
TUNING CUDA APPLICATIONS FOR
VOLTA

DA-08647-001_v10.1 | April 2019

Application Note

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | ii

TABLE OF CONTENTS

Chapter 1. Volta Tuning Guide.. 1
1.1. NVIDIA Volta Compute Architecture... 1
1.2. CUDA Best Practices..1
1.3. Application Compatibility... 2
1.4. Volta Tuning..2

1.4.1. Streaming Multiprocessor.. 2
1.4.1.1. Instruction Scheduling...2
1.4.1.2. Independent Thread Scheduling... 2
1.4.1.3. Occupancy...3
1.4.1.4. Integer Arithmetic... 3

1.4.2. Tensor Core Operations.. 3
1.4.3. Memory Throughput...4

1.4.3.1. High Bandwidth Memory.. 4
1.4.3.2. Unified Shared Memory/L1/Texture Cache.. 4

1.4.4. Cooperative Groups... 5
1.4.5. Multi-Process Service... 5
1.4.6. NVLink Interconnect.. 5

Appendix A. Revision History..6

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | 1

Chapter 1.
VOLTA TUNING GUIDE

1.1. NVIDIA Volta Compute Architecture
Volta is NVIDIA's latest architecture for CUDA compute applications. Volta retains
and extends the same CUDA programming model provided by previous NVIDIA
architectures such as Maxwell and Pascal, and applications that follow the best practices
for those architectures should typically see speedups on the Volta architecture without
any code changes. This guide summarizes the ways that an application can be fine-tuned
to gain additional speedups by leveraging Volta architectural features.1

Volta architecture comprises a single variant: GV100. A detailed overview of the major
improvements in GV100 over earlier NVIDIA architectures is provided in a white paper
entitled NVIDIA Tesla V100 GPU Architecture: The World's Most Advanced Datacenter
GPU.

For further details on the programming features discussed in this guide, please refer to
the CUDA C Programming Guide.

1.2. CUDA Best Practices
The performance guidelines and best practices described in the CUDA C Programming
Guide and the CUDA C Best Practices Guide apply to all CUDA-capable GPU
architectures. Programmers must primarily focus on following those recommendations
to achieve the best performance.

The high-priority recommendations from those guides are as follows:

‣ Find ways to parallelize sequential code,
‣ Minimize data transfers between the host and the device,
‣ Adjust kernel launch configuration to maximize device utilization,
‣ Ensure global memory accesses are coalesced,

1 Throughout this guide, Kepler refers to devices of compute capability 3.x, Maxwell refers to devices of compute
capability 5.x, Pascal refers to device of compute capability 6.x, and Volta refers to devices of compute capability 7.x.

http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Volta Tuning Guide

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | 2

‣ Minimize redundant accesses to global memory whenever possible,
‣ Avoid long sequences of diverged execution by threads within the same warp.

1.3. Application Compatibility
Before addressing specific performance tuning issues covered in this guide, refer to the
Volta Compatibility Guide for CUDA Applications to ensure that your application is
compiled in a way that is compatible with Volta.

1.4. Volta Tuning

1.4.1. Streaming Multiprocessor
The Volta Streaming Multiprocessor (SM) provides the following improvements over
Pascal.

1.4.1.1. Instruction Scheduling
Each Volta SM includes 4 warp-scheduler units. Each scheduler handles a static set
of warps and issues to a dedicated set of arithmetic instruction units. Instructions are
performed over two cycles, and the schedulers can issue independent instructions
every cycle. Dependent instruction issue latency for core FMA math operations are
reduced to four clock cycles, compared to six cycles on Pascal. As a result, execution
latencies of core math operations can be hidden by as few as 4 warps per SM, assuming
4-way instruction-level parallelism ILP per warp. Many more warps are, of course,
recommended to cover the much greater latency of memory transactions and control-
flow operations.

Similar to GP100, the GV100 SM provides 64 FP32 cores and 32 FP64 cores. The GV100
SM additionally includes 64 INT32 cores and 8 mixed-precision Tensor Cores. GV100
provides up to 84 SMs.

1.4.1.2. Independent Thread Scheduling
The Volta architecture introduces Independent Thread Scheduling among threads in a
warp. This feature enables intra-warp synchronization patterns previously unavailable
and simplifies code changes when porting CPU code. However, Independent Thread
Scheduling can also lead to a rather different set of threads participating in the executed
code than intended if the developer made assumptions about warp-synchronicity2 of
previous hardware architectures.

When porting existing codes to Volta, the following three code patterns need careful
attention. For more details see the CUDA C Programming Guide.

‣ To avoid data corruption, applications using warp intrinsics (__shfl*, __any,
__all, and __ballot) should transition to the new, safe, synchronizing

2 The term warp-synchronous refers to code that implicitly assumes threads in the same warp are synchronized at every
instruction.

http://docs.nvidia.com/cuda/volta-compatibility-guide/

Volta Tuning Guide

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | 3

counterparts, with the *_sync suffix. The new warp intrinsics take in a mask of
threads that explicitly define which lanes (threads of a warp) must participate in the
warp intrinsic.

‣ Applications that assume reads and writes are implicitly visible to other threads
in the same warp need to insert the new __syncwarp() warp-wide barrier
synchronization instruction between steps where data is exchanged between
threads via global or shared memory. Assumptions that code is executed in lockstep
or that reads/writes from separate threads are visible across a warp without
synchronization are invalid.

‣ Applications using __syncthreads() or the PTX bar.sync (and their derivatives)
in such a way that a barrier will not be reached by some non-exited thread in the
thread block must be modified to ensure that all non-exited threads reach the
barrier.

The racecheck and synccheck tools provided by cuda-memcheck can aid in locating
violations of points 2 and 3.

1.4.1.3. Occupancy
The maximum number of concurrent warps per SM remains the same as in Pascal (i.e.,
64), and other factors influencing warp occupancy remain similar as well:

‣ The register file size is 64k 32-bit registers per SM.
‣ The maximum registers per thread is 255.
‣ The maximum number of thread blocks per SM is 32.
‣ Shared memory capacity per SM is 96KB, similar to GP104, and a 50% increase

compared to GP100.

Overall, developers can expect similar occupancy as on Pascal without changes to their
application.

1.4.1.4. Integer Arithmetic
Unlike Pascal GPUs, the GV100 SM includes dedicated FP32 and INT32 cores. This
enables simultaneous execution of FP32 and INT32 operations. Applications can now
interleave pointer arithmetic with floating-point computations. For example, each
iteration of a pipelined loop could update addresses and load data for the next iteration
while simultaneously processing the current iteration at full FP32 throughput.

1.4.2. Tensor Core Operations
Each Tensor Core performs the following operation: D = AxB + C, where A, B, C, and
D are 4x4 matrices. The matrix multiply inputs A and B are FP16 matrices, while the
accumulation matrices C and D may be FP16 or FP32 matrices.

When accumulating in FP32, the FP16 multiply results in a full precision product that is
then accumulated using FP32 addition with the other intermediate products for a 4x4x4
matrix multiply. In practice, Tensor Cores are used to perform much larger 2D or higher
dimensional matrix operations, built up from these smaller elements.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Volta Tuning Guide

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | 4

The Volta tensor cores are exposed as Warp-Level Matrix Operations in the CUDA 9 C
++ API. The API exposes specialized matrix load, matrix multiply and accumulate, and
matrix store operations to efficiently use Tensor Cores from a CUDA-C++ program. At
the CUDA level, the warp-level interface assumes 16x16 size matrices spanning all 32
threads of the warp. See the CUDA C Programming Guide for more information.

1.4.3. Memory Throughput

1.4.3.1. High Bandwidth Memory
GV100 uses up to eight memory dies per HBM2 stack and four stacks, with a maximum
of 32 GB of GPU memory. A faster and more efficient HBM2 implementation delivers
up to 900 GB/s of peak memory bandwidth, compared to 732 GB/s for GP100. This
combination of a new generation HBM2 memory, and a new generation memory
controller, in Volta provides 1.5x delivered memory bandwidth, compared to Pascal
GP100—and a greater than 95% memory bandwidth efficiency running many
workloads.

In order to hide the DRAM latencies at full HBM2 bandwidth more memory accesses
must be kept in flight, compared to GPUs equipped with traditional GDDR5. This is
accomplished by the large complement of SMs in GV100, which typically boost the
number of concurrent threads, and thus the reads-in-flight, compared to previous
architectures. Resource-constrained kernels that are limited to low occupancy may
benefit from increasing the number of concurrent memory accesses per thread.

1.4.3.2. Unified Shared Memory/L1/Texture Cache
In Volta the L1 cache, texture cache, and shared memory are backed by a
combined 128 KB data cache. As in previous architectures, such as Kepler, the
portion of the cache dedicated to shared memory (known as the carveout) can
be selected at runtime using cudaFuncSetAttribute() with the attribute
cudaFuncAttributePreferredSharedMemoryCarveout. Volta supports shared
memory capacities of 0, 8, 16, 32, 64, or 96 KB per SM.

A new feature, Volta enables a single thread block to address the full 96 KB of shared
memory. To maintain architectural compatibility, static shared memory allocations
remain limited to 48 KB, and an explicit opt-in is also required to enable dynamic
allocations above this limit. See the CUDA C Programming Guide for details.

Like Pascal, Volta combines the functionality of the L1 and texture caches into a unified
L1/Texture cache which acts as a coalescing buffer for memory accesses, gathering up
the data requested by the threads of a warp prior to delivery of that data to the warp.

Volta increases the maximum capacity of the L1 cache to 128 KB, more than 7x larger
than the GP100 L1. Another benefit of its union with shared memory, the Volta L1
improves in terms of both latency and bandwidth compared to Pascal. The result is that
for many applications Volta narrows the performance gap between explicitly managed
shared memory and direct access to device memory. Also, the cost of register spills is
lowered compared to Pascal, and the balance of occupancy versus spilling should be re-
evaluated to ensure best performance.

Volta Tuning Guide

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | 5

1.4.4. Cooperative Groups

1.4.5. Multi-Process Service
The Volta Multi-Process Service is significantly improved compared to previous
architecutres, both in terms of performance and robustness. Intermediary software
schedulers, used for MPS with previous architectures, have been replaced by hardware
accelerated units within the GPU. MPS clients now submit tasks directly to the GPU
work queues, significantly decreasing submission latency and increasing aggregate
throughput. The limit on the number of MPS clients has also been increased by 3x to
48. Volta MPS also provides each client with an isolated address space,3 and extends
Unified Memory support for MPS applications.

Volta MPS also provides control for clients to restrict each client to a fraction of the GPU
execution resources. Developers can use this feature to reduce or eliminate head-of-line
blocking where work from one MPS client overwhelms GPU execution resources and
prevents other clients from making progress, and thus improve average latency and
jitter accross the system.

1.4.6. NVLink Interconnect
NVLink is NVIDIA's high-speed data interconnect. NVLink can be used to significantly
increase performance for both GPU-to-GPU communication and for GPU access to
system memory. GV100 supports up to six NVLink connections with each connection
carrying up to 50 GB/s of bi-directional bandwidth.

NVLink operates transparently within the existing CUDA model. Transfers between
NVLink-connected endpoints are automatically routed through NVLink, rather
than PCIe. The cudaDeviceEnablePeerAccess() API call remains necessary
to enable direct transfers (over either PCIe or NVLink) between GPUs. The
cudaDeviceCanAccessPeer() can be used to determine if peer access is possible
between any pair of GPUs.

3 As with previous architectures, MPS does not provide fatal fault isolation between clients.

www.nvidia.com
Tuning CUDA Applications for Volta DA-08647-001_v10.1 | 6

Appendix A.
REVISION HISTORY

Version 1.0

‣ Initial Public Release

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2012-2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Volta Tuning Guide
	1.1. NVIDIA Volta Compute Architecture
	1.2. CUDA Best Practices
	1.3. Application Compatibility
	1.4. Volta Tuning
	1.4.1. Streaming Multiprocessor
	1.4.1.1. Instruction Scheduling
	1.4.1.2. Independent Thread Scheduling
	1.4.1.3. Occupancy
	1.4.1.4. Integer Arithmetic

	1.4.2. Tensor Core Operations
	1.4.3. Memory Throughput
	1.4.3.1. High Bandwidth Memory
	1.4.3.2. Unified Shared Memory/L1/Texture Cache

	1.4.4. Cooperative Groups
	1.4.5. Multi-Process Service
	1.4.6. NVLink Interconnect

	Revision History

