
Cache Example

Main memory: Byte addressable memory of size 4GB = 232 bytes
Cache size: 64KB = 216 bytes
Block (line) size : 64 bytes = 26 bytes
Number of memory blocks = 232 / 26 = 226

Number of cache blocks = 216 / 26 = 210

Main
Memory

Cache
Memory

N = 226

blocks

B = 64 bytes

B = 64 bytes

 n = 26 b = 6

Block Address Byte Offset

M = 210 =
1024
blocks

0 63

Is the accessed memory byte (word) in the cache?

If so where?

If not, where should I put it when I get it from
main memory?

13

Fully Associative Cache Organization

• Fully-Associative
• Set-Associative
• Direct-Mapped Cache

A cache line can hold any block of main memory

A block in main memory can be placed in any cache line

Many- Many mapping

Maintain a directory structure to indicate which block of memory currently
occupies a cache block

Directory structure known as the TAG Array

The TAG entry for a cache stores the block number of the memory block currently in that
cache location

14

Fully Associative Cache Organization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

Cache: 2m+b bytes or 2m blocks (DATA)

Memory
2n+b bytes or 2n blocks

Block Address

Memory Address: (n+b) bits

n

Byte offset

b

4

7

 TAG DATA

BLOCK
ADDRESS

Cache organized as Associative Memory:
TAG field holds the block address of the memory block stored in the cache line

Hardware compares Block Address field of memory address with the TAG fields
of each cache block (Associative search -- access by value)

TAG field is n bits

13

11

n
2b bytes

2b bytes

2m
blocks

2n

blocks

1

Fully Associative Cache Organization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

Cache (2m blocks)

Memory

Block Address

Memory Address (n bits)

 n

Byte offset

b

13

 TAG DATA

BLOCK
ADDRESS

Selectorb

Selected Byte

2b bytes in cache line

11
7

4

2

TAG

COMPARE

TAG

COMPARE

TAG

COMPARE

TAG

COMPARE

TAG ARRAY DATA ARRAY

EQ

EQ

EQ

EQ

BLOCK ADDRESS OFFSET CACHE BLOCK DATA BITS

OR 3

DATA ARRAY

BLOCK ADDRESS BYTE OFFSET

2b TO 1 MUX

2b BYTES PER CACHE LINE
b bits

HIT / MISS SELECTED DATA BYTE

OR

4

2000

COMPARE

5060

COMPARE

1420

COMPARE

2240

COMPARE

TAG ARRAY DATA ARRAY

EQ

EQ

EQ

EQ

5060 OFFSET CACHE BLOCK DATA BITS

OR
HIT

5

2000

COMPARE

5060

COMPARE

1420

COMPARE

2240

COMPARE

TAG ARRAY DATA ARRAY

EQ

EQ

EQ

EQ

1000 OFFSET CACHE BLOCK DATA BITS

OR
MISS

6

Direct Mapped and Fully Associative Cache Organizations

Memory Cache

 Blocks Blocks

Direct-Mapped Cache mapping

All cache blocks have different colors

Memory blocks in each page cycle through the
same colors in order

A memory block can be placed only in a cache
block of matching color

Fully Associative mapping

Memory Cache

 Blocks Blocks

P
a
g
e

0

P
a
g
e

1

 A memory block can be placed in any cache
block

1

Direct Mapped Cache Organization

• Direct-Mapped Cache
• Fully-Associative
• Set-Associative

• Restrict possible placements of a memory block in the cache

• A block in main memory can be placed in exactly one location in the cache

• A cache line can be target of only a subset of possible memory blocks

• Many - 1 relation from memory blocks to cache lines

• Useful to think of memory divided into pages of contiguous blocks
• Do not confuse this use of memory page with that used in Virtual Memory

• Size of a page is the size of the Direct Mapped Cache

• The kth block in any page can be mapped only to the kth cache line 7

Direct-Mapped Cache Organization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

Cache (2m blocks)

Memory (2n blocks)

TAG
Cache
Index

Memory Address

Cache Block
Index

 n-m m

N = 16, M = 4

n = 4, m = 2

Byte offset

b

Selector
b

Selected Byte

2b

Page: 2m blocks

Page: 2m blocks

Page: 2m blocks

Page: 2m blocks

8

Direct-Mapped Cache Organization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

TAG Cache
Index

Memory Address

Cache Block
Index

 n-m m

N = 16, M = 4

n = 4, m = 2

Byte offset

b

Selector
b

Selected Byte

Cache (2m blocks)

Memory (2n blocks)

2b

 Page: 2m blocks

 Page: 2m blocks

Page: 2m blocks

Page: 2m blocks

Given a memory block address we know
exactly where to search for it in the
cache

9

Direct-Mapped Cache Organization

How does one identify which of the 2n-m possible memory blocks is actually stored in a
given cache block?

From which page does the block in that cache line come form?

Cache Line Entry:
V TAG DATA

n - m

Maintain meta data (directory information) in the form of a TAG field with
each cache line

TAG : identifies which of the 2n-m memory blocks stored in cache block

V (Valid) bit: Indicates that the cache entry contains valid data

DATA : Copy of the memory block stored in this cache block

10

Direct-Mapped Cache Organization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AAAA

BBBB

CCCC

DDDD

AAAA
BBBB
DDDD
CCCC

0

1

2

3

Cache

Memory

N = 16, M = 4, B = 4

n = 4, m = 2, b = 2

01
10
11
10

 TAG ARRAY

Snapshot of Direct-Mapped Cache

14 = 1110
Index = 2, TAG = 3

V
V
V
V

V TAG
 DATA

 DATA ARRAY

Page Number

00

01

10

11

11

Direct Mapped Cache

BYTE
OFFSET

CACHE
INDEX

TAG

COMPARE

AND
HIT/MISS

EQUAL?

VALID?

0

1

2

M-1

 TAG V
MUX

DATA

12

Direct-Mapped Cache Summary

Each memory block has a unique location it can be present in the cache

Main memory size: N = 2n blocks. Block addresses: 0, 1, …, 2n - 1
Cache size : M = 2m blocks. Block addresses: 0, 1, …., 2m -1

• Memory block with address µ is mapped to the unique cache block: µ mod M
• Cache index = µ mod M computed as m LSBs of the binary representation of µ
• The cache index is the address in the cache where a memory block is placed
• 2n-m memory blocks (differing in the n-m MSBs) have the same cache index
• A cache block can hold any one of the 2n-m memory blocks with the same cache index (i.e. that

agree on the m LSBs)
• Disambiguation is done associatively

• Each cache block has a TAG field of n-m bits
• Tag holds the n-m MSBs of the memory block that is currently stored in that cache location

13

Direct Mapped Cache Organization

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

Cache
(2m blocks)

Memory

TAG field

Memory Address (n bits)

 n-m

Byte offset

b

 TAG DATA

BLOCK
ADDRESS

Selector
b

Selected Byte

2b bytes in cache
line

Use cache index bits to select a cache block

If the desired memory block exists in the cache it will be in that cache location

Compare the TAG field of the address with the TAG fields of the cache block

Cache Index

m

COMPARATOR

 MISS
Byte

 offset

 n-m

HIT

Direct-Mapped Cache: Write Allocate with Write-Through

14

Direct Mapped Cache Operation
Memory Read Protocol Assume all memory references are reads
Input: n+b-bit memory word address [x]n-m [w]m [d]b

Block Address A = [x]n-m [w]m

Compute cache index w = A mod M
Read block at cache[w] (both TAG and DATA fields)

if (cache[w].V is TRUE and cache[w].TAG = x) /* Cache Hit
Select word[d] from block cache[w].DATA and transfer to processor

else /* Cache Miss */

1. Stall processor till block brought into cache
2. Read memory block at address A and load to cache[w].DATA
3. Update cache[w].TAG to x and cache[w].V to TRUE
4. Restart processor from start of cycle

15

Direct-Mapped Cache Replacement

Replacement Strategy

• No choice in replacements for direct-mapped cache

• The current block at cache[w] is replaced by the new reference that
maps to cache[w].

Handling Writes

1. Write Allocate: Treat a write to a word that is not in the cache as a
cache miss. Read the missing block into cache and update it.

2. No Write Allocate: A write to a word that is not in the cache updates
only main memory without disturbing the cache.

16

Write Allocate and No Allocate Policies

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AAAA

BBBB

CCCC

DDDD

AAAA
BBBB
DDDD
CCCC

0

1

2

3

Memory

01
10
11
10

V
V
V
V

V TAG
 DATA

Page Number

00

01

10

11

17

Write EEEE to MEM Block at address 9

Cache Hit: Update Cache Block 1 under
both policies

AAAA
EEEE
DDDD
CCCC

01
10
11
10

V
V
V
V

After

Write Allocate and No Allocate Policies

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AAAA

BBBB

CCCC

DDDD

AAAA
BBBB
DDDD
CCCC

0

1

2

3

Memory

01
10
11
10

V
V
V
V

V TAG
 DATA

Page Number

00

01

10

11

18

Write FFFF to MEM Block at address 0

Cache Miss

Write ALLOCATE: Update Cache Block 0

WRITE NO ALLOCATE: Cache Unchanged

FFFF
BBBB
DDDD
CCCC

00
10
11
10

V
V
V
V

Write Allocate: After

Write Through and Write Back Policies

Handling Writes

1. Write Through: A write updates both main memory and cache
locations for the block (eager write)

2. Write Back: A write updates only the cache location; main memory is
updated only when the corresponding cache block is replaced (lazy
update)

19

Write Back Policy

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AAAA

BBBB

CCCC

DDDD

AAAA
BBBB
DDDD
CCCC

0

1

2

3

Memory

01
10
11
10

V
V
V
V

V TAG
 DATA

Page Number

00

01

10

11

20

Write EEEE to MEM Block at address 9

Cache Hit

Write Back

Update Cache Block 1

Do not update Memory Block 9

AAAA
EEEE
DDDD
CCCC

01
10
11
10

V
V
V
V

After

Not Changed

Write Through Policy

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AAAA

EEEE

CCCC

DDDD

AAAA
BBBB
DDDD
CCCC

0

1

2

3

Memory

01
10
11
10

V
V
V
V

V TAG
 DATA

Page Number

00

01

10

11

21

Write EEEE to MEM Block at address 9

Cache Hit

Write Through Policy

Update Cache Block 1

Update Memory Block 9

AAAA
EEEE
DDDD
CCCC

01
10
11
10

V
V
V
V

After

 After

Direct-Mapped Cache: Write Allocate with Write-Back

Write Allocate and Write-Back Protocol

• On a write only cache block is written with updated value
• Memory is updated (write back) only when cache block is replaced
• Main memory and cache are inconsistent till write-back

• Additional bit (D) in cache entry: Dirty/Clean Bit
• Set to TRUE when that cache entry is updated

• Replaced block needs to be written to memory only if its D bit is TRUE

B

 1024
SD 1024, B

W
 W

 A

L

L

If cache block L is dirty write it to memory

Read memory block that includes address 1024 into cache
location L

Update cache locations corresponding to 1024 to B
22

Direct-Mapped Cache: Write Allocate with Write-Back

Write Allocate and Write-Back Protocol

• On a write only cache block is written with updated value
• Memory is updated (write back) only when cache block is replaced
• Main memory and cache are inconsistent till write-back

• Additional bit (D) in cache entry: Dirty/Clean Bit
• Set to TRUE when that cache entry is updated

• Replaced block needs to be written to memory only if its D bit is TRUE

B C
 1024 A

SD 1024, B

 SD 1024, C

23

Direct-Mapped Cache: Write Allocate with Write-Back

Write Allocate and Write-Back Protocol

• On a write only cache block is written with updated value
• Memory is updated (write back) only when cache block is replaced
• Main memory and cache are inconsistent till write-back

• Additional bit (D) in cache entry: Dirty/Clean Bit
• Set to TRUE when that cache entry is updated

• Replaced block needs to be written to memory only if its D bit is TRUE

B C Z
 1024 C A

SD 1024, B

 SD 1024, C

 LD 2048
 2048 Z

 Writeback

24

Direct-Mapped Cache: Write Allocate with Write-Through

Write Allocate and Write-Through Protocol: write data to address [x]n-m [w]m[d]b

Block Address A = [x]n-m [w]m

• Synchronous Writes

• Writes proceed at the speed of main memory not at speed of cache

 WA WB WC RP RS RT RU

 WA

RS RT

 WB WC

RUwA wB wC

wA wB wC RS RT RU

 WB WC WA

25

Direct-Mapped Cache: Write Allocate with Write-Through

 WA WB WC

wA wB
wC

wA wB wC RS RT RU

 WB WC WA

WA

 RS

 RS

WBWC
RS

 WB WC WA RS

RS

RS

RS RT RU

wA wB wC RS RT RU

FIFO Queue

WBWC RS

Promote Reads over Pending Writes

RS

RS

WA

RS

6

Direct-Mapped Cache: Write Allocate with Write-Through

Write Allocate and Write-Through Protocol: write data to address [x]n-m [w]m[d]b

Block Address A = [x]n-m [w]m

• Writes proceed at the speed of main memory not at speed of cache

• To speed up writes use asynchronous writes:

• Write into cache and simultaneously into a write buffer

• Execution continues concurrently with memory write from buffer

• Write buffer should be deep enough to buffer burst of writes

• If write buffer full on write then stall processor till buffer frees up

• Write buffer served in FCFS order : simple protocol

• Allow (later) reads to overtake pending writes

• Read protocol modified appropriately (Can it happen?)

• On memory read check write buffer for a write in transit 26

Writes Summary
1. In a write allocate scheme with a write through policy:

Write Hit: Update both cache and main memory (1W)
Write Miss: Read in block to cache. Update cache and main memory (1R + 1W)

2. In a write allocate scheme with a write back policy:
Write Hit: Update cache only
Write Miss: Read in block to cache. Write evicted block if dirty. Update cache. (1R +
1W if dirty block being replaced)

3. In a no write allocate scheme with a write through policy:
Write Hit: Update both cache and main memory (1W)
Write Miss: Update main memory only (1W)

4. In a no write allocate scheme with a write back policy:
Write Hit: Update cache only
Write Miss: Update main memory only (1W)

27

Direct-Mapped Cache: Write Allocate with Write-Through Protocol

WRITE data to address [x]n-m [w]m[d]b

Block Address A = [x]n-m [w]m

Compute cache index w = A mod M

 if (Cache Hit)
1. Write data into word d of cache[w].DATA
2. Store data into memory address [x]n-m [w]m[d]b

if (Cache Miss)

1. Load block at memory block address A into cache[w].DATA
2. Update cache[w].TAG to x ;cache[w].V = TRUE
3. Retry cache access

READ from address [x]n-m [w]m[d]b

Cache Hit: Replace step 1 with Read word from the cache line and omit step 2 2

Direct-Mapped Cache: Write Allocate and Write Back

Write Allocate and Write-Back Protocol : write data to address [x]n-m [w]m [d]b

Block Address A = [x]n-m [w]m

If cache hit update DATA and D fields of cache entry
If cache miss

replace current block writing it to main memory if dirty
update cache block with new data and V, D, TAG fields

Compute cache index w = A mod M
if Cache Hit

Write data into cache[w].DATA
Set cache[w].D to TRUE

else /* Cache Miss */
Stall Processor
if cache block is dirty /* cache[w].D = TRUE */
 Store cache[w].DATA into memory block at address [TAG][w]
Load memory block at address [x][w]
Update cache[w].TAG to x, cache[w].V = TRUE and cache[w].D to FALSE

Retry cache Access
3

Direct-Mapped Cache: Reads in a Write Back Cache

Write-Back Protocol : read address [x]n-m [w]m [d]b

If cache hit read data field of cache entry
If cache miss

replace current block writing it to memory if dirty
read in new block from memory and install in cache

Compute cache index w = A mod M
if Cache Hit

Read block cache[w].DATA; select word d of block
else /* Cache Miss */

Stall processor
if cache block is dirty /* cache[w].D = TRUE */
 Store cache[w].DATA into memory at address [TAG][w]
Read block at memory address A into cache[w].DATA
Update cache[w].TAG to x, cache[w].V to TRUE, cache[w].D to FALSE
Retry cache access

4

