
NVIDIA CUDA TOOLKIT 10.1.168

RN-06722-001 _v10.1 | April 2019

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | ii

TABLE OF CONTENTS

Chapter 1. CUDA Toolkit Major Components... 1
Chapter 2. CUDA Release Notes.. 4

2.1. General CUDA... 4
2.2. CUDA Tools...5

2.2.1. CUDA Compilers... 5
2.2.2. CUDA Profiler...5
2.2.3. CUDA-MEMCHECK.. 6

2.3. CUDA Libraries.. 6
2.3.1. cuBLAS Library... 6
2.3.2. cuSOLVER Library.. 7
2.3.3. cuSPARSE Library.. 7
2.3.4. cuFFT Library.. 7
2.3.5. cuRAND Library.. 7
2.3.6. NPP Library...8
2.3.7. nvJPEG Library...8

2.4. Deprecated Features... 8
2.5. Resolved Issues.. 9

2.5.1. CUDA Compilers... 9
2.5.2. CUDA Libraries... 9

2.6. Known Issues... 10
2.6.1. General CUDA...10
2.6.2. CUDA Tools.. 10
2.6.3. CUDA Libraries..11

Chapter 3. Thrust v1.9.4 Release Notes.. 12
3.1. New Features.. 12
3.2. New Examples... 16
3.3. Other Enhancements..16

3.3.1. Tagged Pointer Enhancements... 16
3.3.2. Iterator Enhancements.. 16
3.3.3. Testing Enhancements...16

3.4. Resolved Issues.. 17
Chapter 4. CUDA Tegra Release Notes... 18

4.1. New Features.. 18
4.2. Known Issues and Limitations... 19
4.3. Resolved Issues.. 19
4.4. Deprecated Issues... 19

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | iii

LIST OF TABLES

Table 1 CUDA Toolkit and Compatible Driver Versions ...3

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | iv

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 1

Chapter 1.
CUDA TOOLKIT MAJOR COMPONENTS

This section provides an overview of the major components of the CUDA Toolkit and
points to their locations after installation.
Compiler

The CUDA-C and CUDA-C++ compiler, nvcc, is found in the bin/ directory. It is
built on top of the NVVM optimizer, which is itself built on top of the LLVM compiler
infrastructure. Developers who want to target NVVM directly can do so using the
Compiler SDK, which is available in the nvvm/ directory.
Please note that the following files are compiler-internal and subject to change
without any prior notice.

‣ any file in include/crt and bin/crt
‣ include/common_functions.h, include/device_double_functions.h,

include/device_functions.h, include/host_config.h, include/
host_defines.h, and include/math_functions.h

‣ nvvm/bin/cicc
‣ bin/cudafe++, bin/bin2c, and bin/fatbinary

Tools
The following development tools are available in the bin/ directory (except for
Nsight Visual Studio Edition (VSE) which is installed as a plug-in to Microsoft Visual
Studio, Nsight Compute and Nsight Systems are available in a separate directory).

‣ IDEs: nsight (Linux, Mac), Nsight VSE (Windows)
‣ Debuggers: cuda-memcheck, cuda-gdb (Linux), Nsight VSE (Windows)
‣ Profilers: Nsight Systems, Nsight Compute, nvprof, nvvp, Nsight VSE

(Windows)
‣ Utilities: cuobjdump, nvdisasm, gpu-library-advisor

Libraries
The scientific and utility libraries listed below are available in the lib/ directory
(DLLs on Windows are in bin/), and their interfaces are available in the include/
directory.

‣ cublas (BLAS)
‣ cublas_device (BLAS Kernel Interface)

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 2

‣ cuda_occupancy (Kernel Occupancy Calculation [header file implementation])
‣ cudadevrt (CUDA Device Runtime)
‣ cudart (CUDA Runtime)
‣ cufft (Fast Fourier Transform [FFT])
‣ cupti (CUDA Profiling Tools Interface)
‣ curand (Random Number Generation)
‣ cusolver (Dense and Sparse Direct Linear Solvers and Eigen Solvers)
‣ cusparse (Sparse Matrix)
‣ nvJPEG (JPEG encoding/decoding)
‣ npp (NVIDIA Performance Primitives [image and signal processing])
‣ nvblas ("Drop-in" BLAS)
‣ nvcuvid (CUDA Video Decoder [Windows, Linux])
‣ nvgraph (CUDA nvGRAPH [accelerated graph analytics])
‣ nvml (NVIDIA Management Library)
‣ nvrtc (CUDA Runtime Compilation)
‣ nvtx (NVIDIA Tools Extension)
‣ thrust (Parallel Algorithm Library [header file implementation])

CUDA Samples
Code samples that illustrate how to use various CUDA and library APIs are available
in the samples/ directory on Linux and Mac, and are installed to C:\ProgramData
\NVIDIA Corporation\CUDA Samples on Windows. On Linux and Mac, the
samples/ directory is read-only and the samples must be copied to another location
if they are to be modified. Further instructions can be found in the Getting Started
Guides for Linux and Mac.

Documentation
The most current version of these release notes can be found online at http://
docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html. Also, the version.txt
file in the root directory of the toolkit will contain the version and build number of
the installed toolkit.
Documentation can be found in PDF form in the doc/pdf/ directory, or in HTML
form at doc/html/index.html and online at http://docs.nvidia.com/cuda/
index.html.

CUDA Driver
Running a CUDA application requires the system with at least one CUDA capable
GPU and a driver that is compatible with the CUDA Toolkit. See Table 1. For
more information various GPU products that are CUDA capable, visit https://
developer.nvidia.com/cuda-gpus. Each release of the CUDA Toolkit requires a
minimum version of the CUDA driver. The CUDA driver is backward compatible,
meaning that applications compiled against a particular version of the CUDA
will continue to work on subsequent (later) driver releases. More information on
compatibility can be found at https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#cuda-runtime-and-driver-api-version.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-runtime-and-driver-api-version

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 3

Table 1 CUDA Toolkit and Compatible Driver Versions

CUDA Toolkit
Linux x86_64
Driver Version

Windows x86_64
Driver Version

CUDA 10.1.105 >= 418.39 >= 418.96

CUDA 10.0.130 >= 410.48 >= 411.31

CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26

CUDA 9.2 (9.2.88) >= 396.26 >= 397.44

CUDA 9.1 (9.1.85) >= 390.46 >= 391.29

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51

CUDA 8.0 (8.0.44) >= 367.48 >= 369.30

CUDA 7.5 (7.5.16) >= 352.31 >= 353.66

CUDA 7.0 (7.0.28) >= 346.46 >= 347.62

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit
installation. Note that this driver is for development purposes and is not
recommended for use in production with Tesla GPUs. For running CUDA
applications in production with Tesla GPUs, it is recommended to download the
latest driver for Tesla GPUs from the NVIDIA driver downloads site at http://
www.nvidia.com/drivers.
During the installation of the CUDA Toolkit, the installation of the NVIDIA driver
may be skipped on Windows (when using the interactive or silent installation) or on
Linux (by using meta packages). For more information on customizing the install
process on Windows, see http://docs.nvidia.com/cuda/cuda-installation-guide-
microsoft-windows/index.html#install-cuda-software. For meta packages on Linux,
see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-
manager-metas

CUDA-GDB Sources
CUDA-GDB sources are available as follows:

‣ For CUDA Toolkit 7.0 and newer, in the installation directory extras/. The
directory is created by default during the toolkit installation unless the .rpm or
.deb package installer is used. In this case, the cuda-gdb-src package must be
manually installed.

‣ For CUDA Toolkit 6.5, 6.0, and 5.5, at https://github.com/NVIDIA/cuda-gdb.
‣ For CUDA Toolkit 5.0 and earlier, at ftp://download.nvidia.com/CUDAOpen64/.
‣ Upon request by sending an e-mail to mailto:oss-requests@nvidia.com.

http://www.nvidia.com/drivers
http://www.nvidia.com/drivers
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://github.com/NVIDIA/cuda-gdb
ftp://download.nvidia.com/CUDAOpen64/
mailto:oss-requests@nvidia.com

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 4

Chapter 2.
CUDA RELEASE NOTES

The release notes for the CUDA Toolkit can be found online at http://docs.nvidia.com/
cuda/cuda-toolkit-release-notes/index.html.

2.1. General CUDA
‣ Introducing NVIDIA® Nsight™ Systems, a system-wide performance analysis tool

designed to visualize an application’s algorithms. This tool will help you identify the
largest opportunities to optimize, and efficiently tune to scale across any quantity or
size of CPUs and GPUs—from a large server to the smallest SoC. See more here.

‣ Added 6.4 version of the Parallel Thread Execution instruction set architecture (ISA).
For more details on new (noreturn, mma) and deprecated instructions (satfinite,
non-sync versions of shfl and vote), see this section in the PTX documentation.

‣ The following new operating systems are supported by CUDA. See the System
Requirements section in the NVIDIA CUDA Installation Guide for Linux for a full
list of supported operating systems.

‣ Ubuntu 18.10
‣ RHEL 7.6
‣ Fedora 29
‣ SUSE SLES 12.4
‣ Windows Server 2019
‣ Windows 10 (October 2018 Update)

‣ Improved the scalability of cudaFree* APIs on multi-GPU systems.
‣ Added support for cooperative group kernels (using the

cudaLaunchCooperativeKernel API) with MPS.
‣ Relaxed IPC restrictions so that P2P can be enabled between devices that are not set

by CUDA_VISIBLE_DEVICES.
‣ In CUDA 10.1 the CUDA Runtime API error codes are renumbered to match,

wherever possible, their CUDA Driver API equivalents.
‣ Added GPU accounting, on Volta only, to keep track of open compute contexts and

GPU utilization. This data is updated when the driver is loaded, but can be retrieved
in driver-loaded and driver-unloaded modes via Out of Band (OOB).

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#ptx-isa-version-6-4
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g3f51e3575c2178246db0a94a430e0038
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g3f51e3575c2178246db0a94a430e0038

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 5

‣ Added an out-of-band mechanism to fetch the instantaneous GPU and memory
utilization See SMBPBI spec for the documentation.

‣ Added the ability to query GPU NVLink error rates / counts via out of band (OOB)
with or without a driver present. See SMBPBI spec for the documentation.

‣ Added support for installing CUDA using runfiles on POWER (ppc64le) platforms.
‣ Added new CUDA samples for CUDA Graph APIs.

2.2. CUDA Tools

2.2.1. CUDA Compilers
‣ The following compilers are supported as host compilers in nvcc:

‣ GCC 8.x
‣ Clang 7.0
‣ Microsoft Visual Studio 2017 (RTW, and all updates)
‣ Microsoft Visual Studio 2019 (Preview releases)
‣ PGI 19.x
‣ ICC 19.0
‣ Xcode 10.1 (10B61)

‣ New functions __isShared(), __isConstant() and __isLocal() have
been added, to check if a generic pointer points to an object in __shared__,
__constant__ or local memory, respectively. These functions are documented in
the CUDA C Programming Guide, along with the existing __isGlobal() function.

‣ The existing API functions nvrtcGetLoweredName and
nvrtcAddNameExpression have been enhanced to allow looking up the mangled
(lowered) name of __constant__ and __device__ variables. Details and example
here: https://docs.nvidia.com/cuda/nvrtc/index.html#accessing-lowered-names.

‣ nvcc now supports the "-MF" and "-MM" flags related to dependency generation.
See below the description of the new flags from "nvcc --help":

‣ --generate-nonsystem-dependencies (-MM) : Same as --generate-
dependencies but skip header files found in system directories (Linux only).

‣ --dependency-output (-MF): Specify the output file for the dependency file
generated with -M or -MM. If this option is not specified, the output is the same
as if -E has been specified.

2.2.2. CUDA Profiler
‣ For new features in Visual Profiler and nvprof, see the What's New section in the

Profiler User’s Guide.
‣ For new features available in CUPTI, see the What's New section in the CUPTI

documentation.
‣ For system wide profiling, use Nsight Systems. Refer to the Nsight Systems Release

Notes.

https://apps.nvinfo.nvidia.com/pid/contentlibraries/detail?id=1001187
https://apps.nvinfo.nvidia.com/pid/contentlibraries/detail?id=1001187
https://apps.nvinfo.nvidia.com/pid/contentlibraries/detail?id=1001187
https://apps.nvinfo.nvidia.com/pid/contentlibraries/detail?id=1001187
https://docs.nvidia.com/cuda/nvrtc/index.html#accessing-lowered-names
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#whats-new
https://docs.nvidia.com/cupti/Cupti/r_overview.html#r_whats_new
https://docs.nvidia.com/cupti/Cupti/r_overview.html#r_whats_new
https://docs.nvidia.com/nsight-systems/
https://docs.nvidia.com/nsight-systems/

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 6

‣ For profiling specific CUDA kernels, use Nsight Compute. Refer to the Nsight
Compute Release Notes.

2.2.3. CUDA-MEMCHECK
‣ For new features in CUDA-MEMCHECK, see the Release Notes in the CUDA-

MEMCHECK documentation.

2.3. CUDA Libraries
This release of the CUDA toolkit is packaged with libraries that deliver new and
extended functionality, bug fixes, and performance improvements for single and multi-
GPU environments.

Also in this release the soname of the libraries has been modified to not include the
minor toolkit version number. For example, the cuFFT library soname has changed from
libcufft.so.10.1 to libcufft.so.10. This is done to facilitate any future library
updates that do not include API breaking changes without the need to relink.

2.3.1. cuBLAS Library
‣ With this release, on Linux systems, the cuBLAS libraries listed below are now

installed in the /usr/lib/<arch>-linux-gnu/ or /usr/lib64/ directories as
shared and static libraries. Their interfaces are available in the /usr/include
directory:

‣ cublas (BLAS)
‣ cublasLt (new Matrix Multiply library)

‣ Note that the new installation locations of cuBLAS libraries are different from the
past versions. In the past versions the libraries were installed in directories under the
main toolkit installation directory.

‣ Package managers on Linux OSs will remove the previous version of cuBLAS and
update to the new libraries in the new location. For linking and execution make sure
the new location is specified within your paths such as LD_LIBRARY_PATH.

‣ With this update, the versioning scheme of the cuBLAS library has changed to a
4-digit version. Because of this change, version numbers might differ between the
CUDA toolkit and cuBLAS libraries in future releases. For the new 4-digit version:

‣ The first three digits follow semantic versioning, and
‣ The last digit is the build number.

‣ A new library, the cuBLASLt, is added. The cuBLASLt is a new lightweight library
dedicated to GEneral Matrix-to-matrix Multiply (GEMM) operations with a new
flexible API. This new library adds flexibility in matrix data layouts, input types,
compute types, and also in choosing the algorithmic implementations and heuristics
through parameter programmability. Read more at: http://docs.nvidia.com/cuda/
cublas/index.html#using-the-cublasLt-api.

‣ The new cuBLASLt library is packaged as a separate binary and a header file. Also,
the cuBLASLt now adds support for:

https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html
http://docs.nvidia.com/cuda/cuda-memcheck/index.html#release-notes
http://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasLt-api
http://docs.nvidia.com/cuda/cublas/index.html#using-the-cublasLt-api

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 7

‣ Utilization of IMMA tensor core operations on Turing GPUs for int8 input
matrices.

‣ FP16 half-precision CGEMM split-complex matrix multiplies using tensor cores
on Volta and Turing GPUs.

2.3.2. cuSOLVER Library
‣ For symmetric dense eigensolver:

‣ Added a new selective eigensolver functionality for standard and generalized
eigenvalue problems: SYEVDX and SYGVDX

‣ Improved the performance for full eigenspectrum eigensolver.
‣ Added a new batched GESVDA API that computes the approximate singular value

decomposition of a tall skinny m×n matrix A.
‣ Added a new POTRI API that computes the inverse of a symmetric positive definite

matrix, using the Cholesky factorization computed by DPOTRF.

2.3.3. cuSPARSE Library
‣ Added a new generic Sparse x Dense Matrix Multiply (SpMM) APIs that

encapsulates the functionality of many legacy APIs.
‣ Added a new COO matrix-matrix multiplication (cooMM) implementation with:

‣ Deterministic and non-deterministic variants
‣ Batched SpMM
‣ Support for multiple data type combinations
‣ Speed-ups w.r.t. csrMM for matrices with highly irregular nnzs/row

‣ Added two new algorithms for csr2csc format conversions with improved
performance and reduced memory use.

2.3.4. cuFFT Library
‣ Improved the performance and scalability for the following use cases:

‣ multi-GPU non-power of 2 transforms
‣ R2C and Z2D odd sized transforms
‣ 2D transforms with small sizes and large batch counts

2.3.5. cuRAND Library
‣ Improved the performance of the following random number generators:

‣ MTGP32
‣ MRG32k3a
‣ Sobol32 and Scrambled Sobol32
‣ Sobol64 and Scrambled Sobol64

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 8

2.3.6. NPP Library
‣ Some of the most commonly used image processing functions were extended to

support the FP16 (__half) data type on GPU architectures Volta and beyond.
‣ Added support for application-managed stream contexts. Application-managed

stream contexts make NPP truely stateless internally, allowing for rapid, stream
context switching with no overhead.

‣ While it is recommended that all new NPP application code use application-
managed stream contexts, existing application code can continue to use
nppSetStream() and nppGetStream() to manage stream contexts (also with no
overhead now). But over time NPP will likely deprecate the older non-application-
managed stream context API.

2.3.7. nvJPEG Library
‣ Added baseline encoding functionality to the library that will be extended in future

releases.
‣ Added new batched decoding that uses GPU acceleration for all phases of

computation. This delivers significant performance gains for large batches of images
where most images are baseline encoded JPEG images.

‣ Added new APIs for pinned memory allocator and for memory overallocations.
‣ The nvJPEG library is now added to the Linux ppc64le CUDA Toolkit distributions.

2.4. Deprecated Features
The following features are deprecated in the current release of the CUDA software.
The features still work in the current release, but their documentation may have
been removed, and they will become officially unsupported in a future release. We
recommend that developers employ alternative solutions to these features in their
software.
General CUDA

‣ Nsight Eclipse Edition standalone is deprecated in CUDA 10.1, and will be
dropped in the release that immediately follows CUDA 10.1.

‣ Support for RHEL 6.x is deprecated with CUDA 10.1. It may be dropped in a
future release of CUDA. Customers are encouraged to adopt RHEL 7.x to use
new versions of CUDA.

‣ The following compilers are no longer supported as host compilers for nvcc

‣ PGI 17.x
‣ Microsoft Visual Studio 2010
‣ Clang versions lower than 3.7

‣ Microsoft Visual Studio versions 2011, 2012 and 2013 are now deprecated as
host compilers for nvcc. Support for these compilers may be removed in a future
release of CUDA.

‣ 32-bit tools are no longer supported starting with CUDA 10.0.

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 9

‣ NVIDIA GPU Library Advisor (gpu-library-advisor) is now deprecated and
will be removed in a future release of the toolkit.

‣ The non-sync definitions of warp shuffle functions (__shfl, __shfl_up,
__shfl_down, and __shfl_xor) and warp vote functions (__any, __all,
__ballot) have been removed when compilation is targeting devices with
compute capability 7.x and higher.

‣ For WMMA operations with floating point accumulators, the satf (saturate-
to-finite value) mode parameter is deprecated. Using it can lead to unexpected
results. See http://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#wmma-description for details.

CUDA Libraries

‣ The nvGRAPH library is deprecated. The library will no longer be shipped in
future releases of the CUDA toolkit.

‣ The nppGetGpuComputeCapability function will be deprecated in the next
NPP release. Users should instead call the cudaGetDevice() to get the GPU
device ID, then call the function cudaDeviceGetAttribute() twice, once with
the cudaDevAttrComputeCapabilityMajor parameter, and once with the
cudaDevAttrComputeCapabilityMinor parameter.

2.5. Resolved Issues

2.5.1. CUDA Compilers
‣ In CUDA 9.2 nvprune crashes when running on a library with bss sections--for

example, while pruning libcusparse_static.a. This is fixed in CUDA 10.1.
‣ Within a template function, the CUDA compiler previously incorrectly allowed

the use of an undeclared function. In CUDA 10.1, this compiler bug has been fixed
and may cause diagnostics to be emitted for code that was previously incorrectly
accepted. For example:
//-- template <typename T>
__global__ void foo(T in) { bar(in); }
int main() { foo<<<1,1>>>(1); }
__device__ void bar(int) { }
//--

This example was accepted by the previous CUDA compiler, but will generate a
compile error with CUDA 10.1 compiler, because the function bar() is used in
foo() before it has been declared.

2.5.2. CUDA Libraries
‣ In earlier releases, cuBLAS GEMM calls might randomly crash when running

multiple host threads sharing one cuBLAS handle despite adhering to
recommended usage in Thread Safety. This bug affects cuBLAS in earlier CUDA
releases, and is fixed in CUDA 10.1.

‣ This bug affects cuSOLVER dense linear algebra functionality in CUDA 10.0, and is
fixed in CUDA 10.1. An internal routine (LARFT) in cuSOLVER dense linear algebra

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-description
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-description
https://docs.nvidia.com/cuda/cublas/index.html#thread-safety2

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 10

has a race condition if the user stream is not null. Although this routine is not in
the cuSOLVER public API, it affects all routines based on householder reflection,
including ORGBR, ORMTR, ORGTR, ORMQR, ORMQL, ORGQR AND SYEVD,
SYGVD.

The following routines are not affected:

‣ GEQRF and GESVD.
‣ Also, GESVDJ and SYEVDJ are not affected because they are based-on the Jacobi

method.
‣ The cuSOLVER routine SYEVD in CUDA 10.0 has a bug that may potentially

impact single and single complex eigenvalue problems. In affected cases, the
eigensolver may deliver inaccurate eigenvalues and eigenvectors. This bug only
affects cuSOLVER dense linear algebra functionality in CUDA 10.0 and is fixed in
CUDA 10.1.

‣ In CUDA 10.0 cuBLAS library, a bug in the batched LU factorization, cublas[S|
D|C|Z]getrfBatched, may lead to wrong result or inconsistent result from run to
run. CUDA 10.1 fixes the issue.

2.6. Known Issues

2.6.1. General CUDA
‣ On systems with a new install of Ubuntu 18.04.2, note that the installation of CUDA

10.1 and NVIDIA 418 drivers may result in the following error:

The following packages have unmet dependencies:

xserver-xorg-video-nvidia-418 : Depends:

xserver-xorg-core (>= 2:1.19.6-1ubuntu2~)

E: Unable to correct problems, you have held broken packages.

To recover from this error, install the xserver-xorg-core package and proceed with the
installation of CUDA.

$ sudo apt-get install xserver-xorg-core

This error is only observed on systems with a new install of Ubuntu 18.04.2. The
error is not observed on systems that are upgraded from 18.04.1 to 18.04.2.

‣ Xwayland is not compatible with nvidia-settings and graphical CUDA samples.
Recommend switching to Xorg session.

2.6.2. CUDA Tools
‣ When using separate compilation and object linking for the device code (nvcc --

relocatable-device-code=true or nvcc --device-c) the resulting binary
may crash at runtime when all conditions below are true:

CUDA Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 11

 1. Some of the objects linked into the binary are generated by a previously released
compiler (i.e., compiler from CUDA 10.0 Toolkit or earlier), and

 2. Objects generated by the previously released compiler contain CUDA kernel
function definition (i.e., “__global__” functions).

A possible workaround in such case is to generate all the objects with the CUDA
10.1 compiler.

‣ For known issues in cuda-memcheck, see the Known Issues section in the cuda-
memcheck documentation.

‣ For known issues in Nsight Compute, see the Known Issues section.
‣ When enabling the "Auto Profile" option in the Nsight Compute UI, profiling across

different GPU architectures may fail.

To workaround this issue, profile the relevant kernels using the Nsight Compute
CLI, or disable "Auto Profile" in the UI and manually profile these kernels.

‣ The tools nv-nsight-cu and nv-nsight-cu-cli will not work on any Linux
platform with GLIBC version lower than 2.15. Hence these tools will not work on
RHEL 6.10 and CentOS 6.10, which use GLIBC 2.12.

‣ For known issues in CUDA Profiling tools nvprof and Visual Profiler, see the
Profiler Known Issues section in the Nsight Eclipse Edition Getting Started Guide.

‣ For known issues in the CUPTI library, see the Limitations section in the CUPTI
document.

‣ For known issues in Nsight Eclipse, see the Nsight Eclipse Known Issues section in
the Profiler User’s Guide.

‣ On Windows CUPTI samples and other applications using the CUPTI APIs will
result in the error "cupti.dll was not found". This is due to a mismatch in the CUPTI
dynamic library name referenced in the import library “cupti.lib”.
To workaround this issue rename the CUPTI dynamic library under the CUDA
Toolkit directory (Default location is: “C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v10.1\extras\CUPTI\lib64”) from “cupti64_101.dll” to “cupti.dll”.

‣ A call to cuptiFinalize()/cuptiProfilerDeInitialize() API can result in a
hang with 410.x driver. Please use a 418 or later driver.

2.6.3. CUDA Libraries
‣ cuSOLVER dense linear algebra routine GETRF might exit with error code 702 on

GPUs that have only 2 SMs Jetson TX1 GPUs.

http://docs.nvidia.com/cuda/cuda-memcheck/index.html#known-issues
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#known-issues
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#profiler-known-issues
https://docs.nvidia.com/cupti/Cupti/r_limitations.html#r_limitations
https://docs.nvidia.com/cuda/nsight-eclipse-edition-getting-started-guide/index.html#unique_370340335

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 12

Chapter 3.
THRUST V1.9.4 RELEASE NOTES

Thrust v1.9.4 adds asynchronous interfaces for parallel algorithms, a new allocator
system including caching allocators and unified memory support, as well as a variety of
other enhancements, mostly related to C++11/C++14/C++17/C++20 support.

The new asynchronous algorithms in the thrust::async namespace return
thrust::event or thrust::future objects, which can be waited upon to synchronize
with the completion of the parallel operation.

3.1. New Features
‣ thrust::event and thrust::future<T>, uniquely-owned asynchronous handles

consisting of a state (ready or not ready), content (some value; for thrust::future
only), and an optional set of objects that should be destroyed only when the future's
value is ready and has been consumed.

‣ The design is loosely based on C++11's std::future.
‣ They can be .wait'd on, and the value of a future can be waited on and

retrieved with .get or .extract.
‣ Multiple thrust::events and thrust::futures can be combined with

thrust::when_all.
‣ thrust::futures can be converted to thrust::events.
‣ Currently, these primitives are only implemented for the CUDA backend and

are C++11 only.
‣ New asynchronous algorithms that return thrust::event/thrust::futures,

implemented as C++20 range style customization points:

‣ thrust::async::reduce.
‣ thrust::async::reduce_into, which takes a target location to store the

reduction result into.
‣ thrust::async::copy, including a two-policy overload that allows explicit

cross system copies which execution policy properties can be attached to.
‣ thrust::async::transform.
‣ thrust::async::for_each.

Thrust v1.9.4 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 13

‣ thrust::async::stable_sort.
‣ thrust::async::sort.
‣ By default the asynchronous algorithms use the new caching allocators.

Deallocation of temporary storage is deferred until the destruction of the
returned thrust::future. The content of thrust::futures is stored in either
device or universal memory and transferred to the host only upon request to
prevent unnecessary data migration.

‣ Asynchronous algorithms are currently only implemented for the CUDA system
and are C++11 only.

‣ exec.after(f, g, ...), a new execution policy method that takes a set of
thrust::event/thrust::futures and returns an execution policy that operations
on that execution policy should depend upon.

‣ New logic and mindset for the type requirements for cross-system sequence copies
(currently only used by thrust::async::copy), based on:

‣ thrust::is_contiguous_iterator and
THRUST_PROCLAIM_CONTIGUOUS_ITERATOR for detecting/indicating that
an iterator points to contiguous storage.

‣ thrust::is_trivially_relocatable and
THRUST_PROCLAIM_TRIVIALLY_RELOCATABLE for detecting/indicating
that a type is memcpy-able (based on principles from https://wg21.link/P1144).

‣ The new approach reduces buffering, increases performance, and increases
correctness.

‣ The fast path is now enabled when copying fp16 and CUDA vector types with
thrust::async::copy.

‣ All Thrust synchronous algorithms for the CUDA backend now actually
synchronize. Previously, any algorithm that did not allocate temporary storage
(counterexample: thrust::sort) and did not have a computation-dependent result
(counterexample: thrust::reduce) would actually be launched asynchronously.

Additionally, synchronous algorithms that allocated temporary storage
would become asynchronous if a custom allocator was supplied that did not
synchronize on allocation/deallocation, unlike cudaMalloc / cudaFree. So,
now thrust::for_each, thrust::transform, thrust::sort, etc are truly
synchronous.

In some cases this may be a performance regression; if you need asynchrony, use the
new asynchronous algorithms.

‣ Thrust's allocator framework has been rewritten. It now uses a memory resource
system, similar to C++17's std::pmr but supporting static polymorphism. Memory
resources are objects that allocate untyped storage and allocators are cheap handles
to memory resources in this new model. The new facilities live in <thrust/mr/*> .

‣ thrust::mr::memory_resource<Pointer>, the memory resource base class,
which takes a (possibly tagged) pointer to void type as a parameter.

‣ thrust::mr::allocator<T, MemoryResource>, an allocator backed by a
memory resource object.

‣ thrust::mr::polymorphic_adaptor_resource<Pointer>, a type-erased
memory resource adaptor.

https://wg21.link/P1144

Thrust v1.9.4 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 14

‣ thrust::mr::polymorphic_allocator<T>, a C++17-style polymorphic
allocator backed by a type-erased memory resource object.

‣ New tunable C++17-style caching memory resources, thrust::mr::
(disjoint_)?(un)?synchronized_pool_resource, designed to cache
both small object allocations and large repetitive temporary allocations. The
disjoint variants use separate storage for management of the pool, which is
necessary if the memory being allocated cannot be accessed on the host (e.g.
device memory).

‣ System-specific allocators were rewritten to use the new memory resource
framework.

‣ New thrust::device_memory_resource for allocating device memory.
‣ New thrust::universal_memory_resource for allocating memory that can

be accessed from both the host and device (e.g. cudaMallocManaged).
‣ New thrust::universal_host_pinned_memory_resource for allocating

memory that can be accessed from the host and the device but always resides in
host memory (e.g. cudaMallocHost).

‣ thrust::get_per_device_resource and
thrust::per_device_allocator, which lazily create and retrieve a per-
device singleton memory resource.

‣ Rebinding mechanisms (rebind_traits and rebind_alloc) for
thrust::allocator_traits.

‣ thrust::device_make_unique, a factory function for creating a
std::unique_ptr to a newly allocated object in device memory.

‣ <thrust/detail/memory_algorithms> , a C++11 implementation of the C+
+17 uninitialized memory algorithms.

‣ thrust::allocate_unique and friends, based on the proposed C++23
std::allocate_unique (https://wg21.link/P0211).

‣ New type traits and metaprogramming facilities. Type traits are slowly being
migrated out of thrust::detail:: and <thrust/detail/*> ; their new home
will be thrust:: and <thrust/type_traits/*>.

‣ thrust::is_execution_policy.
‣ thrust::is_operator_less_or_greater_function_object, which

detects thrust::less, thrust::greater, std::less, and std::greater.
‣ thrust::is_operator_plus_function_object, which detects

thrust::plus and std::plus.
‣ thrust::remove_cvref(_t)?, a C++11 implementation of C++20's

thrust::remove_cvref(_t)?.
‣ thrust::void_t, and various other new type traits.
‣ thrust::integer_sequence and friends, a C++11 implementation of C++20's

std::integer_sequence.
‣ thrust::conjunction, thrust::disjunction, and

thrust::disjunction, a C++11 implementation of C++17's logical
metafunctions.

‣ Some Thrust type traits (such as thrust::is_constructible) have been
redefined in terms of C++11's type traits when they are available.

‣ <thrust/detail/tuple_algorithms.h>, new std::tuple algorithms:

https://wg21.link/P0211

Thrust v1.9.4 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 15

‣ thrust::tuple_transform.
‣ thrust::tuple_for_each.
‣ thrust::tuple_subset.

‣ Miscellaneous new std::-like facilities:

‣ thrust::optional, a C++11 implementation of C++17's std::optional.
‣ thrust::addressof, an implementation of C++11's std::addressof.
‣ thrust::next and thrust::prev, an implementation of C++11's std::next

and std::prev.
‣ thrust::square, a <functional> style unary function object that multiplies

its argument by itself.
‣ <thrust/limits.h> and thrust::numeric_limits, a customized version

of <limits> and std::numeric_limits.
‣ <thrust/detail/preprocessor.h>, new general purpose preprocessor facilities:

‣ THRUST_PP_CAT[2-5], concatenates two to five tokens.
‣ THRUST_PP_EXPAND(_ARGS)?, performs double expansion.
‣ THRUST_PP_ARITY and THRUST_PP_DISPATCH, tools for macro overloading.
‣ THRUST_PP_BOOL, boolean conversion.
‣ THRUST_PP_INC and THRUST_PP_DEC, increment/decrement.
‣ THRUST_PP_HEAD, a variadic macro that expands to the first argument.
‣ THRUST_PP_TAIL, a variadic macro that expands to all its arguments after the

first.
‣ THRUST_PP_IIF, bitwise conditional.
‣ THRUST_PP_COMMA_IF, and THRUST_PP_HAS_COMMA, facilities for adding and

detecting comma tokens.
‣ THRUST_PP_IS_VARIADIC_NULLARY, returns true if called with a nullary

__VA_ARGS__ .
‣ THRUST_CURRENT_FUNCTION, expands to the name of the current function.

‣ New C++11 compatibility macros:

‣ THRUST_NODISCARD, expands to [[nodiscard]] when available and the best
equivalent otherwise.

‣ THRUST_CONSTEXPR, expands to constexpr when available and the best
equivalent otherwise.

‣ THRUST_OVERRIDE, expands to override when available and the best
equivalent otherwise.

‣ THRUST_DEFAULT, expands to = default; when available and the best
equivalent otherwise.

‣ THRUST_NOEXCEPT, expands to noexcept when available and the best
equivalent otherwise.

‣ THRUST_FINAL, expands to final when available and the best equivalent
otherwise.

‣ THRUST_INLINE_CONSTANT, expands to inline constexpr when available
and the best equivalent otherwise.

‣ <thrust/detail/type_deduction.h>, new C++11-only type deduction helpers:

Thrust v1.9.4 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 16

‣ THRUST_DECLTYPE_RETURNS*, expand to function definitions with suitable
conditional noexcept qualifiers and trailing return types.

‣ THRUST_FWD(x), expands to ::std::forward<decltype(x)>(x).
‣ THRUST_MVCAP, expands to a lambda move capture.
‣ THRUST_RETOF, expands to a decltype computing the return type of an

invocable.

3.2. New Examples
‣ mr_basic demonstrates how to use the new memory resource allocator system.

3.3. Other Enhancements

3.3.1. Tagged Pointer Enhancements
‣ ‣ New thrust::pointer_traits specialization for void const*.

‣ nullptr support to Thrust tagged pointers.
‣ New explicit operator bool for Thrust tagged pointers when using C++11 for

std::unique_ptr interoperability.
‣ Added thrust::reinterpret_pointer_cast and

thrust::static_pointer_cast for casting Thrust tagged pointers.

3.3.2. Iterator Enhancements
‣ ‣ thrust::iterator_system is now SFINAE friendly.

‣ Removed cv qualifiers from iterator types when using
thrust::iterator_system.

‣ Static assert enhancements:
‣ New THRUST_STATIC_ASSERT_MSG, takes an optional string constant to be

used as the error message when possible.
‣ Update THRUST_STATIC_ASSERT(_MSG) to use C++11's static_assert when

it's available.
‣ Introduce a way to test for static assertions.

3.3.3. Testing Enhancements
‣ Additional scalar and sequence types, including non-builtin types and vectors with

unified memory allocators, have been added to the list of types used by generic unit
tests.

‣ The generation of random input data has been improved to increase the range of
values used and catch more corner cases.

‣ New truncate_to_max_representable utility for avoiding the generation of
ranges that cannot be represented by the underlying element type in generic unit
test code.

Thrust v1.9.4 Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 17

‣ The test driver now synchronizes with CUDA devices and check for errors after each
test, when switching devices, and after each raw kernel launch.

‣ The warningtester uber header is now compiled with NVCC to avoid needing to
disable CUDA-specific code with the preprocessor.

‣ Fixed the unit test framework's ASSERT_* to print chars as ints.
‣ New DECLARE_INTEGRAL_VARIABLE_UNITTEST test declaration macro.
‣ New DECLARE_VARIABLE_UNITTEST_WITH_TYPES_AND_NAME test declaration

macro.
‣ thrust::system_error in the CUDA backend now print out its cudaError_t

enumerator in addition to the diagnostic message.
‣ Stopped using conditionally signed types like char.

3.4. Resolved Issues
‣ Fixed compilation error when using __device__ lambdas with reduce on MSVC.
‣ Static asserted that thrust::generate / thrust::fill doesn't operate on const

iterators.
‣ Fixed compilation failure with thrust::zip_iterator and

thrust::complex<float>.
‣ Fixed dispatch for the CUDA backend's thrust::reduce to use two functions (one

with the pragma for disabling exec checks, one with THRUST_RUNTIME_FUNCTION)
instead of one. This fixes a regression with device compilation that started in CUDA
9.2.

‣ Added missing __host__ __device__ annotations to a
thrust::complex::operator= to satisfy GoUDA.

‣ Made thrust::vector_base::clear not depend on the element type being
default constructible.

‣ Removed flaky simple_cuda_streams example.
‣ Added missing thrust::device_vector constructor that takes an allocator

parameter.
‣ Updated the range_view example to not use device-side launch.
‣ Ensured that sized unit tests that use counting_iterator perform proper

truncation.
‣ Refactored questionable copy_if unit tests.

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 18

Chapter 4.
CUDA TEGRA RELEASE NOTES

The release notes for CUDA Tegra contain only information that is specific to the
following:

‣ CUDA Tegra Driver, and
‣ Mobile version of other CUDA components such as: compilers, tools, libraries, and

samples.

The release notes for the desktop version of CUDA also apply to CUDA Tegra. On Tegra,
the CUDA Toolkit version is 10.1.

4.1. New Features
CUDA Tegra Driver

‣ Support is added for GPUDirect RDMA on AGX Jetson platform. This now
enables a direct path for data exchange between the GPU and third-party peer
devices using standard features of PCI Express.

‣ Support for Android P added.
‣ Error Reporting enriched in CUDA on mobile RM.
‣ Support added for Ubuntu 18.04 for the AGX Drive platform.
‣ Resumed the support for Ubuntu 16.04 host on the AGX Jetson platform.
‣ Performance optimizations that were previously enabled for QNX are now also

available on Linux through user-mode submits.

CUDA Compiler

‣ Support added for GCC 7.3 on AGX Jetson platforms.
‣ Support added for CLANG 6.0.2 for NVCC on Android platforms.

CUDA Tegra Release Notes

www.nvidia.com
NVIDIA CUDA Toolkit 10.1.168 RN-06722-001 _v10.1 | 19

4.2. Known Issues and Limitations
CUDA Tegra Driver

‣ Only the below color formats are supported for Vulkan-CUDA interoperability
on Jetson and Android:

‣ VK_FORMAT_R8_UNORM
‣ VK_FORMAT_R8_SNORM
‣ VK_FORMAT_R8_UINT
‣ VK_FORMAT_R8_SINT
‣ VK_FORMAT_R8_SRGB
‣ VK_FORMAT_R8G8_UNORM
‣ VK_FORMAT_R8G8_SNORM
‣ VK_FORMAT_R8G8_UINT
‣ VK_FORMAT_R8G8_SINT
‣ VK_FORMAT_R8G8_SRGB
‣ VK_FORMAT_R16_UNORM
‣ VK_FORMAT_R16_SNORM
‣ VK_FORMAT_R16_UINT
‣ VK_FORMAT_R16_SINT
‣ VK_FORMAT_R16_SFLOAT

Other formats are currently not supported.

CUDA Tools

‣ On NVIDIA DRIVE OS Linux systems, when using Nsight Compute CLI
with "--mode attach" to attach to another process on the same machine, "--
hostname 127.0.0.1" must be passed. This is because the default value of
"localhost" for the "--hostname" parameter does not work.

4.3. Resolved Issues
General CUDA

‣ CUDA-GDB on Linux: The set cuda memcheck on command in cuda-gdb
does not have any effect. This is fixed in CUDA 10.1.

‣ CUDA-GDB on QNX: ntoaarch64-gdb and cuda-qnx-gdb may hang when
executing the run command. This is fixed in CUDA 10.1.

4.4. Deprecated Issues
General CUDA

‣ Deprecating support for Pascal product on Android.

Acknowledgments

NVIDIA extends thanks to Professor Mike Giles of Oxford University for providing
the initial code for the optimized version of the device implementation of the
double-precision exp() function found in this release of the CUDA toolkit.

NVIDIA acknowledges Scott Gray for his work on small-tile GEMM kernels for
Pascal. These kernels were originally developed for OpenAI and included since
cuBLAS 8.0.61.2.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2019 NVIDIA Corporation. All rights reserved.
www.nvidia.com

	Table of Contents
	List of Tables
	CUDA Toolkit Major Components
	CUDA Release Notes
	2.1. General CUDA
	2.2. CUDA Tools
	2.2.1. CUDA Compilers
	2.2.2. CUDA Profiler
	2.2.3. CUDA-MEMCHECK

	2.3. CUDA Libraries
	2.3.1. cuBLAS Library
	2.3.2. cuSOLVER Library
	2.3.3. cuSPARSE Library
	2.3.4. cuFFT Library
	2.3.5. cuRAND Library
	2.3.6. NPP Library
	2.3.7. nvJPEG Library

	2.4. Deprecated Features
	2.5. Resolved Issues
	2.5.1. CUDA Compilers
	2.5.2. CUDA Libraries

	2.6. Known Issues
	2.6.1. General CUDA
	2.6.2. CUDA Tools
	2.6.3. CUDA Libraries

	Thrust v1.9.4 Release Notes
	3.1. New Features
	3.2. New Examples
	3.3. Other Enhancements
	3.3.1. Tagged Pointer Enhancements
	3.3.2. Iterator Enhancements
	3.3.3. Testing Enhancements

	3.4. Resolved Issues

	CUDA Tegra Release Notes
	4.1. New Features
	4.2. Known Issues and Limitations
	4.3. Resolved Issues
	4.4. Deprecated Issues

