How is system performance altered when some component is changed?

Example 1:

Program execution time is made up of 75% CPU time and 25% I/O time. Which is the better enhancement:

(a) Increasing the CPU speed by 50% or (b) reducing I/O time by half?

Execution model: No overlap between CPU and I/O operations

Program execution time $T = T_{cpu} + T_{io}$

 $T_{cpu} / T = 0.75$ and $T_{io} / T = 0.25$

(a) Increasing the CPU speed by 50%

Program execution time $T = T_{cpu} + T_{io}$ $T_{old} = T$ $T_{cpu} / T = 0.75$ $T_{io} / T = 0.25$ Т CPU CPU IO CPU IO b a CPU CPU IO IO CPU b 2a/3 Program execution time $T_{new} = T_{cpu} / 1.5 + T_{io}$ $T_{new} = T_{cpu} / 1.5 + T_{io} = 0.75 \text{ T} / 1.5 + 0.25 \text{ T} = 0.75 \text{ T}$

For a 50% improvement in CPU speed: Execution time decreases by 25%

Speedup = $T_{old} / T_{new} = T / 0.75T = 1.33$

(b) Halve the IO Time Program execution time $T = T_{cpu} + T_{io}$ $T_{old} = T$ $T_{cpu} / T = 0.75$ $T_{io} / T = 0.25$

Program execution time $T_{new} = T_{cpu} + T_{io} / 2$

 $T_{new} = 0.75 T + 0.25 T / 2 = 0.875 T$

For a 100% improvement in IO speed: Execution time decreases by 12.5%

Speedup = $T_{old} / T_{new} = T / 0.875T = 1.14$

Limiting Cases

- CPU speed improved infinitely so T_{CPU} tends to zero $T_{new} = T_{IO} = 0.25T$ Speedup limited to 4
- IO speed improved infinitely so T_{IO} tends to zero $T_{new} = T_{CPU} = 0.75T$ Speedup limited to 1.33

Example 2: Parallel Programming (Multicore execution)

A program made up of 10% serial initialization and finalization code. The remainder is a fully parallelizable loop of N iterations.

 $T = T_{INIT} + T_{LOOP} + T_{FINAL} = T_{SERIAL} + T_{LOOP}$

Each iteration can be executed in parallel with the other iterations As						
a[0]	◀	b[0]	+	c[0]		for $(i = 0; i < 25; i + 1)$
a[1]	←	b[1]	+	c[1]		a[i] = b[i] + c[i];
						d[j] = d[j] * c; }
a[23]	←	b[23]	+	c[23]		
a[24]	←	b[24]	+	c[24]		
a[25]	•	b[25]	+	c[25]		
a[26]	◀	b[26]	+	c[26]		for $(i = 25; i < 50; i++)$
						a[j] = b[j] + c[j]; d[j] = d[j] * c;
a[48]	◀	b[48]	+	c[48]		}
a[49]	◀	b[49]	+	c[49]		
a[50]	•	b[50]	+	c[50]		
a[51]	←	b[51]	+	c[51]		
						for $(j = 50; j < 75; j++) $ { a[j] = b[j] + c[j]; d[j] = d[j] * c;
a[73]		b[73]	+	c[73]		}
a[74]	←	b[74]	+	c[74]		
a[75]	•	b[75]	+	c[75]		
a[76]		b[76]	+	c[76]		for $(j = 75; j < 100; j++)$ {
						a[j] = b[j] + c[j]; d[j] = d[j] * c;
a[98]	←	b[98]	+	c[98]		}
a[99]	↓	b[99]	+	c[99]		

Assuming p = 4

Example 2: Parallel Programming (Multicore execution)

Performance Model

Assume

- System Calls for FORK/JOIN incur zero overhead
- Execution time for parallel loop scales linearly with the number of iterations in the loop
 - With p processors executing the loop in parallel Each processor executes N/p iterations Parallel time for executing the loop is : T_{LOOP} / p

Sequential time:
$$T_{SEQ} = T$$
 $T = T_{SERIAL} + T_{LOOP}$

 $T_{\text{SERIAL}} = 0.1 \text{ T} \qquad T_{\text{LOOP}} = 0.9 \text{T}$

Parallel Time with p processors: $T_p = T_{SERIAL} + T_{LOOP} / p$ = 0.1T + 0.9T/p

Performance Model

Parallel Time with p processors: $T_p = T_{SERIAL} + T_{LOOP} / p$ $T_p = 0.1T + 0.9T/p$

$$p = 2: T_{p} = 0.1T + 0.9T/p = 0.55T$$
Speedup = T/0.55T = 1.8

$$p = 4: T_{p} = 0.1T + 0.9T/p = 0.325T$$
Speedup = T/0.325T = 3.0

$$p = 8: T_{p} = 0.1T + 0.9T/p = 0.2125T$$
Speedup = T/0.2125T = 4.7

p = 16: $T_p = 0.1T + 0.9T/p = 0.15625 T$ Speedup = T/0.15625T = 6.4

Limiting Case: p so large that T_{LOOP} is negligible (assume 0)

 $T_p = 0.1T$ and Maximum Speedup is 10!!

Program with a fraction f of serial (non-parallelizable) code will have a maximum speedup of 1/f

Diminishing Returns

- Adding more processors leads to successively smaller returns in terms of speedup
- Using 16 processors does not results in an anticipated 16-fold speedup
- The Non-parallelizable sections of code takes a larger percentage of the execution time as the loop time is reduced
- Maximum Speedup is theoretically limited by fraction f of serial code
 - So even 1% serial code implies speedup of 100 at best!

Q: In the light of this pessimistic assessment:

Why is multicore alive and well and even becoming the dominant paradigm?

Why is multicore alive and well and even becoming the dominant paradigm?

1. Throughput Computing: Run large numbers of independent computations (e.g. Web or Database transactions) on different cores

2. Scaling Problem Size:

- Use parallel processing to solve larger problem sizes in a given amount of time
- Different from solving a small problem even faster

In many situations scaling the problem size (N in our example) does not imply a proportionate increase in the serial portion.

, Serial fraction f drops as problem size is increased

Examples:

- Opening a file is a fixed serial overhead independent of problem size
 - The fraction it represents decreases as the problem size is increased
- Parallel IO is routinely available today while it used to be a serialized overhead
- Sophisticated parallel algorithms / compiler techniques are able to parallelize what used to be considered intrinsically serial in the past

Amdahl's Law Summary

- How is system performance altered when some component of the design is changed?
- Performance Gains (Speedup) by enhancing some design feature
 - Base design time: T_{base}
 - Several design components $C_1, C_2 ... C_n$
 - Component C_k takes fraction f_k of the total time
 - Suppose C_k speeded up by factor S; others remain the same
 - Enhanced design time: T_{enhanced}

		Base Design	Enhanced Design
_	Time for C_k :	T _{base} x f _k	$T_{base} \ge f_k / S$
_	Time for rest:	$T_{base} x(1 - f_k)$	$T_{base} (1 - f_k)$
—	Total Time:	T _{base}	$T_{base}(f_k / S + 1 - f_k)$

Speedup = $T_{base} / T_{enhanced} = T_{base} / T_{base} (f_k / S + 1 - f_k)$

=

$$l / ((1 - f_k) + f_k / S)$$

- As S becomes large Speedup tends to 1/(1-f) asymptotically