;
 memset(&wdsc, 0, sizeof(wdsc));
 wdsc.resType = CU_RESOURCE_TYPE_ARRAY; wdsc.res.array.hArray = pArray;
 CUsurfObject writeSurface;
 cuSurfObjectCreate(&writeSurface, &wdsc);

 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the OpenGL texture using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(writeSurface, width, height);
 cuCtxSynchronize();

 CUDA_MEMCPY3D cpdesc;
 memset(&cpdesc, 0, sizeof(cpdesc));
 cpdesc.srcXInBytes = cpdesc.srcY = cpdesc.srcZ = cpdesc.srcLOD = 0;
 cpdesc.dstXInBytes = cpdesc.dstY = cpdesc.dstZ = cpdesc.dstLOD = 0;
 cpdesc.srcMemoryType = CU_MEMORYTYPE_ARRAY; cpdesc.dstMemoryType =
 CU_MEMORYTYPE_HOST;
 cpdesc.srcArray = pArray; cpdesc.dstHost = (void *)hostSurf;
 cpdesc.WidthInBytes = WIDTH * 4; cpdesc.Height = HEIGHT; cpdesc.Depth = 1;

 //Copy CUDA surface object values to hostSurf
 cuMemcpy3D(&cpdesc);

 cuCtxSynchronize();

 unsigned char* temp = (unsigned char*)(malloc(bufferSize
 * sizeof(unsigned char)));
 // Get the modified texture values as
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 glFinish();
 // Check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);

 // Clean up CUDA
 cuGraphicsUnregisterResource(pResource);
 cuSurfObjectDestroy(writeSurface);
 .
 .
}
__global__ void changeTexture(cudaSurfaceObject_t arr, unsigned int
 width, unsigned int height){
 unsigned int x = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int y = threadIdx.y + blockIdx.y * blockDim.y;
 uchar4 data = make_uchar4(1, 2, 3, 4);
 surf2Dwrite(data, arr, x * 4, y);
}
void checkbuf(unsigned char *ref, unsigned char *hostSurf) {
 for(int y = 0; y < height*width*4; y++){
 if (ref[y] != hostSurf[y])
 printf("mis match at %d\n",y);
 }
}

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 20

Because EGLImage does not provide implicit synchronization, the above sample
application uses glFinish() and cudaThreadSynchronize() calls to achieve
synchronization. Both calls block the CPU thread. To avoid blocking the CPU thread,
use EGLSync to provide synchronization. An example using EGLImage and EGLSync is
shown in the following section.

4.3. EGLSync
EGLSync is a cross-API synchronization primitive. It allows an EGL client API to share
its synchronization object with other EGL client APIs. For example, applications can use
an EGLSync interop to share the OpenGL synchronization object with CUDA.

An EGLSync object is created using eglCreateSyncKHR() and destroyed using
eglDestroySyncKHR().

For more information see the EGLSync specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

4.3.1. CUDA Interop with EGLSync
In an imaging application, where two clients run on a GPU and share a resource, the
absence of a cross-API GPU synchronization object forces the clients to use CPU-side
synchronization to avoid race conditions. The CUDA interop with EGLSync allows the
application to exchange synchronization objects between CUDA and other client APIs
directly. This avoids the need for CPU-side synchronization and allows CPU to complete
other tasks. In CUDA, an EGLSync object is mapped as a CUDA event.

Currently CUDA interop with EGLSync is supported only on Tegra® devices.

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 21

4.3.2. Creating EGLSync from a CUDA Event
Creating an EGLSync object from a CUDA event is shown in the following sample code.
EGLDisplay dpy = eglGetCurrentDisplay();
// Create CUDA event
cudaEvent_t event;
cudaStream_t *stream;
cudaEventCreate(&event);
cudaStreamCreate(&stream);
// Record the event with cuda event
cudaEventRecord(event, stream);
const EGLAttrib attribs[] = {
 EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib)event,
 EGL_NONE
};
//Create EGLSync from the cuda event
eglsync = eglCreateSync(dpy, EGL_NV_CUDA_EVENT_NV, attribs);
//Wait on the sync
eglWaitSyncKHR(...);

Initialize a CUDA event before creating an EGLSync object from it to avoid undefined
behavior.

4.3.3. Creating a CUDA Event from EGLSync
Creating a CUDA event from an EGLSync object is shown in the following sample code.
EGLSync eglsync;
EGLDisplay dpy = eglGetCurrentDisplay();
// Create an eglSync object from openGL fense sync object
eglsync = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
cudaEvent_t event;
cudaStream_t* stream;
cudaStreamCreate(&stream);
// Create CUDA event from eglSync
cudaEventCreateFromEGLSync(&event, eglSync, cudaEventDefault);
// Wait on the cuda event. It waits on GPU till OpenGL finishes its
// task
cudaStreamWaitEvent(stream, event, 0);

The cudaEventRecord() and cudaEventElapsedTime() functions are not
supported for events created from an EGLSync object.

EGL Interoperability

www.nvidia.com
CUDA for Tegra DA-06762-001_v10.1 | 22

The same example given in the EGLImage section is re-written below to illustrate
the usage of an EGLSync interop. In the sample code, the CPU blocking calls such as
glFinish() and cudaThreadSynchronize() are replaced with EGLSync interop calls.

Starting from CUDA 10.1, the EGLSync object can be created once and reused several
times.

int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 cudaArray_t pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Intialize the buffer
 for(int y = 0; y < bufferSize; y++)
 pSurf[y] = 0;

 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));
 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();

 cudaEvent_t cuda_event;
 cudaEventCreateWithFlags(cuda_event, cudaEventDisableTiming);
 EGLAttribKHR eglattrib[] = { EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib) cuda_event,
 EGL_NONE};
 cudaStream_t* stream;
 cudaStreamCreateWithFlags(&stream,cudaStreamDefault);

 EGLSyncKHR eglsync1, eglsync2;
 cudaEvent_t egl_event;

 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE,
 EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);

 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf);
 //Creates an EGLSync object from GL Sync object to track
 //finishing of copy.
 eglsync1 = eglCreateSyncKHR(eglDisplayHandle, EGL_SYNC_FENCE_KHR, NULL);

 //Create CUDA event object from EGLSync obejct
 cuEventCreateFromEGLSync(&egl_event, eglsync1, cudaEventDefault);

 //Waiting on GPU to finish GL copy
 cuStreamWaitEvent(stream, egl_event, 0);

 // Register buffer with CUDA
 cudaGraphicsEGLRegisterImage(&pResource, eglImage,
 cudaGraphicsRegisterFlagsNone);
 //Get CUDA array from graphics resource object
 cudaGraphicsSubResourceGetMappedArray(&pArray, pResource, 0, 0);
 .
 .
 //Create a CUDA surface object from pArray
 struct cudaResourceDesc resDesc;
 memset(&resDesc, 0, sizeof(resDesc));
 resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = pArray;
 cudaSurfaceObject_t inputSurfObj = 0;
 cudaCreateSurfaceObject(&inputSurfObj, &resDesc);

 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the CUDA array using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(inputSurfObj, width, height);
 cuEventRecord(cuda_event, stream);
 //Create EGLsync object from CUDA event cuda_event
 eglsync2 = eglCreateSync64KHR(dpy, EGL_SYNC_CUDA_EVENT_NV, eglattrib);
 //waits till kernel to finish
 eglWaitSyncKHR(eglDisplayHandle, eglsync2, 0);
 .
 //Copy modified pArray values to hostSurf
 .
 unsigned char* temp = (unsigned char*)(malloc(bufferSize
 * sizeof(unsigned char)));
 // Get the modified texture values
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 .
 .
 // This function check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);

 // Clean up CUDA
 cudaGraphicsUnregisterResource(pResource);
 cudaDestroySurfaceObject(inputSurfObj);
 eglDestroySyncKHR(eglDisplayHandle, eglsync1);
 eglDestroySyncKHR(eglDisplayHandle, eglsync2);
 cudaEventDestroy(egl_event);
 cudaEventDestroy(cuda_event);
 .
 .
}

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Overview
	Memory Management
	Porting Considerations
	3.1. Memory Selection
	3.2. Pinned Memory
	3.3. Effective Usage of Unified Memory on Tegra
	3.4. GPU Selection
	3.5. Synchronization Mechanism Selection
	3.6. GPUDirect RDMA on Tegra
	3.7. CUDA Features Not Supported on Tegra

	EGL Interoperability
	4.1. EGLStream
	4.1.1. EGLStream Flow
	4.1.2. CUDA as Producer
	4.1.3. CUDA as Consumer
	4.1.4. Implicit Synchronization
	4.1.5. Data Transfer Between Producer and Consumer
	4.1.6. EGLStream Pipeline

	4.2. EGLImage
	4.2.1. CUDA interop with EGLImage

	4.3. EGLSync
	4.3.1. CUDA Interop with EGLSync
	4.3.2. Creating EGLSync from a CUDA Event
	4.3.3. Creating a CUDA Event from EGLSync

