COMP/ELEC 429/556
Introduction to Computer Networks

Principles of Congestion Control

Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang
What is Congestion?

- The load placed on the network is higher than the capacity of the network
 - Not surprising: independent senders place load on network
- Results in packet loss: routers have no choice
 - Can only buffer finite amount of data
How Fast to Send? What’s at Stake?

- Send too slow: link sits idle
 - wastes time

- Send too fast: link is kept busy but....
 - queue builds up in router buffer (delay)
 - overflow buffers in routers (loss)
 - Many retransmissions, many losses
 - Network goodput (throughput of useful data) goes down
 - “Congestion collapse”
Abstract View

- We ignore internal structure of network and model it as having a single bottleneck link.
Problem 1: Single Flow, Fixed Bandwidth

- Adjust rate to match bottleneck bandwidth
 - without any *a priori* knowledge
 - could be 40 Gbps link, could be a 32 Kbps link
Problem 2: Single Flow, Varying Bandwidth

- Adjust rate to match instantaneous bandwidth
- Bottleneck can change because of a routing change
Problem 3: Multiple Flows

Two Issues:
- Adjust total sending rate to match bottleneck bandwidth
- Allocation of bandwidth between flows
General Approaches

• Reservation
 – pre-arrange bandwidth allocations
 – requires negotiation before sending packets
 – requires router support
Window size \(n = 9 \), i.e. 9 packets in one RTT

In general, sending rate proportional to \(n/\text{RTT} \)
General Approaches (cont’d)

• Dynamic sending rate adjustment
 – Every sender probe network to test level of congestion
 – speed up when no congestion
 – slow down when congestion
 – suboptimal, messy dynamics, but simple to implement
 – requires no router support
 – Distributed coordination problem!
Sliding Window Congestion Control

- Sender has a send window
 - controls amount of unacknowledged data in transit

- Sending rate proportional to: Send window size/RTT

- Vary send window size to control sending rate
Two Basic Components

- Detecting congestion
- Rate adjustment algorithm (change window size)
 - depends on congestion or not
Detecting Congestion

• Packet dropping is a plausible sign of congestion
 – delay-based methods are hard and risky

• How do you detect packet drops? ACKs
 – ACKs signal receipt of data
 – ACK denotes last contiguous byte received

• Two signs of packet drops
 – No ACK after certain time interval: time-out
 – Several duplicate ACKs for the same sequence number

• This heuristic may not work well for wireless networks, why?
 – Think whether packet drops are always due to congestion
Rate Adjustment

• Basic idea:
 – Upon receipt of ACK (of new data): increase rate
 • Data successfully delivered, perhaps can send faster
 – Upon detection of loss: decrease rate

• But how much increase/decrease should be applied?
 – What outcomes do we want?

• For simplicity, restrict to “additive” and “multiplicative” increase/decrease
 – “additive” results in linearly change
 – “multiplicative” results in exponential change
Fairness & Efficiency

Two competing sessions:
- Additive increase (AI) gives slope of 1, as throughput increases
- Multiplicative decrease (MD) decreases throughput proportionally

Equal bandwidth share

Fair and link fully utilized (rate R)

Loss: decrease window by factor of 2
AIMD

Limit rates:
\[x = y \]
AIMD Sharing Dynamics

- No congestion \rightarrow rate increases by one packet/RTT every RTT
- Congestion \rightarrow decrease rate by factor 2

Rates equalize \rightarrow fair share
Limit rates:
x and y depend on initial values
AIAD Sharing Dynamics

- No congestion \rightarrow x increases by one packet/RTT every RTT
- Congestion \rightarrow decrease x by 1
AIMD Model

- Analyze the steady state throughput as a function of
 - RTT
 - Loss probability

- Assumptions
 - Each packet dropped with iid probability p

- Methodology: analyze “average” cycle in steady state
 - How many packets are transmitted per cycle?
 - What is the duration of a cycle?
Cycles in Steady State

- Denote W as the maximum achieved window
- What is the slope of the line?
- What are the key values on the time axis?
Cycle Analysis

W increase by 1 per RTT

\[
\text{pkts xmitted/cycle} = \text{area} = \left(\frac{W}{2}\right)^2 + \frac{1}{2} \left(\frac{W}{2}\right)^2 = \frac{3}{8} W^2
\]
Throughput

\[\text{throughput} = \frac{\text{pkts xmitted/cycle}}{\text{time/cycle}} = \frac{3W^2}{8 \times RTT \left(\frac{W}{2} \right)} \]

- What is \(W \) as a function of \(p \)?
- How long does a cycle last until a drop?
Cycle Length

Let α be the index of the lost packet that ends a cycle

$$P(\alpha = k) = P(k - 1 \text{ pkts not lost, } k\text{th pkt lost})$$

$$= (1 - p)^{k-1} p$$

$$\Rightarrow E(\alpha) = \sum_{k=1}^{\infty} k(1 - p)^{k-1} p = \frac{1}{p}$$

$$\Rightarrow \frac{1}{p} = \frac{3}{8} W^2 \quad \Rightarrow \quad W = \sqrt{\frac{8}{3p}}$$
AIMD Model

throughput \(T(p) = \frac{1}{p} \cdot \frac{1}{RTT} \cdot \frac{1}{2} \sqrt{\frac{8}{3p}} = \frac{1}{RTT \sqrt{\frac{2}{3} p}} \)

- Note role of RTT. Is it “fair”?
- A “macroscopic” model