
Direct-Mapped Cache: Write Allocate with Write-Through Protocol

WRITE data to address [x]n-m [w]m[d]b

Block Address A = [x]n-m [w]m

Compute cache index w = A mod M

 if (Cache Hit)
1. Write data into byte d of cache[w].DATA
2. Store data into memory address [x]n-m [w]m[d]b

if (Cache Miss)

1. Load block at memory block address A into cache[w].DATA
2. Update cache[w].TAG to x ;cache[w].V = TRUE
3. Retry cache access

READ from address [x]n-m [w]m[d]b

Cache Hit: Replace step 1 with Read word from the cache line and omit step 2 2

Block size in bytes: B = 2b

Cache size in blocks: M = 2m (2b+m bytes)
Memory size in blocks = 2n (2b+n bytes)

Direct-Mapped Cache: Write Allocate and Write Back

Write Allocate and Write-Back Protocol : write data to address [x]n-m [w]m [d]b

Block Address A = [x]n-m [w]m

Compute cache index w = A mod M
if Cache Hit

Write data into byte d of block cache[w].DATA
Set cache[w].D to TRUE

else /* Cache Miss */
Stall Processor
if cache block is dirty /* cache[w].D = TRUE */
 Store cache[w].DATA into memory block at address [TAG][w]
Load memory block at address [x][w]
Update cache[w].TAG to x, cache[w].V = TRUE and cache[w].D to FALSE

Retry cache Access

3

Direct-Mapped Cache: Reads in a Write Back Cache

Write-Back Protocol : read address [x]n-m [w]m [d]b

If cache hit read data field of cache entry
If cache miss

replace current block writing it to memory if dirty
read in new block from memory and install in cache

Compute cache index w = A mod M
if Cache Hit

Read block cache[w].DATA; select word d of block
else /* Cache Miss */

Stall processor
if cache block is dirty /* cache[w].D = TRUE */
 Store cache[w].DATA into memory at address [TAG][w]
Read block at memory address A into cache[w].DATA
Update cache[w].TAG to x, cache[w].V to TRUE, cache[w].D to FALSE
Retry cache access

4

Direct-Mapped Cache: Write Allocate with Write-Through

Write Allocate and Write-Through Protocol: write data to address [x]n-m [w]m[d]b

Block Address A = [x]n-m [w]m

• Synchronous Writes

• Writes proceed at the speed of main memory not at speed of cache

 WA WB WC RS RT RU

 WA

RS RT

 WB WC

RUwA wB wC

wA wB wC RS RT RU

 WB WC WA

5

Direct-Mapped Cache: Write Allocate with Write-Through

 WA WB WC

wA wB
wC

wA wB wC RS RT RU

 WB WC WA

WA

 RS

 RS

WBWC
RS

 WB WC WA RS

RS

RS

RS RT RU

wA wB wC RS RT RU

FIFO Queue

WBWC RS

Promote Reads over Pending Writes

RS

RS

WA

RS

6

Direct-Mapped Cache: Write Allocate with Write-Through

Write Allocate and Write-Through Protocol: write data to address [x]n-m [w]m[d]b

Block Address A = [x]n-m [w]m

• Writes proceed at the speed of main memory not at speed of cache

• To speed up writes use asynchronous writes:

• Write into cache and simultaneously into a write buffer

• Execution continues concurrently with memory write from buffer

• Write buffer should be deep enough to buffer burst of writes

• If write buffer full on write then stall processor till buffer frees up

• Write buffer served in FCFS order : simple protocol

• Allow (later) reads to overtake pending writes

• Read protocol modified appropriately

• On memory read check write buffer for a write in transit 7

Writes Summary
1. In a write allocate scheme with a write through policy:

Write Hit: Update both cache and main memory (1W)
Write Miss: Read in block to cache. Update cache and main memory (1R + 1W)

2. In a write allocate scheme with a write back policy:
Write Hit: Update cache only
Write Miss: Read in block to cache. Write evicted block if dirty. Update cache. (1R + 1W if dirty
block being replaced)

3. In a no write allocate scheme with a write through policy:
Write Hit: Update both cache and main memory (1W)
Write Miss: Update main memory only (1W)

4. In a no write allocate scheme with a write back policy:
Write Hit: Update cache only
Write Miss: Update main memory only (1W)

8

Set-Associative Organization

Cache Organization: Main memory address: n+b bits
2m cache blocks vs 2n blocks of main memory, n > m

Block consists of 2b consecutive bytes
Four Basic Questions:

1. Where in cache do we place a block of main memory?
2. How do we locate (search) for a memory reference in the cache?
3. Which block in the cache do we replace?
4. How are writes handled?

Main
Memory

Cache
Memory N = 2nM = 2m

9

Set-Associative Cache: Motivation

Direct Mapped Cache:
1. Only one cache location to store any memory block

Conflict Misses: cache forces eviction even if other cache blocks unused
Improve miss ratio by providing choice of locations for each memory
block

Fully Associative Cache:
1. Any cache location to store any memory block

Reduce Conflict Misses improving Miss ratio
No Conflict Misses in a Fully Associative Cache

Set Associative Cache
Compromise between miss rate and complexity (power, speed)

10

Direct Mapped and Fully Associative Cache Organizations

Memory Cache

 Blocks Blocks

Direct-Mapped Cache mapping

All cache blocks have different colors

Memory blocks in each page cycle through the
same colors in order

A memory block can be placed only in a cache
block of matching color

Fully Associative mapping

Memory Cache

 Blocks Blocks

P
a
g
e

0

P
a
g
e

1

 A memory block can be placed in any cache
block

1

Set-Associative Cache: Motivation
Direct Mapped Cache:

Only one cache location to store any memory block
Single collision: cache forces eviction even if other cache blocks unused
Improve miss ratio by providing choice of locations for each memory block

Example: Cache size = M words

while (!done) {
for (i = M; i < limit; i = i+M)
 a[i] += (a[i-M] + a[i+M]) / 2;
}

 a[i] += (a[i-M] + a[i+M]) all map to same cache index: (i mod M)
Every memory access in every iteration could be a cache miss

Reduce Conflict Misses using set associative cache

Therefore memory words with addresses M apart
will map to the same cache block in a DM cache

11

Mapping between Memory Blocks and Cache Blocks

DIRECT
MAPPED

P
a
g
e

0

P
a
g
e

1

Cache Size:
8 Blocks

2-WAY SET
ASSOCIATIVE CACHE

Cache Size:
8 Blocks

4 sets
P
a
g
e

0

P
a
g
e

1

P
a
g
e

2

P
a
g
e

3

EXAMPLE: 0,8,0,8,0,8,……

100% MISS 100% HITS AFTER
first 2 accesses

12

Mapping between Memory Blocks and Cache Blocks

Memory Cache

 Blocks Blocks

Memory Cache

 Blocks Blocks

Direct-Mapped Cache mapping

All cache blocks have different colors

Memory blocks in any page cycle through the
same colors in order

A memory block can be placed only in a cache
block of matching color

Cache blocks grouped in sets

 Page size equals number of sets

 All sets of the cache have different colors

All blocks within a set have the same color

Number of blocks in set defines “way” of the cache

A memory block can be placed only in set of matching color

Fully Associative mapping

Memory Cache

 Blocks Blocks

2-way Set Associative mapping

13

Set-Associative Cache

K-way Set Associative Cache:
Cache size: M = 2m blocks
Cache divided into sets of size K = 2k blocks each (K-way set associative)
Cache consists of S = 2s = 2m-k sets

Page Size = S blocks
A block in a page is mapped to exactly one set
Memory block with address A mapped to the unique set: (A mod S)
Memory block may be stored in any cache block in the set
With each cache block store a tag of (n - s) MSBs of memory address A

Example:
Cache size: M = 32 blocks,
Cache “way”: K = 4
Number of sets: S = M/K = 8
Consider address trace 0, 32, 64, 96, 128, …….

In Direct mapped cache (K=1) all blocks mapped to cache block 0
In this example (K=4) all blocks mapped to set 0; but 4 cache blocks available in each set

14

Example:

Cache size: M = 32 blocks

Cache “way”: K = 4

Number of sets S = M/K = 8

Set Index

0

Cache

1

2

3

4

5

6

7

15

K-way Set-Associative Cache (K = 2)

0

1

2

3

Cache

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Memory

x w
Memory Address

Set Index

 n-s s b

N = 16, M = 8, K = 2, S = 4

n = 4, m = 3, k = 1, s = 2

Byte
Offset

16

Set-Associative Cache Organization

To identify which of the 2n-s possible memory blocks is actually stored in
a given cache block, each cache block is given a TAG of n-s bits.

Cache Entry:
V TAG DATA

n - s

V (Valid) bit: Indicates that the cache entry contains valid data

TAG : identifies which of the 2n-s memory blocks stored in cache block

DATA : Copy of the memory block stored in this cache block

17

2-way Set Associative Cache

BYTE
OFFSET

CACHE
INDEX

TAG

 TAG V DATA TAG V

COMPARE COMPARE

DATA

HIT: If any valid
block in the
indexed set has a
tag match

18

Set-Associative Cache Organization

bbbb

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aaaa

qqqq

tttt

yyyy

ssss

xxxx

pppp

Memory

N = 16, M = 8, K=2, S =4

n = 4, m = 3, k=1, s=2

qqqq

bbbb
ssss

yyyy

0

1

2

3

Cache

01
10
00
01

 TAG DATA

tttt
pppp11

aaaa

xxxx

00
01

10

 TAG DATA

15 = 1111
Set 3: No tag match with 11

7 = 0111

Set 3: Tag match with 01 19

Set-Associative Cache: Operation

Assume write through (so all blocks are clean)
Memory Read Protocol: n-bit memory block address A = [x]n-s [w]s

Compute cache set index w = A mod S
Read all K blocks in set cache[w]
Simultaneously check tags against x
 if cache hit

Read DATA field of matching block into processor
else /* cache miss : no block in set matches */

Stall processor till block brought into cache
Choose a victim block in set cache[w] to evict from the cache
Load main memory block at address A into DATA field of victim
Update TAG field of cache block to x and V to TRUE
Restart processor from start of cycle

Cache Hit if there is a block in set cache[w] such that its V bit is set and
its TAG field matches x
Require K comparators to compare tags simultaneously

20

Set-Associative Cache: Example

AAAA0

1

2

3

00

01

 TAG DATA TAG DATA

BBBB

AAAA0

1

2

3

00

01

 TAG DATA
CCCC01

 TAG DATA

AAAA0

1

2

3

00
 TAG DATA TAG DATA

Address Trace: 0, 6, 4,0, 8

0000: Set 00 Tag: 00 AAAA
0110: Set 10 Tag: 01 BBBB
0100: Set 00 Tag: 01 CCCC
0000: Set 00 Tag: 00 AAAA
 Hit!
1000: Set 00 Tag: 10 DDDD

Replacement needed!

0

1

2

3

Cache

 TAG DATA TAG DATA
AAAA0

1

2

3

Cache

00

01

 TAG DATA
CCCC01

 TAG DATA

BBBB

21

Set-Associative Cache Replacement
Replacement Strategy:
Which of the K blocks in the selected set is replaced?

Random: One of the K blocks in the set chosen at random and replaced

LRU (Least Recently Used) Policy: Replace the block that has not been
referenced for the longest time -- block whose last reference most in the past
Difficult to implement efficiently in hardware
Approximations to LRU often used
In example: 0 referenced more lately than 4: replace 4

AAAA0

1

2

3

Cache

00

01

 TAG DATA
DDDD10

 TAG DATA

22

Set-Associative Cache: Write Allocate with Write-Through

Write Allocate and Write-Through Protocol: write data to address A = [x]n-s [w]s

Compute cache set index w = A mod S
Search for match among blocks in set cache[w]

if cache hit
Write data into DATA field of matching block
Store data into memory address A

 else /* cache miss */
Stall processor
Select victim to replace from set cache[w]
 Load cache entry of victim with memory block at A
Update fields TAG to x and V to TRUE
Restart cache access

23

Set-Associative Cache: Write Allocate with Write Back

Write Allocate and Write-Back Protocol : write data to address A = [x]n-s [w]s

If cache hit update data field of cache block
If cache miss

select a block to replace writing it to main memory if dirty
update cache block with new data and V, D, TAG fields

Compute cache set index w = A mod S
if cache hit

Write data into DATA field of matching block
Update D field to TRUE

else /* cache miss */
Stall processor
Choose a victim block in set cache[w] to replace from the cache
if victim block is dirty
 Store DATA field of victim into memory at address [tag][w]
 Load memory block at A into victim entry of cache
 Update TAG to x, V = TRUE , D fields to FALSE
Restart cache access

24

Set-Associative Cache: Reads in a Write Back Cache

Write-Back Protocol : read address A = [x]n-s [w]s

If cache hit read data field of cache block
If cache miss

select a block to replace writing it to memory if dirty
read in new block from memory and install in cache

Compute cache index set w = A mod S
if cache hit

Read cache[w].DATA into processor
else /* cache miss */

Stall processor
Choose a victim block in set cache[w] to replace from the cache
if victim block is dirty
 Store DATA field of victim into memory at address [tag][w]
Load block at memory address A into DATA field of selected block
Update fields of selected block: TAG to x, V to TRUE, D to FALSE
Restart processor

25

