
2-Level Page Tables

Virtual Address (VA): 32 bits Virtual Address Space: 232 bytes
Offset or Displacement field in VA: 12 bits Page Size: 212 bytes = 4KB

Virtual Page Number field in VA: 32 - 12 = 20 bits Number of Virtual Pages: 232 / 212 = 220

VA:

 VPN

 Page of 212 bytes

VPN OFFSET
20 bits

12 bits

0

1

220 -1

Virtual Address
Space of 220 pages

2-Level Page Tables

Physical Address (PA): 38 bits Physical Address Space: 238 bytes
Offset or Displacement field in PA: 12 bits Page Size: 212 bytes = 4KB

Page Frame Number field in PA: 38 - 12 = 26 bits Number of Physical Pages: 238 / 212 = 226

PA:

PFN OFFSET
26 bits 12 bits

0

1

226 -1

Physical Address Space
of 226 pages

Page Frame of size 212 bytes

0

1

226 -1

0

1

220 -1

Page Table: 220 descriptors
1 descriptor for each Virtual Page

VPN can be used as an index into Page Table to find
the descriptor for that page

0

1

220 -1

1 BYTE

1 BYTE

Single Level Page Table

• Descriptor holds the Page Frame Number (PFN) of the virtual page if
it is in memory

• A presence bit (P) indicates if it is in memory or on the backing device
• Descriptor also contains other administrative and protection bits

– e.g. D (Dirty), U (Used), R (Read), W (Write), E(Execute) etc.

In the example: PFN requires 26 bits
Assume exactly the 6 administrative bits mentioned above

Descriptor is 26+6 = 32 bits or 4 bytes wide.

Size of Page Table = Number of descriptors x Size of descriptor
= 220 x 4 bytes = 4MB

• Break up Page Table into fixed-size blocks of the same size as a page

• In example: Each page is 4KB and Page Table is 4MB

• So we will have 4MB/4KB = 210 = 1024 such blocks
– This collection of blocks that make up the Page Table will be

called the 2nd-level Page Table
– The 1st-Level Page Table will have entries pointing to each block

of the 2nd level Page Table.
– In example: 1024 entries in the 1st-level Page Table

• How many descriptors in each block?
– Each block (or page of the Page Table) will hold:

4KB/4bytes = 1024 descriptors

Two-Level Page Tables

Page Table: 220 descriptors
1 descriptor for each Virtual Page
Blocked into 210 blocks of 210 descriptors each

0
1

220 -1

210 Descriptors per block
 (page) of the Page Table

210 such blocks (pages)
of the Page Table

210 entries: one for each
block of 2nd level page table

1st-Level Page Table

2nd-Level Page Table

0
1

220 -1

210 Descriptors per block
 (page) of the Page Table

210 such blocks (pages)
of the Page Table

210 entries: one for each
block of 2nd level page table

1st-Level Page Table

2nd-Level Page Table

Do not need to store the entire 2nd level Page Table as a contiguous array

Do not allocate blocks that have no descriptors
Keep blocks on secondary store and bring in when needed

(mini virtual memory system for the Page Table management)

0

220 -1

210 Descriptors per block
 (page) of the Page Table

210 entries: one for each
block of 2nd level page table

1st-Level Page Table

2nd-Level Page Table

Do not need to store the entire 2nd level Page Table as a contiguous array

Do not allocate blocks that have no descriptors
Keep blocks on secondary store and bring in when needed

(mini virtual memory system for the Page Table management)

Q: What is the actual size of virtual address space being used by the above process?
 Each descriptor represents to a 212 = 4KB portion of the address space
2 blocks = 2 x 1024 descriptors imply : 2 x 1024 x 4KB = 8MB address space

Virtual Memory: 2-level Page Table

10 MSBs (bits 22..31) of the virtual address (PTN) are used to index into the Page Table Directory

Next 10 bits (12 ..21) are used to index the chosen Page Table.

PD(12)PTN (10) PN(10)

0

1

2

1022
1023

0

1

2

1023

1

2

1

2

0

0

1023

1023

4KB Page

Page
Offset
(PD)

1st-Level Page Table
(Page Table Directory)

Page Tables

PTR

More Details on Page Table Lookup

PTR

26 bits

PD(12)PTN (10) PN(10)

PTR PTN 00

26 10 2

38 bit physical address of desired1st-level Page Table entry

1st Level Page Table and all blocks of the 2nd-level Page Table are
stored at Page Aligned Boundaries i.e. 12 LSBs are zero

More Details on Page Table Lookup

Base Address

26 bits

PD(12)PTN (10) PN(10)

Base Address PN 00

26 10 2

38 bit physical address of desired 2nd-level Page Table entry

From selected entry in
1st-level PT

More Details on Page Table Lookup

PFN

26 bits

PD(12)PTN (10) PN(10)

PFN PD

26 12

38 bit physical address of desired memory byte

From selected entry in
2nd-level PT

Virtual Memory and Caches

Physical cache

Accessed using translated physical address
Cache access only after TLB translation
Common case (cache hit) slowed down

TLBCPU
 VA PA PHYSICAL

CACHE

Can we avoid latency of translation every memory access?

Cache locations addressed using
physical memory addresses

TAG BYTE
OFFSET

Physical Address (PA)

C ACHE INDEX

PFN PAGE OFFSET

Physical Address (PA)

VPN PAGE OFFSET

Virtual Address (VA)

Virtual Memory and Caches

Virtual cache
Accessed using the virtual address directly

TLB

CPU
 VA

 PA

VIRTUAL
CACHE

Cache locations addressed using
virtual memory addresses

PFN PAGE OFFSET

Physical Address (PA)

VPN PAGE OFFSET

Virtual Address (VA)

TAG BYTE
OFFSET

Virtual Address (VA)

C ACHE INDEX

Virtual Memory and Caches
Virtual Cache

Accessed using virtual addresses
 (+) Address translation (TLB lookup) in parallel with cache lookup

Access TLB for protection information unless information replicated in cache

(-) Context switch must invalidate all cache entries
Every process has the same virtual address space 0 … 2n -1
How do you distinguish a virtual address of some process from the
same virtual address of a different process ?

Use processor identifiers (PIDs) as additional field to tag cache blocks

Virtual Memory and Caches
Virtual Cache

Page Table Process 0

0

1

2

3

4

5

6

7

VPN Physical
MemoryPFN

0

1

2

3

0

3

16
4

14

5

15

VA = 011 0100 PA = 00 0100

TAG

Virtual Cache
Direct Mapped size 4 Blocks

01101

VA = 011 1110 PA = 00 1110

01111

VA = 101 0101 PA = 11 0101

VA = 101 1111 PA = 11 1111

10101

10111

Assumes cache block
size of w bytes

w BYTES

Virtual Memory and Caches
Virtual Cache

Page Table Process 0

Page Table Process 1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

VPN Physical
MemoryPFN

0

1

2

3

0

3

1

2

16
4

14

5

15

VA = 011 0100

TAG

Virtual Cache

01101

VA = 011 1110

01111

VA = 101 0101

VA = 101 1111

10101

10111 4

14

5

15

Process 1 will access cached data of Process 0

Virtual Memory and Caches
Virtual Cache

Page Table Process 0

Page Table Process 1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

VPN Physical
MemoryPFN

0

1

2

3

0

3

1

2

16
4

14

5

15

TAG

Virtual Cache

01101

01111

10101

10111 4

14

5

15

I

V

I
I
I

Solution 1: Invalidate all cache
blocks on a context switch

Cache blocks that may have
survived (i.e were not evicted) by
swapped-in process are wastefully
invalidated.

Cold cache on resumption

Virtual Memory and Caches
Virtual Cache

Page Table Process 0

Page Table Process 1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

VPN Physical
MemoryPFN

0

1

2

3

0

3

1

2

16
4

14

5

15

TAG

Virtual Cache

01101

01111

10101

10111 4

14

5

15

0

PROCESS ID

0
0
0

Solution 2: Add a process id field
as a part of the tag to identify the
process whose blocks are in cache

Virtual Memory and Caches

Virtual Cache : Accessed using virtual addresses

 (-) Aliases: Different names for the same physical object
Different virtual address but same physical address
 May result in multiple inconsistent copies of the data in the cache

:

Virtual Memory and Caches
Virtual Cache

Page Table Process 0

0

1

2

3

4

5

6

7

VPN Physical
MemoryPFN

0

1

2

3

0

0

41

TAG

Virtual Cache

11

VA: 011 01 PA: 00 01
VA: 110 01 PA: 00 01

000

001

111

110

101

100

010

011

01

2 cached copies of same physical
location (in different cache locations)

Note: This can only happen if the number of
blocks in any way of the cache is greater
than the number of blocks in a virtual page.
For aliasing to occur: The cache page size must exceed the virtual page size

