
Amdahl’s Law
How is system performance altered when some component is changed?

Example 1:
Program execution time is made up of 75% CPU time and 25% I/O time. Which is

the better enhancement:
(a) Increasing the CPU speed by 50% or (b) reducing I/O time by half?

Execution model: No overlap between CPU and I/O operations

T

Program execution time T = Tcpu + Tio

 Tcpu / T = 0.75 and Tio / T = 0.25

CPU CPU CPUIOIO

Amdahl’s Law
(a) Increasing the CPU speed by 50%

Program execution time T = Tcpu + Tio Told = T
Tcpu / T = 0.75
Tio / T = 0.25

CPU CPU CPUIOIO

T

CPU IO CPU IO CPU

a

2a/3

b

b

Program execution time Tnew = Tcpu / 1.5 + Tio

Tnew = Tcpu / 1.5 + Tio = 0.75 T / 1.5 + 0.25T = 0.75T

For a 50% improvement in CPU speed: Execution time decreases by 25%

Speedup = Told / Tnew = T/ 0.75T = 1.33

Amdahl’s Law
(b) Halve the IO Time
Program execution time T = Tcpu + Tio Told = T
Tcpu / T = 0.75
Tio / T = 0.25

CPU CPU CPUIOIO

T

IO IO

a b

b/2

Program execution time Tnew = Tcpu + Tio / 2

Tnew = 0.75 T + 0.25T /2 = 0.875T

For a 100% improvement in IO speed: Execution time decreases by 12.5%

Speedup = Told / Tnew = T/ 0.875T = 1.14

CPU

a

CPU CPU

Amdahl’s Law

Limiting Cases

• CPU speed improved infinitely so TCPU tends to zero
Tnew = TIO = 0.25T Speedup limited to 4

• IO speed improved infinitely so TIO tends to zero
Tnew = TCPU = 0.75T Speedup limited to 1.33

Amdahl’s Law
Example 2: Parallel Programming (Multicore execution)

A program made up of 10% serial initialization and finalization code. The remainder is a fully
parallelizable loop of N iterations.

INITIALIZATION CODE

for (j = 0; j < N; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

3

FINALIZATION CODE

T = TINIT + TLOOP + TFINAL = TSERIAL + TLOOP

Amdahl’s Law

3

a[0] b[0] c[0]+
a[1] b[1] c[1]+

a[23]
a[24] b[24] c[24]+

b[23] c[23]+

a[25] b[25] c[25]+
a[26] b[26] c[26]+

a[48]
a[49] b[49] c[49]+

b[48] c[48]+

a[50] b[50] c[50]+
a[51] b[51] c[51]+

a[73]
a[74] b[74] c[74]+

b[73] c[73]+

a[75] b[75] c[75]+
a[76] b[76] c[76]+

a[98]
a[99] b[99] c[99]+

b[98] c[98]+

for (j = 0; j < 25; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

for (j = 25; j < 50; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

for (j = 50; j < 75; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

for (j = 75; j < 100; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

Each iteration can be executed in parallel with the other iterations Assuming p = 4

Amdahl’s Law
Example 2: Parallel Programming (Multicore execution)

INITIALIZATION CODE

3

FORK Start Multiple threads

FINALIZATION CODE

JOIN End Multiple threads

for (j = 0; j < 25; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

for (j = 25; j < 50; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

for (j = 50; j < 75; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

for (j = 75; j < 100; j++) {
a[j] = b[j] + c[j];
d[j] = d[j] * c;
}

Amdahl’s Law
Performance Model

Assume

– System Calls for FORK/JOIN incur zero overhead
– Execution time for parallel loop scales linearly with the number of iterations in the loop

• With p processors executing the loop in parallel
Each processor executes N/p iterations
Parallel time for executing the loop is : TLOOP / p

Sequential time: TSEQ = T T = TSERIAL + TLOOP

TSERIAL = 0.1 T TLOOP = 0.9T

Parallel Time with p processors: Tp = TSERIAL + TLOOP / p

 = 0.1T + 0.9T/p

Amdahl’s Law
Performance Model

Parallel Time with p processors: Tp = TSERIAL + TLOOP / p

 Tp = 0.1T + 0.9T/p

p = 2: Tp = 0.1T + 0.9T/p = 0.55 T Speedup = T/0.55T = 1.8

 p = 4: Tp = 0.1T + 0.9T/p = 0.325 T Speedup = T/0.325T = 3.0

p = 8: Tp = 0.1T + 0.9T/p = 0.2125 T Speedup = T/0.2125T = 4.7

p = 16: Tp = 0.1T + 0.9T/p = 0.15625 T Speedup = T/0.15625T = 6.4

Limiting Case: p so large that TLOOP is negligible (assume 0)

 Tp = 0.1T and Maximum Speedup is 10!!

Program with a fraction f of serial (non-parallelizable) code will have a maximum speedup of 1/f

Amdahl’s Law
Diminishing Returns

• Adding more processors leads to successively smaller returns in terms of
speedup

• Using 16 processors does not results in an anticipated 16-fold speedup
• The Non-parallelizable sections of code takes a larger percentage of the

execution time as the loop time is reduced
• Maximum Speedup is theoretically limited by fraction f of serial code

• So even 1% serial code implies speedup of 100 at best!

Q: In the light of this pessimistic assessment:
Why is multicore alive and well and even becoming the dominant
paradigm?

Amdahl’s Law
Why is multicore alive and well and even becoming the dominant paradigm?

1. Throughput Computing: Run large numbers of independent computations
(e.g. Web or Database transactions) on different cores

2. Scaling Problem Size:
• Use parallel processing to solve larger problem sizes in a given amount of time
• Different from solving a small problem even faster

In many situations scaling the problem size (N in our example) does not imply a
proportionate increase in the serial portion.

, Serial fraction f drops as problem size is increased

Examples:
• Opening a file is a fixed serial overhead independent of problem size

• The fraction it represents decreases as the problem size is increased

• Parallel IO is routinely available today while it used to be a serialized overhead

• Sophisticated parallel algorithms / compiler techniques are able to parallelize what used
to be considered intrinsically serial in the past

Amdahl’s Law Summary
• How is system performance altered when some component of the design is changed?

• Performance Gains (Speedup) by enhancing some design feature
– Base design time: Tbase
– Several design components C1, C2 .. Cn
– Component Ck takes fraction fk of the total time
– Suppose Ck speeded up by factor S; others remain the same
– Enhanced design time: Tenhanced

 Base Design Enhanced Design
– Time for Ck : Tbase x fk Tbase x fk /S
– Time for rest: Tbase x(1 - fk) Tbase (1 - fk)
– Total Time: Tbase Tbase (fk /S + 1- fk)

Speedup = Tbase / Tenhanced = Tbase / Tbase (fk / S + 1 - fk)

=
 1 / ((1 - fk) + fk / S)

– As S becomes large Speedup tends to 1/(1-f) asymptotically

