
0.1. INTRODUCTION 1

Robot Algorithms
Konstantinos Tsianos, Rice University
Dan Halperin, Tel-Aviv University
Lydia Kavraki, Rice University
Jean-Claude Latombe, Stanford University

0.1 Introduction

People tend to have very different perceptions of what a robot is. For some people a robot is an intelligent

and sophisticated machine. A robot must have the capability to move autonomously and make decisions

on how to accomplish its task without any human intervention. From this perspective, examples would

include mobile robots used in space exploration, or looking a bit into the future, autonomous intelligent

cars. Other people think of robots more in the context of industrial automation. In this context, a robot

is typically a robotic arm used in assembly lines, for example in car manufacturing. Those robots tend

to perform the same repetitive motions in their highly controlled and predictable environment. Precision

and accuracy are paramount for this kind of robots. Finally, it is not uncommon to treat a part or even

a molecule as a robot. A major issue in production lines is how to process parts that arrive at random

orientations and have to be oriented in a certain way before they are used for assembly. During the

last few years, it has become a very important area of research to identify how big molecules - such as

proteins - move, by adapting ideas that were initially developed for robots. This chapter covers some

of the fundamental principles and presents several examples of algorithms that are currently used in

robotics.

Robot algorithms differ in significant ways from traditional computer algorithms. The latter have

full control over, and perfect access to the data they use, letting aside, for example, problems related to

floating-point arithmetic. In contrast, robot algorithms eventually apply to physical objects in the real

world, which they attempt to control despite the fact that these objects are subject to the independent

and imperfectly modeled laws of nature. Data acquisition through sensing is also local and noisy. Robot

algorithms hence raise controllability (or reachability) and observability (or recognizability) issues that

are classical in control theory, but not present in computer algorithms.

On the other hand, control theory often deals with well-defined processes in strictly confined envi-

ronments. In contrast, robot tasks tend to be underspecified, which requires addressing combinatorial

issues ignored in control theory. For instance, to reach a goal among obstacles that are not represented

in the input model, but are sensed during execution, a robot must search “on the fly” for a collision-free

2

path, a notoriously hard computational problem.

This blend of control and computational issues is perhaps the main characteristic of robot algorithms.

It is presented at greater length in Section 0.2, along with other features of these algorithms. Section 0.3

then surveys specific areas of robotics (e.g., part manipulation, assembly sequencing, motion planning,

sensing) and presents algorithmic techniques that have been developed in those areas.

0.2 Underlying Principles

0.2.1 Robot Algorithms Control

The primary goal of a robot algorithm is to describe a procedure for controlling a subset of the real

world—the workspace—in order to achieve a given goal, say, a spatial arrangement of several physical

objects. The real world, which is subject to the laws of nature (such as gravity, inertia, friction), can be

regarded as performing its own actions, for instance, applying forces. These actions are not arbitrary, and

to some extent, they can be modeled, predicted, and controlled. Thus, a robot algorithm should specify

robot’s operations whose combination with the (re-)actions of the real world will result in achieving the

goal. Note that the robot is itself an important object in the workspace; for example, it should not

collide with obstacles. Therefore, the algorithm should also control the relation between the robot and

the workspace. The robot’s internal controller, which drives the actuators and preprocesses sensory data,

defines the primitive operations that can be used to build robot algorithms.

The design of a robot algorithm requires identifying a set of relevant states of the workspace (one being

the goal) and selecting operations to take the workspace through a sequence of states ending at the goal.

But, due to various inaccuracies (one is in modeling physical laws), an operation may transform a state

into one among several possible states. The algorithm can then use sensing to refine its knowledge during

execution. In turn, because workspace sensing is imperfect, a state may not be directly recognizable,

meaning that no combination of sensors may be capable to return the state’s identity. As a result, the

three subproblems—choosing pertinent states, selecting operations to transit among these states toward

the goal, and constructing state-recognition functions—are strongly interdependent and cannot be solved

sequentially.

To illustrate part of the above discussion, consider the task of orienting a convex polygonal part P

on a table using a robot arm equipped with a parallel-jaw gripper, to a desired goal orientation θg. This

is a typical problem in industrial part feeding (“Part Feeding”). If an overhead vision system is available

0.2. UNDERLYING PRINCIPLES 3

Figure 1: Orienting a convex polygonal part. Starting from four different initial positions, two squeezing

operations can bring the part to the correct orientation [20]

to measure P ’s orientation, we can use the following (simplified) algorithm:

Orient(P, θg)

1 Measure P ’s initial orientation θi

2 Move the gripper to the grasp position of P

3 Close the gripper

4 Rotate the gripper by θg − θi

5 Open the gripper

6 Move the gripper to a resting position

The states of interest are defined by the orientations of P , the position of the gripper relative to P ,

and whether the gripper holds P or does not. (Only the initial and goal orientations, θi and θg, are

explicitly considered.) Step 1 acquires the initial state. Step 4 achieves the goal state. Steps 2 and 3

produce intermediate states. Steps 5 and 6 achieve a second goal not mentioned above, that the robot

be away from P at the end of the orientation operation.

A very different algorithm for this same part-orienting task consists of squeezing P several times

between the gripper’s jaws, at appropriately selected orientations of the gripper (see Fig. 1). This

algorithm, which requires no workspace sensing, is based on the following principle. Let P be at an

arbitrary initial orientation. Any squeezing operation will achieve a new orientation that belongs to a set

of 2n (n being the number of sides of P) possible orientations determined by the geometry of P and the

orientation of the jaws. If P is released and squeezed again with another orientation of the gripper, the

set of possible orientations of P can be reduced further. For any n-sided convex polygon P , there is a

sequence of 2n− 1 squeezes that achieves a single orientation of P (up to symmetries), for an arbitrary

4

(a) (b)

Figure 2: Goal recognition in mobile robot navigation

initial orientation of P [20].

The states considered by the second algorithm are individual orientations of P and sets of orientations.

The state achieved by each squeeze is determined by the jaws’ orientation and the previous state. Its

prediction is based on understanding the simple mechanics of the operation. The fact that any convex

polygon admits a finite sequence of squeezes ending at a unique orientation guarantees that any goal is

reachable from any state. However, when the number of parameters that the robot can directly control

is smaller than the number of parameters defining a state, the question of whether the goal state is

reachable is more problematic (see “Motion Planning”).

State recognition can also be difficult. To illustrate, consider a mobile robot navigating in an office

environment. Its controller uses dead-reckoning techniques to control the motion of the wheels. But these

techniques yield cumulative errors in the robot’s position with respect to a fixed coordinate system. For

better localization, the robot algorithm may sense environmental features (e.g., a wall, a door). However,

because sensing is imperfect, a feature may be confused with a similar feature at a different place; this

may occasionally cause a major localization mistake. Thus, the robot algorithm must be designed so that

enough environmental features will be sensed to make each successive state reliably recognizable.

To be more specific, consider the workspace of Fig. 2. Obstacles are shown in bold lines. The robot

is modeled as a point with perfect touch sensing. It can be commanded to move along any direction

φ ∈ [0, 2π) in the plane, but imperfect control makes it move within a cone φ ± θ, where the angle θ

models directional uncertainty. The robot’s goal is to move into G, the goal state, which is a subset

of the wall W (for instance, G is an outlet for recharging batteries). The robot’s initial location is not

precisely known: it is anywhere in the disk I, the initial state. One candidate algorithm (illustrated in

Fig. 2a) first commands the robot to move perpendicularly to W until it touches it. Despite directional

uncertainty, the robot is guaranteed to eventually touch W , somewhere in the region denoted by H. From

0.2. UNDERLYING PRINCIPLES 5

state H, it can slide along the wall (using touch to maintain contact) toward G. The robot is guaranteed

to eventually reach G. But can it reliably recognize this achievement? The answer depends on the growth

of the dead-reckoning localization error as the robot moves along W . Clearly, if this error grows by more

than half the difference in the size of G and H, G is not reliably recognizable.

An alternative algorithm is possible, using the wall W ′ (Fig. 2b). It commands the robot to first

move toward W ′ until it touches it and then slide along it toward W . At the end of W ′, it continues

heading toward W , but with directional uncertainty. The robot is nevertheless guaranteed to be in G

when it senses that it has touched W .

0.2.2 Robot Algorithms Plan

Consider the following variant of the part-orienting task. Parts are successively fed with arbitrary orien-

tations on a table by an independent machine. They have different and arbitrary convex polygonal shape,

but whenever a part arrives, the feeding machine provides a geometric model of the part to the robot,

along with its goal orientation. In the absence of a vision sensor, the multi-squeeze approach can still

be used, but now the robot algorithm must include a planner to compute automatically the successive

orientations of the gripper.

As another example, consider the pick-and-place task which requires a robot arm to transfer an

object from one position to another. If the obstacles in the workspace are not known in advance, the

robot algorithm needs sensing to localize them, as well as a planner to generate a collision-free path. If all

obstacles cannot be sensed at once, the algorithm may have to interweave sensing, planning, and acting.

The point is that, for most tasks, the set of states that may have to be considered at execution

time is too large to be explicitly anticipated. The robot algorithm must incorporate a planner. In first

approximation, the planner can be seen as a separate algorithm that automatically generates a control

algorithm for achieving a given task. The robot algorithm is the combination of the planning and the

control algorithms. More generally, however, it is not sufficient to invoke the planner once, and planning

and control are interleaved. The effect of planning is to dynamically change the control portion of the

robot algorithm, by changing the set of states of the workspace that are explicitly considered.

Planning, which often requires exploring large search spaces, raises critical complexity issues. For

example, finding a collision-free path for a three-dimensional linkage among polyhedral obstacles is

PSPACE-hard [47], and the proof of this result provides strong evidence that any complete algorithm

will require exponential time in the number of degrees of freedom. Planning the motion of a point

robot among polyhedral obstacles, with bounded uncertainty in control and sensing, is NEXPTIME-

6

hard [10].

The computational complexity of planning leads to looking for efficient solutions to restricted prob-

lems. For example, for part orienting, there exists a complete planning algorithm that computes a

sequence of squeezes achieving a single orientation (up to symmetries) of a given convex polygonal part

in quadratic time in the number of sides of the part [20]. Another way of dealing with complexity is to

trade off completeness against time, by accepting weaker variants of completeness. A complete planner

is guaranteed to find a solution whenever one exists, and to notify that there exists none otherwise. A

weaker variant is probabilistic completeness: if there exists a solution, the planner will find one only with

high probability. This variant can be very useful if one can show that the probability of finding a solution

(when one exists) tends rapidly toward 1 as the running time increases. In Section 0.3 we will present

planning algorithms that embed similar approaches.

The complexity of a robot algorithm has also some interesting relations with the reachability and

recognizability issues introduced in the previous subsection. We will mention several such relations in

Section 0.3 (in particular, in “Motion Planning”).

The potentially high cost of planning and the fact that it may often have to be done on-line raise an

additional issue. A robot algorithm must carefully allocate time between computations aimed at planning

and computations aimed at controlling and sensing the workspace. If the workspace is changing,(say,

under the influence of other agents), spending too much time on planning may result in obsolete control

algorithms; on the other hand, not enough planning may yield irreversible failures [76]. The problem

of allocating time between planning and control remains poorly understood, though several promising

ideas have been proposed. For example, it has been suggested to develop planners that return a plan in

whatever amount of time is allocated to them and can be called back later to incrementally improve the

previous plan if more time is allocated to planning [7]. Deliberative techniques have been proposed to

decide what amount of time should be given to planning and control and update this decision as more

information is collected [43].

0.2.3 Robot Algorithms Reason About Geometry

Imagine a robot whose task is to maintain a botanic garden. To set and update its goal agenda, this

robot needs knowledge in domains like botany and fertilization. The algorithms using this knowledge can

barely be considered parts of a robot algorithm. But, on the other hand, all robots, including gardener

robots, accomplish tasks by eventually moving objects (including themselves) in the real world. Hence,

at some point, all robots must reason about the geometry of their workspace. Actually, geometry is not

0.2. UNDERLYING PRINCIPLES 7

enough, since objects have mass inducing gravitational and inertial forces, while contacts between objects

generate frictional forces. All robots must therefore reason with classical mechanics. However, Newtonian

concepts of mechanics translate into geometric constructs (e.g., forces are represented as vectors), so that

most of the reasoning of a robot eventually involves dealing with geometry.

Computing with continuous geometric models raises discretization issues. Several planners computing

a robot’s path, discretize the robot’s free space in order to build a connectivity graph to which well-known

search algorithms can be applied.

Consider for example the configuration space. A formal definition of this very important concept

is given in Section 0.3.3, but for now just think of it as the set of all collision-free poses (configurations)

of the robot. One discretization approach is to place a fine regular grid across configuration space and

search that grid for a sequence of adjacent points in free space. The grid is just a computational tool and

has no physical meaning. Its resolution is arbitrarily chosen despite its critical role in the computation:

if it is too coarse, planning is likely to fail; if it is too fine, planning will take too much time. Instead,

criticality-driven discretizations have been proposed, whose underlying principle is widely applicable.

They consist of partitioning the continuous space of interest into cells, such that some pertinent property

remains invariant over each cell and changes when the boundary separating two cells is crossed. The

second part-orienting algorithm in “Robot Algorithms Control” is based on such a discretization. The

set of all possible orientations of the part is represented as the unit circle (the cyclic interval [0, 2π)).

For a given orientation of the gripper, this circle can be partitioned into arcs such that, for all initial

orientations of the part in the same arc, the part’s final orientation will be the same after the gripper has

closed its jaws. The final orientation is the invariant associated with the cell. From this decomposition,

it is a relatively simple matter to plan a squeezing sequence.

Several such criticality-driven discretizations have been proposed for path planning, assembly se-

quence planning, motion planning with uncertainty, robot localization, object recognition, and so on, as

will be described in Section 0.3. Several of them use ideas and tools originally developed in computational

geometry, for instance: plane sweep, constructing arrangements, constructing Voronoi diagrams.

Robot algorithms often require dealing with high-dimensional geometric spaces. Although criticality-

based discretization methods apply to such spaces in theory (for instance, see [49]), their computational

complexity is then overwhelming. This has led the development of randomized techniques that effi-

ciently approximate the topology and geometry of such spaces by random discretization. Such techniques

have been particularly successful for building probabilistically complete planners (“Sampling-Based Al-

gorithms”).

8

0.2.4 Robot Algorithms Have Physical Complexity

Just as the complexity of a computation characterizes the amount of time and memory this computation

requires, we can define the physical complexity of a robot algorithm by the amount of physical resources

it takes, e.g., the number of “hands,” the number of motions, or the number of beacons. Some resources,

like the number of motions, relate to the time spent executing the algorithm. Others, like the number of

beacons, relate to the engineering cost induced by the algorithm. For example, one complexity measure

of the multi-squeeze algorithm to orient a convex polygon (“Robot Algorithms Control”) is the maximal

number of squeeze operations this algorithm performs. As another example, consider an assembly oper-

ation merging several parts into a subassembly. The number of subsets of parts moving relative to each

other (each subset moving as a single rigid body) measures the number of hands necessary to hold the

parts during the operation. The number of hands required by an assembly sequence is the maximal num-

ber of hands needed by an operation, over all the operations in the sequence (“Assembly Sequencing”).

The number of fingers to safely grasp or fixture an object is another complexity measure (“Grasping”).

Though there is a strong conceptual analogy between computational and physical complexities, there

are also major differences between the two notions. Physical complexity must be measured along many

more dimensions than computational complexity. Moreover, while computational complexity typically

measures an asymptotic trend, a tighter evaluation is usually needed for physical complexity since robot

tasks involve relatively few objects.

One may also consider the inherent physical complexity of a task, a notion analogous to the inherent

complexity of a computational problem. For example, to orient a convex polygon with n sides, 2n − 1

squeezes may be needed in the worst case; no correct algorithm can perform better in all cases. By

generating all feasible assembly sequences of a product, one could determine the number of hands needed

by each sequence and return the smallest number. This number is a measure of the inherent complexity

of assembling the product. No robot algorithm to assemble this product can require fewer hands.

Evaluating the inherent physical complexity of a task may lead to redefining the task, if it turns out

to be too complex. For example, it has been shown that a product made of n parts may need up to n

hands for its assembly (“Grasping”), thus requiring the delicate coordination of n−1 motions. Perhaps a

product whose assembly requires several hands could be redesigned so that two hands are sufficient, as is

the case for most industrial products. Indeed, designers strive to reduce physical complexity along various

dimensions. For instance, many mass-produced devices are designed to be assembled with translations

only, along very few directions (possibly a single one). The inherent physical complexity of a robot task

is not a recent concept, but its formal application to task analysis is [54].

0.3. STATE OF THE ART AND BEST PRACTICES 9

An interesting issue is how the computational and physical complexities of a robot algorithm relate

to each other. For example, planning for mobile robot navigation with uncertainty is a provably hard

computational problem (“Dealing with Uncertainties in Motion and Sensing”). On the other hand,

burying wires in the ground or placing enough infrared beacons allows robots to navigate reliably at

small computational cost. But isn’t it too much? Perhaps the intractability of motion planning with

uncertainty can be eliminated with less costly engineering.

0.3 State of the Art and Best Practices

Robotics is a broad domain of research. In this subsection we study a number of specific areas: part

manipulation, assembly sequencing and motion planning. For each area, we introduce problems and

survey key algorithmic results.

Although we present the current research according to problem domain, there are several techniques

that cross over many domains. One of the most frequently applied methods in robotics is the criticality-

based discretization mentioned in “Robot Algorithms Reason About Geometry.” This technique allows

us to discretize a continuous space without giving up the completeness or exactness of the solution. It

is closely related to the study of arrangements in computational geometry [23]. When criticality-based

discretization is done in a space representing all possible motions, it yields the so-called “nondirectional”

data structures, which is another prevailing concept in robot algorithms and is exemplified in detail in

“Monotone Two-Handed Assembly Sequence.”

Randomization is another important paradigm in robotics. Randomized techniques have made it pos-

sible to cope practically with robot motion planning with many degrees of freedom (Section on “Sampling-

Based Algorithms”). Also, randomized algorithms are often simpler than their deterministic counterparts

and hence better candidates for efficient implementation. Randomization has recently been applied to

solving problems in grasping as well as in many other areas that involve geometric reasoning.

Throughout this section we interchangeably use the terms “body,” “physical object,” and “part” to

designate a rigid physical object modeled as a compact manifold with boundary B ⊂ Rk (k = 2 or 3).

B’s boundary is also assumed piecewise-smooth.

0.3.1 Part Manipulation

Part manipulation is one of the most frequently performed operations in industrial robotics: parts are

grasped from conveyor belts, they are oriented prior to feeding assembly workcells, and they are immo-

10

bilized for machining operations.

Grasping

Part grasping has motivated various kinds of research, including the design of versatile mechanical hands,

as well as simple, low-cost grippers. From an algorithmic point of view, the main goal is to compute

“safe” grasps for an object whose model is given as input.

Force-Closure Grasp Informally, a grasp specifies the positions of “fingers” on a body B. A more

formal definition uses the notion of a wrench, a pair [f ,p× f], where p denotes a point on the boundary

∂B of B, represented by its coordinate vector in a frame attached to B, f designates a force applied to

B at p, and × is the vector cross-product. If f is a unit vector, the wrench is said to be a unit wrench.

A finger is any tool that can apply a wrench.

A grasp of B is a set of unit wrenches wi = [f i,pi × f i], i = 1, . . . , p, defined on B. For each wi, if

the contact is frictionless, f i is normal to ∂B at pi; otherwise, it can span a friction cone (Coulomb law

of friction).

The notion of a safe grasp is captured by force closure. A force-closure grasp {wi}i=1,...,p on B is such

that, for any arbitrary wrench w, there exists a set of real values {f1, . . . , fp} achieving Σpi=1fiwi = −w.

In other words, a force-closure grasp can resist any external wrench applied to B. If contacts are nonsticky,

we require that fi ≥ 0, for all i = 1, . . . , p, and the grasp is called positive. Here, we only consider positive

grasps. A form-closure grasp is a positive force-closure grasp when all finger-body contacts are frictionless.

Size of a Form/Force-Closure Grasp The following results characterize the physical complexity of

achieving a safe grasp [40]:

• Bodies with rotational symmetry (e.g., discs in 2-space, spheres and cylinders in 3-space) admit no

form-closure grasps.

• All other bodies admit a form-closure grasp with at most 4 fingers in 2-space and 12 fingers in

3-space.

• All polyhedral bodies have a form-closure grasp with 7 fingers.

• With frictional finger-body contacts, all bodies admit a force-closure grasp that consists of 3 fingers

in 2-space and 4 fingers in 3-space.

0.3. STATE OF THE ART AND BEST PRACTICES 11

Testing Force Closure A necessary and sufficient condition for a grasp {wi}i=1,...,p to achieve force

closure in 2-space (respectively, 3-space) is that the finger wrenches wi span a space F of dimension 3

(respectively, 6) and that a strictly positive linear combination of them be zero. In other words, the origin

of F (null wrench) should lie in the interior of the convex hull of the finger wrenches [40]. This condition

provides an effective test for deciding in constant time whether a given grasp achieves force closure.

Computing Form/Force Closure Grasps Most research has concentrated on computing grasps with

2 to 4 nonsticky fingers. Algorithms that compute a single force-closure grasp of a polygonal/polyhedral

part in time linear in the part’s complexity have been derived in [40].

Finding the maximal regions on a body where fingers can be positioned independently while achieving

force closure makes it possible to accommodate errors in finger placement. Geometric algorithms for

constructing such regions are proposed in [42] for grasping polygons with two fingers (with friction) and

four fingers (without friction), and for grasping polyhedra with three fingers (with frictional contact

capable of generating torques) and seven fingers (without friction). Grasping of curved obstacles is

addressed in [45].

Fixturing

Most manufacturing operations require fixtures to hold parts. To avoid the custom design of fixtures

for each part, modular reconfigurable fixtures are often used. A typical modular fixture consists of a

workholding surface, usually a plane, that has a lattice of holes where locators, clamps, and edge fixtures

can be placed. Locators are simple round pins, while clamps apply pressure on the part.

Contacts between fixture elements and parts are generally assumed frictionless. In modular fixturing,

contact locations are restricted by the lattice of holes, and form closure cannot always be achieved. In

particular, when three locators and one clamp are used on a workholding plane, there exist polygons of

arbitrary size for which no form-closure fixture exists; but, if parts are restricted to be rectilinear with

all edges longer than four lattice units, a form-closure fixture always exists [56].

When the fixturing kit consists of a latticed workholding plane, three locators, and one clamp, it is

possible to find all possible placements of a given part on the workholding surface where form closure can

be achieved, along with the corresponding positions of the locators and the clamp [9].

Algorithms for computing all placements of (frictionless) point fingers that put a polygonal part in

form closure and all placements of point fingers that achieve “2nd-order immobility” [96] of a polygonal

part are presented in [95]. Immobilizing hinged parts is discussed in [97].

12

Part Feeding

Part feeders account for a large fraction of the cost of a robotic assembly workcell. A typical feeder must

bring parts at subsecond rates with high reliability. An example of a flexible feeder is given in [20] and

described in “Robot Algorithms Control” above.

Part feeding often relies on nonprehensile manipulation, which exploits task mechanics to achieve

a goal state without grasping and frequently allows accomplishing complex feeding tasks with simple

mechanisms [2]. Pushing is one form of nonprehensile manipulation [90]. Work on pushing originated

in [38] where a simple rule is established to qualitatively determine the motion of a pushed object. This

rule makes use of the position of the center of friction of the object on the supporting surface. Related

results include a planning algorithm for a robot that tilts a tray with a planar part of known shape to

orient it to a desired orientation [16] and an algorithm that computes the sequence of motions of a single

articulated fence on a conveyor belt to achieve a goal orientation of an object [2]. A variety of interesting

results on part feeding appear in the thesis [98].

0.3.2 Assembly Sequencing

Most mechanical products consist of multiple parts. The goal of assembly sequencing is to compute

both an order in which parts can be assembled and the corresponding required movements of the parts.

Assembly sequencing can be used during design to verify that the product will be easy to manufacture

and service. An assembly sequence is also a robot algorithm at a high level of abstraction since parts are

assumed free-flying, massless geometric objects.

Notion of an Assembly Sequence

An assembly A is a collection of bodies in some given relative placements. Subassemblies are separated

if they are arbitrarily far apart from one another. An assembly operation is a motion that merges s

separated subassemblies (s ≥ 2) into a new subassembly, with each subassembly moving as a single body.

No overlapping between bodies is allowed during the operation. The parameter s is called the number

of hands of the operation. (Hence, a hand is seen here as a grasping or fixturing tool that can hold

an arbitrary number of bodies in fixed relative placements.) Assembly partitioning is the reverse of an

assembly operation.

An assembly sequence is a total ordering on assembly operations that merges the separated parts

composing an assembly into this assembly. The maximum, over all the operations in the sequence, of the

0.3. STATE OF THE ART AND BEST PRACTICES 13

number of hands of an operation is the number of hands of the sequence.

A monotone assembly sequence contains no operation that brings a body to an intermediate placement

(relative to other bodies), before another operation transfers it to its final placement. Therefore, the

bodies in every subassembly produced by such a sequence are in the same relative placements as in the

complete assembly. Note that a product may admit no monotone assembly sequence for a given number

of hands, while it may admit such sequences if more hands are allowed.

Number of Hands in Assembly

The number of hands needed for various families of assemblies is a measure of the inherent physical

complexity of an assembly task (“Robot Algorithms Have Physical Complexity”). It has been shown that

an assembly of convex polygons in the plane has a two-handed assembly sequence of translations. In the

worst case, s hands are necessary and sufficient for assemblies of s star-shaped polygons/polyhedra [41].

There exists an assembly of six tetrahedra without a two-handed assembly sequence of translations,

but with a three-handed sequence of translations. Every assembly of five or fewer convex polyhedra admits

a two-handed assembly sequence of translations. There exists an assembly of thirty convex polyhedra

that cannot be assembled with two hands [51].

Complexity of Assembly Sequencing

When arbitrary sequences are allowed, assembly sequencing is PSPACE-hard. The problem remains

PSPACE-hard even when the bodies are polygons, each with a constant maximal number of vertices [41].

When only two-handed monotone sequences are permitted and rigid motions are allowed, finding a

partition of an assembly A into two subassemblies S and A\S is NP-complete. The problem remains

NP-complete when both S and A\S are connected and motions are restricted to translations [26]. These

latter results were obtained by reducing in polynomial time any instance of the 3-SAT problem to a

mechanical assembly such that the partitioning of this assembly gives the solution of the 3-SAT problem

instance.

Monotone Two-Handed Assembly Sequencing

A popular approach to assembly sequencing is disassembly sequencing. A sequence that separates an

assembly to its individual components is first generated and next reversed. Most existing assembly se-

quencers can only generate two-handed monotone sequences. Such a sequence is computed by partitioning

14

the assembly and, recursively, the obtained subassemblies into two separated assemblies.

The nondirectional blocking graph (NDBG, for short) is proposed in [54] to represent all the blocking

relations in an assembly. It is a subdivision of the space of all allowable motions of separation into a

finite number of cells such that within each cell the set of blocking relations between all pairs of parts

remain fixed. Within each cell this set is represented in the form of a directed graph, called the directional

blocking graph (DBG). The NDBG is the collection of the DBGs over all the cells in the subdivision.

The NDBG is one example of a data structure obtained by a criticality-driven discretization technique

(“Robot Algorithms Reason About Geometry”).

We illustrate this approach for polyhedral assemblies when the allowable motions are infinite trans-

lations. The partitioning of an assembly consisting of polyhedral parts into two subassemblies is done

as follows. For an ordered pair of parts Pi, Pj , the 3-vector d is a blocking direction if translating Pi to

infinity in direction d will cause Pi to collide with Pj . For each ordered pair of parts the set of blocking

directions is constructed on the unit sphere S2 by drawing the boundary arcs of the union of the blocking

directions (each arc is a portion of a great circle). The resulting collection of arcs partitions S2 into

maximal regions such that the blocking relation among the parts is the same for any direction inside such

a region.

Next, the blocking graph is computed for one such maximal region. The algorithm then moves to an

adjacent region and updates the DBG by the blocking relations that change at the boundary between

the regions, and so on. After each time the construction of a DBG is completed, this graph is checked for

strong connectivity in time linear in the number its edges. The algorithm stops the first time it encounters

a DBG that is not strongly connected and it outputs the two subassemblies of the partitioning. The overall

sequencing algorithm continues recursively with the resulting subassemblies. If all the DBGs that are

produced during a partitioning step are strongly connected, the algorithm notifies that the assembly does

not admit a two-handed monotone assembly sequence with infinite translations.

Polynomial time algorithms are proposed in [54] to compute and exploit NDBGs for restricted families

of motions. In particular, the case of partitioning a polyhedral assembly by a single translation to infinity,

is analyzed in detail, and it is shown that partitioning an assembly of m polyhedra with a total of v vertices

takes O(m2v4) time. Another case is where the separating motions are infinitesimal rigid motions. Then

partitioning the polyhedral assembly, can be carried out efficiently and practically [93]. With the above

algorithms, every feasible disassembly sequence can be generated in polynomial time.

0.3. STATE OF THE ART AND BEST PRACTICES 15

0.3.3 Motion Planning

Motion planning is central to robotics, as motion planning algorithms can provide robots with the capa-

bility of deciding automatically which motions to execute to reach their goal. In its simplest form, the

problem is known as path planning because the question is to find a collision free path from an initial

to a final position. A more challenging and general version is captured by the term motion planning.

The distinctive difference is that it is not enough to come up with a collision free path. In addition the

algorithm must compute the exact actions that the robot’s actuators must perform to implement the

computed path.

It is reasonable to expect that motion planning problems can present various difficulties depending

on the type of robot at hand (e.g., planning for mobile robots, humanoids, reconfigurable robots, ma-

nipulators, etc.). Fortunately all those differences can be abstracted with the use of the configuration

space that is described below. In the rest of this section several motion planning issues are discussed. For

the case of just path planning, complete algorithms with a complexity analysis are presented together

with more recent sampling-based approaches. Then the case of motion planning is considered under

the prism of planning with differential constraints. The section ends with a discussion of several other

motion planning variants that include planning in dynamic workspaces, planning with moving obstacles

in the environment, multiple robots, movable objects, online planning, optimal planning and dealing with

uncertainties.

Configuration Space

The configuration space has been informally described in Section 0.2.3. At first sight, planning for a car

on the highway looks very different from planning for an industrial robotic arm. It is possible though,

to define a powerful abstraction that hides the robot’s specific details and transforms the problem into

finding a solution for a point robot that has to move from one position to another in some new space,

called the configuration space.

A configuration of a robot A is any mathematical specification of the position and orientation of

every body composing A, relative to a fixed coordinate system. The configuration of a single body is also

called a placement or a pose.

The robot’s configuration space is the set of all its configurations. Usually, it is a smooth manifold.

We will always denote the configuration space of a robot by C and its dimension by m. Given a robot A,

we will let A(q) denote the subset of the workspace occupied by A at configuration q.

16

The number of degrees of freedom of a robot is the dimension m of its configuration space. We

abbreviate “degree of freedom” by dof.

Given an obstacle Bi in the workspace, the subset CBi ⊆ C such that, for any q ∈ CBi, A(q) intersects

Bi is called a C-obstacle. The union CB = ∪iCBi plus the configurations that violate the mechanical

limits of the robot’s joints is called the C-obstacle region. The free space is the complement of the C-

obstacle region in C, that is, C\CB. In most practical cases, C-obstacles are represented as semialgebraic

sets with piecewise smooth boundaries.

A robot’s path is a continuous map τ : [0, 1] → C. A free path is a path that entirely lies in free

space. A semifree path lies in the closure of free space.

After the configuration space has been defined, solving a path problem for some robot, becomes a

question of computing a free or semifree path between two configurations. A complete planner is

guaranteed to find a (semi)free path between two given configurations whenever such a path exists, and

to report that no such path exists otherwise.

Complete Algorithms

Basic path planning for a three-dimensional linkage made of polyhedral links is PSPACE-hard [47].

The proof uses the robot’s dofs to both encode the configuration of a polynomial space bounded Turing

machine and design obstacles which force the robot’s motions to simulate the computation of this machine.

It provides strong evidence that any complete algorithm will require exponential time in the number of

dofs. This result remains true in more specific cases, for instance when the robot is a planar arm in which

all joints are revolute. However, it no longer holds in some very simple settings; for instance, planning

the path of a planar arm within an empty circle is in P. For a collection of complexity results on motion

planning see [30].

Most complete algorithms first capture the connectivity of the free space into a graph, either by

partitioning the free space into a collection of cells (exact cell decomposition techniques), or by extracting a

network of curves (roadmap techniques) [30]. General and specific complete planners have been proposed.

The general ones apply to virtually any robot with an arbitrary number of dofs. The specific ones apply

to a restricted family of robots usually having a fixed small number of dofs.

The general algorithm in [49] computes a cylindrical cell decomposition of the free space using the

Collins method. It takes doubly exponential time in the number m of dofs of the robot. The roadmap

algorithm in [10] computes a semifree path in time singly exponential in m. Both algorithms are polyno-

mial in the number of polynomial constraints defining the free space and their maximal degree. Specific

0.3. STATE OF THE ART AND BEST PRACTICES 17

algorithms have been developed mainly for robots with 2 or 3 dofs. For a k-sided polygonal robot moving

freely in a polygonal workspace, the algorithm in [24] takes O((kn)2+ε) time, where n is the total number

of edges of the workspace, for any ε > 0.

Heuristic Algorithms

Several heuristic techniques have been proposed to speedup path planning. Some of them work well in

practice, but they usually offer no performance guarantee.

Heuristic algorithms often search a regular grid defined over configuration space and generate a path

as a sequence of adjacent grid points. The search can be guided by a potential field, a function over the

free space that has a global minimum at the goal configuration. This function may be constructed as

the sum of an attractive and a repulsive field [28]. The attractive field has a single minimum at the goal

and grows to infinity as the distance to the goal increases. The repulsive field is zero at all configurations

where the distance between the robot and the obstacles is greater than some predefined value, and grows

to infinity as the robot gets closer to an obstacle. Ideally a robot could find its way to the goal by

following a potential field that has only one global minimum at the goal (the potential field is then called

a navigation function). Yet in general, the configuration space is usually a high dimensional and strangely

shaped manifold, which makes it very hard to design potential fields that have no local minima where

the robot may be trapped.

One may also construct grids at variable resolution. Hierarchical space decomposition techniques

such as octrees and boxtrees have been used to that purpose [30].

Sampling-Based Algorithms

The complexity of path planning for robots with many dofs (more than 4 or 5) has led the development

of computational schemes that trade off completeness against computational time. Those methods avoid

computing an explicit representation of the free space. Instead their focus is on producing a graph

that approximately captures the connectivity of the free space. As the title of this section suggests,

those planners compute this graph by sampling the configuration space. The general idea is that a large

number of random configurations are sampled from the configuration space. Then the configurations

that correspond to collisions are filtered out and an attempt is made to connect pairs of collision free

configurations to produce the edges of the connectivity graph.

One of the most popular such planners is the Probabilistic RoadMap (PRM) [4, 27]. The original

algorithm consists of a learning and a querying phase. In the learning phase the roadmap is constructed.

18

A sampling strategy is used to generate a large number of configuration samples. The strategy can be

just uniform random sampling, although many sophisticated strategies such as bridge test, Gaussian, etc

have been proposed over the years [61, 62]. Then, an attempt is made to connect every free sample to

its neighboring free samples. For this process a local planner is used that tries to interpolate between

the two samples using a very simple strategy; for example a straight line in the configuration space.

The intermediate configurations on the line must be checked for collisions [61, 62, 88] If no collisions are

detected, the corresponding edge is added to the graph. After this phase is over, multiple planning queries

can be solved using the same graph as a roadmap. The initial and goal configuration are connected to

the roadmap by producing edges to one of their nearest neighbors on the roadmap. Then planning is

reduced to a graph search problem which can be solved very efficiently.

PRM was initially intended as a multiquery planner where the same roadmap can be reused. In many

cases though, it is required to solve only a single query as fast as possible and it is more important to

explore the space towards some goal rather than trying to capture the connectivity of the whole space.

Two very popular such planners are Rapidly-Exploring Random Trees (RRT) [68] and Expansive-Spaces

Trees (EST) 1 [69] . Both end up building a tree T, rooted at the initial configuration. EST proceeds

by extending new edges out the existing tree T. At each step a node q1 on the tree is selected according

to a probability distribution inverse to the local sampling density. Then a new random configuration

q2 is sampled in the neighborhood of q1 and an attempt is made to create an edge between q1 and q2

using a local planner as before. Hopefully at some point there will be some configuration node in the

tree that can be connected to the goal. RRT has a slightly different strategy. At each iteration, a new

random configration q is produced and then an attempt is made to connect q to its nearest neighbor on

the tree. A popular way to make this process more effective is to select the goal itself as q with some

small probability. Several extentions of the above algorithms can be found in [61, 62].

There is a number of issues that can greatly affect the performance of sampling-based planners. The

sampling strategy has already been discussed above, and is very important to produce useful samples.

Moreover, sampling-based planners make extensive use of collision checking primitives [63]. This is a

functionality that has to be available to provide the answer to the question of whether a configuration is

in collision with an obstacle, or not. Finally, most of those planners need some functionality for nearest

neighbors computations. This is a non-trivial task in general. The reason is that configuration spaces

are usually strangely shaped manifolds where it is not always easy to define good distance metrics. This

issue is discussed at the end of this chapter.

1The term EST was not used in the original paper. It was introduced later [62].

0.3. STATE OF THE ART AND BEST PRACTICES 19

An interesting question is how many samples are required to solve a problem. In general this is

related to the completeness properties of those algorithms. It is understood that if after some time the

produced roadmap or tree is unable to solve the problem, it could just be that the sampler was “unlucky”

and did not produce enough good samples yet. In principle sampling-based algorithms are not complete

with respect the the definition given in previous sections. Instead most of them can be proven to be

probabilistically complete. This is a weaker notion of completeness that guarantees that a solution

will eventually be found if one exists. For this definition to be of practical importance, it is good to

also demand that the convergence to the solution will be fast, i.e. exponential in the number of samples.

Nevertheless, attempts have been made to estimate the quality of the roadmap and the number of samples

that will be required. For example the results reported in [4] bound the number of samples generated by

the algorithm in [27], under the assumption that the configuration space verifies some simple geometric

property.

0.3.4 Motion Planning under Differential Constraints

Real robots are constrained by mechanics and the laws of physics. Moreover, it is commonly the case that

a robot has more dofs than the number of actuators that can control those configuration space parameters

(underactuation). This means that a planner needs to produce paths that respect those constraints and

are thus implementable (feasible). Over the years many terms have been used in the literature to describe

these classes of problems. Constraints in a robot’s motion that cannot be converted into constraints that

involve no derivatives, such as non-integrable velocity constraints in the configuration space, are usually

referred to as nonholonomic. A more recent term is kinodynamic constraints. The latter describes

second order constraints on both velocity and acceleration, and lately has been used to describe problems

that involve dynamics in general. A generic term that captures all these constraints is differential

constraints [61].

Below nonholonomic constraints are examined in some more depth to better understand the control-

lability issues introduced in “Robot Algorithms Control”. This section closes with a description of the

work on sampling-based planners that can be applied to problems with differential constraints.

Planning for Robots with Nonholonomic Constraints

The trajectories of a nonholonomic robot are constrained by p ≥ 1 nonintegrable scalar equality con-

straints:

G(q(t), q̇(t)) =
(
G1(q(t), q̇(t)), . . . , Gp(q(t), q̇(t))

)
= (0, . . . , 0) ,

20

where q̇(t) ∈ Tq(t)(C) designates the velocity vector along the trajectory q(t). At every q, the function

Gq = G(q, .) maps the tangent space2 Tq(C) into Rp. If Gq is smooth and its Jacobian has full rank

(two conditions that are often satisfied), the constraint Gq(q̇) = (0, . . . , 0) constrains q̇ to be in a linear

subspace of Tq(C) of dimension m− p. The nonholonomic robot may also be subject to scalar inequality

constraints of the form Hj(q, q̇) > 0. The subset of Tq(C) that satisfies all the constraints on q̇ is

called the set Ω(q) of controls at q. A feasible path is a piecewise differentiable path whose tangent lies

everywhere in the control set.

A car-like robot is a classical example of a nonholonomic robot. It is constrained by one equality

constraint (the linear velocity must point along the car’s axis so that the car is not allowed to move

sideways). Limits on the steering angle impose two inequality constraints. Other nonholonomic robots

include tractor-trailers, airplanes, and satellites.

A key question when dealing with a nonholonomic robot is: Despite the relatively small number of

controls, can the robot span its configuration space? The study of this question requires introducing

some controllability notions. Given an arbitrary subset U ⊂ C, the configuration q1 ∈ U is said to be

U -accessible from q0 ∈ U if there exists a piecewise constant control q̇(t) in the control set whose integral

is a trajectory joining q0 to q1 that fully lies in U . Let AU (q0) be the set of configurations U -accessible

from q0. The robot is said to be locally controllable at q0 iff for every neighborhood U of q0, AU (q0)

is also a neighborhood of q0. It is locally controllable iff this is true for all q0 ∈ C. Car-like robots and

tractor-trailers that can go forward and backward are locally controllable [5].

Let X and Y be two smooth vector fields on C. The Lie bracket of X and Y , denoted by [X,Y], is the

smooth vector field on C defined by [X,Y] = dY ·X−dX ·Y , where dX and dY , respectively, denote the

m×mmatrices of the partial derivatives of the components ofX and Y w.r.t. the configuration coordinates

in a chart placed on C. The Control Lie Algebra associated with the control set Ω, denoted by L(Ω), is the

space of all linear combinations of vector fields in Ω closed by the Lie bracket operation. The following

result derives from the Controllability Rank Condition Theorem [5]: A robot is locally controllable if, for

every q ∈ C, Ω(q) is symmetric with respect to the origin of Tq(C) and the set {X(q) | X(q) ∈ L(Ω(q))}

has dimension m.

The minimal number of Lie brackets sufficient to express any vector in L(Ω) using vectors in Ω is

called the degree of nonholonomy of the robot. The degree of nonholonomy of a car-like robot is 2. Except

at some singular configurations, the degree of nonholonomy of a tractor towing a chain of s trailers is

2The tangent space Tp(M) at a point p of a smooth manifold M is the vector space of all tangent vectors to curves

contained in M and passing through p. It has the same dimension as M .

0.3. STATE OF THE ART AND BEST PRACTICES 21

2 + s. Intuitively, the higher the degree of nonholonomy the more complex (and the slower) the robot’s

maneuvers to perform some motions.

Let A be a locally controllable nonholonomic robot. A necessary and sufficient condition for the

existence of a feasible free path of A between two given configurations is that they lie in the same

connected component of the open free space. Indeed, local controllability guarantees that a possibly

nonfeasible path can be decomposed into a finite number of subpaths, each short enough to be replaced

by a feasible free subpath [31]. Hence, deciding if there exists a free path for a locally controllable

nonholonomic robot has the same complexity as deciding if there exists a free path for the holonomic

robot having the same geometry. Transforming a nonfeasible free path τ into a feasible one can be done

by recursively decomposing τ into subpaths. The recursion halts at every subpath that can be replaced

by a feasible free subpath. Specific substitution rules (e.g., Reeds and Shepp curves) have been defined

for car-like robots [31]. The complexity of transforming a nonfeasible free path τ into a feasible one is

of the form O(εd), where ε is the smallest clearance between the robot and the obstacles along τ and

d is the degree of nonholonomy of the robot. The algorithm in [5] directly constructs a nonholonomic

path for a car-like or a tractor-trailer robot by searching a tree obtained by concatenating short feasible

paths, starting at the robot’s initial configuration. The planner is guaranteed to find a path if one exists,

provided that the length of the short feasible paths is small enough. It can also find paths that minimize

the number of cusps (changes of sign of the linear velocity).

Path planning for nonholonomic robots that are not locally controllable is much less understood.

Research has almost exclusively focused on car-like robots that can only move forward. The algorithm

in [17] decides whether there exists such a path between two configurations, but it runs in time exponential

in obstacle complexity. The algorithm in [1] computes a path in polynomial time under the assumptions

that all obstacles are convex and their boundaries have a curvature radius greater than the minimum

turning radius of the point (so called “moderate obstacles”). Other polynomial algorithms [5] require

some sort of discretization.

Planning for Robots with Differential Constraints

A robot’s motion can generally be describe by a set of non-linear equations of motion ẋ = f(x, u), together

with some constraints g(x, ẋ) ≤ 0. x is the robot’s state vector and u is a vector of control inputs. The

robot can be abstracted into a point that moves in a state space. The state space is a superset of

the aforementioned configuration space. For example a car moving in a plane can be modelled using a

5-dimensional state space where x = (xr, yr, θ, v, s). xr and yr provide the position of a reference point on

22

the car and together with orientation θ, they constitute the car’s configuration. For the state description,

we need the components for the linear velocity v and angle of the steering s. In this model the car is

controlled by two inputs: u = (a, b). a is the car’s linear acceleration and b is the car’s steering velocity.

Notice that this system can have bounds in its acceleration which is a second order constraint.

Sampling-based techniques are becoming increasingly popular for tackling problems with kinodynamic

and in general differential constraints [61, 62, 72]. For this reason, this section will not extend beyond

sampling-based planners. For planning under differential constraints, the planner is now called to search

the state space described above. Since motion is constrained by non-linear equations, collision checking

is generalized to also check for invalid states (e.g., due to constraint violations). Moreover, the sampling

process is modified. The planner typically produces a random set of controls that are applied at a given

state for some time in attempt to move the systems towards a newly sampled state. For this process,

the planner requires a function that can integrate the equations of motion forward in time. Notice that

all the produced trajectories are feasible by construction. This is an advantage, since the planner avoids

dealing with controllability issues. The disadvantage is that it becomes hard to drive the system to an

exact goal state. To overcome this difficulty sometimes it is easier to define a whole region of states that

are acceptably close to the goal.

Adaptations of tree-based planners such as RRT and EST proved very successful in kinodynamic

problems (for example see [73, 74]). In addition, many newer planners are specifically designed for

problems with differential constraints [70, 75] although they can apply to simpler problems as well. An

interesting observation is that the planner only needs the integrator function as a black box. For this

reason it is possible to use a physical simulator to do the integration of motion [92]. In this way, it is

possible to model more realistic effects and constraints such as inertia, gravity and friction. Moreover, it

becomes possible to do planning for systems for which the exact equations are not explicitly written.

0.3.5 Extentions to Motion Planning

Most of the topic discussed so far, focused on difficulties presented by the nature of a robot itself. In

practice there are many interesting problems that extend beyond planning for a robot in a static known

environment. In the following paragraphs an attempt is made to cover the most important ones. For

more detailed descriptions the reader is referred to [30, 60, 61, 62].

0.3. STATE OF THE ART AND BEST PRACTICES 23

Dynamic Workspace

In the presence of moving obstacles, one can no longer plan a robot’s motion as a mere geometric path.

The path must be indexed by time and is then called a trajectory. The simplest scenario is when the

trajectories of the moving obstacles are known in advance or can be accurately predicted. In that case,

planning can be done in the configuration×time space (C×[0,+∞)) of the robot. All workspace obstacles

map to static forbidden regions in that space. A free trajectory is a free path in that space whose tangent

at every point points positively along the time axis (or within a more restricted cone, if the robot’s

velocity modulus is bounded).

Computing a free trajectory for a rigid object in 3-space among arbitrarily moving obstacles (with

known trajectories) is PSPACE-hard if the robot’s velocity is bounded, and NP-hard otherwise [48]. The

problem remains NP-hard for a point robot moving with bounded velocity in the plane among convex

polygonal obstacles translating at constant linear velocities [10]. A complete planning algorithm is given

in [48] for a polygonal robot that translates in the plane among polygonal obstacles. The obstacles

translate at fixed velocities. This algorithm takes time exponential in the number of moving obstacles

and polynomial in the total number of edges of the robot and the obstacles.

In realistic scenarios, exact information about moving obstacles trajectories is not available. In those,

cases, a robot has to make conservative assumptions about where the obstacles will be in the future. E.g.,

for problems on a plane, moving obstacles with bounded velocity can be anywhere within a disk whose

radius grows in time. As long as the robot’s path does not enter any of those disk at any moment it

time, the robot’s path will be collision free. This idea is described in [65] which also shows how to find

time-optimal paths. Another approach that tries to address these issues is by employing an adaptive

online replanning strategy [67, 70]. In such approaches, the planner operates in a closed loop and is

interleaved with sensing operations that try to keep track of the motions of the obstacles. A partial plan

for some small time horizon is computed and implemented. Then using the latest available information

the planner is called again to compute a new plan. Such replanning techniques are also known as online

planning and are discussed in a bit more detail in the relevant section below. For further reference, [94]

is closely related to the topics discussed in this subsection

Planning for Multiple Robots

The case of multiple robots can be trivially addressed by considering them as the components of a single

robot, that is, by planning a path in the cross product of their configuration spaces. This product is called

the composite configuration space of the robots and the approach is referred to as centralized planning.

24

This approach can be used to take advantage of the completeness properties that single robot algorithms

have. Due to the increased complexity, powerful planners need to be used (e.g., [78]).

One may try to reduce complexity by separately computing a path for each robot, before tuning the

robots’ velocities along their respective paths to avoid inter-robot collision (decoupled planning) [64]. This

approach can be helped by assigning priorities to robots according to some measure of importace. Then,

each robot has to respect the higher priorities robots when planning. Although inherently incomplete,

decoupled planning may work well in some practical applications.

Planning for multiple robots can become really challenging if it has to be done distributedly, with each

robot restricted to its own configuration space. This a reasonable situation in practice where each robot

may have its own limitations and goals and can interact only with the robots that are close to it. In [64]

the robots move towards their independent goals. During the process, when robots come close, they form

dynamic networks. The robots within a network solve a centralized motion planning problem to avoid

collisions between each other using all available information within the network. Whenever robots get out

of some communication range, networks are dissolved. For this kind of problems, planning can greatly

benefit from utilizing the communication capabilities that robots typically have. In [76, 77] a coordination

framework for mulitrobot planning is described. In this work each robot plans in its own state space,

and uses only local information obtained through communication with neighboring robots. The approach

can deal with robots that have non-trivial kinodynamic constraints. Moreover, it is possible to guarantee

collision avoidance between robots and static obstacles while the robots can move as a connected network.

Coordination is achieved with a distributed message passing scheme.

Planning with Movable Objects

Many robot tasks require from the robot to interact with its environment by moving an object. Such

objects, are called movable objects, and cannot move by themselves; they must be moved by a robot.

These problems fall into the category of manipulation planning.

In [53] the robot A and the movable object M are both convex polygons in a polygonal workspace.

The goal is to bring A and M to specified positions. A can only translate. To grasp M , A must have

one of its edges that exactly coincides with an edge of M . While A grasps M , they move together as one

rigid object. An exact cell decomposition algorithm is given that runs in O(n2) time after O(n3 log2 n)

preprocessing, where n is the total number of edges in the workspace, the robot, and the movable object.

An extension of this problem allowing an infinite set of grasps is solved by an exact cell decomposition

algorithm in [3].

0.3. STATE OF THE ART AND BEST PRACTICES 25

Heuristic algorithms have also been proposed. The planner in [29] first plans the path of the movable

object M . During that phase, it only verifies that for every configuration taken by M there exists at

least one collision-free configuration of the robot where it can hold M . In the second phase, the planner

determines the points along the path of M where the robot must change grasps. It then computes the

paths where the robot moves alone to (re)grasp M . The paths of the robot when it carries M are obtained

through inverse kinematics. This planner is not complete, but it has solved complex tasks in practice.

Another scenario is that of a robot that needs to move inside a building where the doors are blocked

by obstacles that have to be moved out of the way. Questions of interest are, how many obstacles must

be moved, in which order must these obstacles be moved and where should the robot put them so as not

to block future motions. [66, 91] presents a planner that can solve problems in class LP . An LPk ⊆ LP

problem is one where a series of k − 1 obstacles must be moved before an obstacle can be reached and

moved, so that a room becomes accessible through a blocked door.

On-Line Planning and Exploration

On-line planning addresses the case where the workspace is initially unknown or partially unknown. As

the robot moves, it acquires new partial information about the workspace through sensing. A motion plan

is generated using the partial information that is available and updated as new information is acquired.

With this planning strategy, a robot exhibits a “reactive or adaptive behavior” and can also move in the

the presence of moving obstacles or other robots.

In [67, 70] the robot initially preprocesses the workspace and creates a roadmap as described in

“Sampling-Based Algorithms”. Then the robot finds a path to its goal and starts following it, until an

unexpected change, such as a moving obstacle, is sensed. Then, the robot quickly revises its path online,

and chooses a new path on the roadmap that avoids regions that are invalidated by the obstacle. Another

useful application where online planning is needed is that of exploration of unknown environments [89].

In that case it in necessary that a robot plans online and revises its plan periodically after receiving

new sensor information. Exploration can be done more efficiently when multiple robots are used. In [76]

a team of robots explores an unknown environment. Each robot plans online and communicates with

neighboring robots to coordinate their actions before computing a new plan. In this way, robots that

have kinodynamic constraints, manage to complete their task while avoiding all collisions between robots

or workspace obstacles.

The main difficulty in online planning, is that the planner has to run under a time budget, and must

generally be very fast in producing a new plan. Moreover, since the overall motion is a concatenation of

26

small motions that use only partial information without a global view of the workspace, the quality of

the paths can be bad, and it is very hard to to establish path optimality.

A way of evaluating an on-line planner is competitive analysis. The competitive ratio of an on-line

planner is the maximal ratio (over all possible workspaces) between the length of the path generated by

the on-line algorithm and the length of the shortest path [44]. Competitive analysis is not restricted to

path length and can be applied to other measures of performance as well.

Optimal Planning

There has been considerable research in computational geometry on finding shortest Euclidean paths

[63] (chapter 27), but minimal Euclidean length is usually not the most suitable criterion in robotics.

Rather, one wishes to minimize execution time, which requires taking the robot’s dynamics into account.

Optimal-Time Control Planning, the input is a geometric free path τ parameterized by s ∈ [0, L], the

distance travelled from the starting configuration. The problem is to find the time parameterization s(t)

that minimizes travel time along τ , while satisfying actuator limits.

The dynamic equation of motion of a robot arm with m dofs can be written as M(q)q̈ + V (q̇, q) +

G(q) = Γ, where q, q̇, and q̈, respectively, denote the robot’s configuration, velocity, and acceleration [12].

M is the m×m inertia matrix of the robot, V the m-vector (quadratic in q̇) of centrifugal and Coriolis

forces, and G the m-vector of gravity forces. Γ is the m-vector of the torques applied by the joint

actuators.

Using the fact that the robot follows τ , this equation can be rewritten in the form: ms̈+vṡ2 +g = Γ,

where m, v, and g are derived from M , V , and G, respectively. Minimum-time control planning becomes

a two-point boundary value problem: find s(t) that minimizes tf =
∫ L
0
ds/ṡ, subject to Γ = ms̈+vṡ2 +g,

Γmin ≤ Γ ≤ Γmax, s(0) = 0, s(tf) = L, and ṡ(0) = ṡ(L) = 0. Numerical techniques solve this problem

by finely discretizing the path τ .

To find a minimal-time trajectory, a common approach is to first plan a geometric free path and

then iteratively deform this path to reduce travel time. Each iteration requires checking the new path

for collision and recomputing the optimal-time control. No bound has been established on the running

time of this approach or the goodness of its outcome. The problem is NP-hard for a point robot under

Newtonian mechanics in 3-space. The approximation algorithm in [13] computes a trajectory ε-close to

optimal in time polynomial in both 1/ε and the workspace complexity.

0.3. STATE OF THE ART AND BEST PRACTICES 27

Dealing with Uncertainties in Motion and Sensing

In all of the topics discussed so far it has been implicitly assumed that the robot has accurate knowledge

abouts its own state at the present and possibly future times after executing some action. Unfortunately

this is not at all the case in practice. Real robots have a number of inherent mechanichal imperfections

that affect the result of an action and introduce motion errors. For example, the actuators introduce

errors when executing a motion command and there is usually discrepancy between how much the robot

thinks it has moved as opposed to how much it has actually moved. The problem is more pronounced

in mobile robots that have odometry errors produced by unaccounted for wheel slipage. The effect of

such errors, is that the robot no longer has exact knowledge of its own state. Instead, it has to somehow

infer its state from the available sensing information. To add to the overall problem, processing sensor

information is computationally intensive and erroneous due to imperfect sensors.

All these issues amount to the very fundamental problem of dealing with uncertainty in motion and

sensing. A very simple example was already shown in “Robot Algorithms Control”, Fig. 2. A broad area

of robotics algorithms focus on processing all the available information to reduce this uncertainty. Maybe

the most common framework for handling uncertainty is based on the theory of Bayesian estimation

[60]. The robot is assumed to be at some state xt which is unknown. The robot maintains a probability

distribution bel(x) called belief, that represents how likely it is that the true state is x. For Bayesian

estimation, some system specific characteristics must be modelled. In particular, a state transition

function must be given, to describe how likely it is to move to some new state xt+1 when starting at some

state xt and performing an action/motion. Moreover, a measurement model must be available to describe

how likely it is to take some specific measurement when being at some state. Given the belief at time t

together with the latest action and sensor measurement, Bayesian estimation performs two steps in an

attempt to compute the next belief bel(xt+1). First, there is a prediction step where using bel(xt) and

the state transition model, an estimate of bel(xt+1) is computed. Then, this estimate is refined using the

measurement model to validate the predictions against the latest sensor measurement. This technique

is very general and powerful and has been successfully applied in many robotics estimation problems.

Below, concrete examples of the most important estimation problems are briefly described. An extensive

reference for such problems is [60].

Localization One of the most fundamental problem in robotics is that of robot localization. The goal

is to maintain an accurate estimation of the robot’s state at all times as the robot moves in a known

environment for which a map is available. The easiest version is when the initial state is known with

28

certainty. Then the problem is called position tracking and the robot just needs to compensate for local

uncertainty introduced everytime it attempts to move. A very successful technique for such problem

is the Extended Kalman Filter (EKF) [60, 79]. A more challenging variant is called global localization

[57, 80]. This is the problem of estimating the robot’s state when the initial location is also unknown.

This kind of problems are usually solved using Particle Filters [60].

Mapping The assumption that the robot’s map is known does not always hold. In fact the mapping

problem tries to address exactly this issue. Here, the robot is assumed to have an accurate mechanism for

tracking is position (e.g., using a GPS). Its target is to use sensor information to build an accurate map

of the environment. The map is usually described by the locations of all the features in the environment,

called landmarks. A feature can be

In a sense this is the complementary problem to localization. In a mapping problem the state vector

describes the map and bel(x) is the distribution that describes how likely each version of a map is [82].

SLAM One of the most exciting and challenging class of estimation problems is that of Simultaneous

Localization and Mapping or SLAM, where localization and mapping have to be tackled simultaneously.

This is a hard problem since in most cases there is a demand to perform all the computations online as

the robot moves. Moreover, this ends up being a “chicken and egg” problem where trusting a map would

increase localization accuracy, while trusting localization can give better estimates about the position of

the obstacles.

The typical difficulty for solving any SLAM problem, is in data association. The current estimated

map is represented by the locations of certain landmarks. As the robot moves, the sensors extract new

sensed features and the algorithm needs to decide whether a sensed feature represent a new landmark that

has never been observed before or not. To solve this correspondence problem between the sensed features

and the current list of observed landmarks, a standard way is to use maximum likelihood estimation

techniques. Another problem that is also a benchmark for the effectiveness of SLAM algorithms, is that

of loop closure. As the robot is moving it often happens that after spending a lot of time in some newly

discovered part of the environment, the robot returns to an area it has visited before, and closes a loop.

The ability to detect that indeed a loop was closed can be a challenging problem especially for online

SLAM algorithms. Finally, for SLAM problems, the state that needs to be estimated tends to be very

high dimensional and this leads to expensive computations for updating the state. There are a number

of state of the art algorithms for SLAM [58, 81, 83, 84, 85] and the area is an active research field.

0.4. DISTANCE COMPUTATION 29

0.4 Distance Computation

The efficient computation of (minimum) distances between bodies in 2- and 3-space is a crucial element

of many algorithms in robotics [63].

Algorithms have been proposed to efficiently compute distances between two convex bodies. In [14],

an algorithm is given which computes the distance between two convex polygons P and Q (together with

the points that realize it) in O(log p+ log q) time, where p and q denote the number of vertices of P and

Q, respectively. This time is optimal in the worst case. The algorithm is based on the observation that

the minimal distance is realized between two vertices or between a vertex and an edge. It represents P

and Q as sequences of vertices and edges and performs a binary search that eliminates half of the edges

in at least one sequence at each step. A widely tested numerical descent technique is described in [18]

to compute the distance between two convex polyhedra; extensive experience indicates that it runs in

approximately linear time in the total complexity of the polyhedra.

Most robotics applications, however, involve many bodies. Typically, one must compute the minimum

distance between two sets of bodies, one representing the robot, the other the obstacles. Each body can

be quite complex and the number of bodies forming the obstacles can be large. The cost of accurately

computing the distance between every pair of bodies is often prohibitive. In that context, simple bounding

volumes, such as parallelepipeds and spheres, have been extensively used to reduce computation time.

They are often coupled with hierarchical decomposition techniques, such as octrees, boxtrees, or sphere

trees (for an example, see [46]). These techniques make it possible to rapidly eliminate pairs of bodies

that are too far apart to contribute the minimum distance.

When motion is involved, incremental distance computation has been suggested for tracking the

closest points on a pair of convex polyhedra [34, 86, 87]. It takes advantage of the fact that the closest

features (faces, edges, vertices) change infrequently as the polyhedra move along finely discretized paths.

0.5 Research Issues and Summary

In this chapter we have introduced robot algorithms as abstract descriptions of processes consisting of

motions and sensing operations in the physical space. Robot algorithms send commands to actuators and

sensors in order to control a subset of the real world, the workspace, despite the fact that the workspace

is subject to the imperfectly modeled laws of nature. Robot algorithms uniquely blend controllability,

observability, computational complexity, and physical complexity issues, as described in Section 0.2.

Research on robot algorithms is broad and touches many different areas. In Section 0.3 we have surveyed

30

a number of selected areas in which research has been particularly active: part manipulation (grasping,

fixturing, feeding), assembly sequencing, motion planning (including basic path planning, nonholonomic

planning, dynamic workspaces, multiple robots, and optimal-time planning), and sensing.

Many of the core issues reviewed in Section 0.2 have been barely addressed in currently existing

algorithms. There is much more to understand in how controllability, observability, and complexity

interact in robot tasks. The interaction between controllability and complexity has been studied to

some extent for nonholonomic robots. The interaction between observability (or recognizability) and

complexity has been considered in motion planning with uncertainty. But, in both cases, much more

remains to be done.

Concerning the areas studied in Section 0.3, several specific problems remain open. We list a few

below (by no means is this list exhaustive):

• Given a workspace W , find the optimal design of a robot arm that can reach everywhere in W

without collision. The three-dimensional case is largely open. An extension of this problem is to

design the layout of the workspace so that a certain task can be completed efficiently.

• Given the geometry of the parts to be manipulated, predict feeders’ throughputs to evaluate alter-

native feeder designs. In relation to this problem, simulation algorithms have been used to predict

the pose of a part dropped on a flat surface [39].

• In assembly planning, the complexity of an NDBG grows exponentially with the number of param-

eters that control the allowable motions. Are there situations where only a small portion of the full

NDBG need be constructed?

• Develop efficient sampling techniques for searching the configuration space of robots with many

degrees of freedom in the context of the scheme given in [4].

• Establish a nontrivial lower bound on the complexity of planning for a nonholonomic robot that is

not locally controllable.

0.6 Defining Terms

Basic path planning problem: Compute a free or semifree path between two input configurations for

a robot moving in a known and static workspace.

C-Obstacle: Given an obstacle Bi, the subset CBi of the configuration space C such that, for any

0.6. DEFINING TERMS 31

q ∈ CBi, A(q) intersects Bi. The union CB = ∪iCBi plus the configurations that violate the

mechanical limits of the robot’s joints is called the C-obstacle region.

Complete motion planner: A planner guaranteed to find a (semi)free path between two given config-

urations whenever such a path exists, and to notify that no such path exists otherwise.

Configuration: Any mathematical specification of the position and orientation of every body composing

a robot A, relative to a fixed coordinate system. The configuration of a single body is also called a

placement or a pose.

Configuration space: Set C of all configurations of a robot. For almost any robot, this set is a smooth

manifold.

Differential constraint: A motion constraint that is both nonholonomic (non-integrable) and kinody-

namic (at least second order).

Free path: A path in free space.

Free space: The complement of the C-obstacle region in C, that is, C\CB.

Kinodynamic constraint: A second order constraint in the configuration space, i.e., for problems

where both velocity and acceleration bounds are specified for the robot’s motion.

Linkage: A collection of rigid objects, called links, in which some pairs of links are connected by joints

(e.g., revolute and/or prismatic joints). Most industrial robot arms are serial linkages with actuated

joints.

Nonholonomic constraint: Constraints in a robot’s motion that cannot be converted into constraints

that involve no derivatives. E.g. non-integrable velocity constraints in the Configuration space.

Number of degrees of freedom: The dimension m of C.

Obstacle: The workspace W is often defined by a set of obstacles (bodies) Bi (i = 1, . . . , q) such that

W = Rk\
⋃q

1Bi.

Path: A continuous map τ : [0, 1]→ C.

Probabilistically complete: An algorithm is probabilistically complete if given enough time, the prob-

ability of finding a solution goes to 1 when a solution exists

Semifree path: A path in the closure of free space.

32

State space: The set of all robot’s states. A superset of the configuration space that captures the

robot’s dynamics as well.

Trajectory: Path indexed by time.

Workspace: A subset of the two- or three-dimensional physical space modeled by W ⊂ Rk, k = 2, 3.

Workspace complexity: The total number of features (vertices, edges, faces, etc.) on the boundary of

the obstacles.

References

Bibliography

[1] Agarwal, P.K., Raghavan, P., and Tamaki, H., Motion Planning for a Steering-Constrained Robot

Through Moderate Obstacles. Proc. 28th ACM STOC, 343–352, 1995.

[2] Akella, S., Huang, W., Lynch, K., and Mason, M.T., Planar Manipulation on a Conveyor with a

One Joint Robot. In Robotics Research, Giralt, G. and Hirzinger, G., Eds., Springer, 265–276, 1996.

[3] Alami, R., Laumond, J.P., and Siméon, T., Two Manipulation Algorithms. In Algorithmic Founda-

tions of Robotics, Goldberg, K.Y., Wellesley, M.A., Eds., AK Peters, 109–125, 1995.

[4] Barraquand, J., Kavraki, L.E., Latombe, J.C., Li, T.Y., Motwani, R., and Raghavan, P., A Ran-

dom Sampling Framework for Path Planning in Large-Dimensional Configuration Spaces. Int. J. of

Robotics Research, 16(6), 759–774, 1997.

[5] Barraquand, J. and Latombe, J.C., Nonholonomic Multibody Mobile Robots: Controllability and

Motion Planning in the Presence of Obstacles, Algorithmica, 10(2-3-4), 121–155, 1993.

[6] de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O., Computational Geometry: Algo-

rithms and Applications. Springer, New York, 2000.

[7] Boddy M. and Dean T.L., Solving Time-Dependent Planning Problems, Proc. 11th Int. Joint

Conf. on Artificial Intelligence, 979–984, 1989.

[8] Briggs, A.J., Efficient Geometric Algorithms for Robot Sensing and Control. Report No. 95-1480,

Dept. of Computer Science, Cornell University, Ithaca, NY, 1995.

[9] Brost, R.C. and Goldberg, K.Y., Complete Algorithm for Designing Planar Fixtures Using Modular

Components. IEEE Tr. on Systems, Man and Cybernetics, 12, 31–46, 1996.

[10] Canny, J.F., The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.

33

34 BIBLIOGRAPHY

[11] Canny, J.F., On Computability of Fine Motion Plans, Proc. IEEE Int. Conf. on Robotics and Au-

tomation, Scottsdale, AZ, 177–182, 1989.

[12] Craig, J.J., Introduction to Robotics. Mechanics and Control. Addison-Wesley, Reading, MA, 2004.

[13] Donald, B.R., Xavier, P., Canny, J.F., and Reif, J.H., Kinodynamic Motion Planning. J. of the

ACM, 40, 1048–1066, 1993.

[14] Edelsbrunner, H., Computing the Extreme Distances between Two Convex Polygons. J. of Algo-

rithms, 6, 213–224, 1985.

[15] Erdmann, M., Using Backprojections for Fine Motion Planning with Uncertainty. Int. J. of Robotics

Research, 5, 19–45, 1986.

[16] Erdmann, M. and Mason, M.T., An Exploration of Sensorless Manipulation. IEEE Tr. on Robotics

and Automation, 4(4), 369–379, 1988.

[17] Fortune, S. and Wilfong, G.T., Planning Constrained Motions. In Proc. ACM Symp. on Theory of

Computing, 445–459, 1988.

[18] Gilbert, E.G., Johnson, D.W., and Keerthi, S.S., A Fast Procedure for Computing Distance Between

Complex Objects in Three-Dimensional Space. IEEE Tr. on Robotics and Automation, 4, 193–203,

1988.

[19] Giralt, G. and Hirzinger, G., Eds., Robotics Research, Springer, 1996.

[20] Goldberg, K.Y., Orienting Polygonal Parts without Sensors. Algorithmica, 10(2-3-4), 201–225, 1993.

[21] Goldberg, K.Y., Halperin, D., Latombe, J.C., and Wilson, R.H., Eds., Algorithmic Foundations of

Robotics, AK Peters, Ltd., Wellesley, MA, 1995.

[22] Guibas, L., Motwani, R., and Raghavan, P., The Robot Localization Problem in Two Dimensions.

SIAM J. on Computing, 26(4), 1121–1138, 1996.

[23] Halperin, D. Arrangements. In Goodman, J.E. and O’Rourke, J., Eds., Handbook of Discrete and

Computational Geometry, CRC Press, Boca Raton, FL, 389–412, 1997.

[24] Halperin, D. and Sharir, M., Near-Quadratic Algorithm for Planning the Motion of a Polygon in a

Polygonal Environment. Discrete Computational Geometry, 16, 121–134, 2004.

[25] Kant, K.G. and Zucker, S.W., Toward Efficient Trajectory Planning: Path Velocity Decomposition.

Int. J. of Robotics Research, 5, 72–89, 1986.

BIBLIOGRAPHY 35

[26] Kavraki, L.E. and Kolountzakis, M.N., Partitioning a Planar Assembly Into Two Connected Parts

is NP-complete. Information Processing Letters, 55, 159–165, 1995.

[27] Kavraki, L.E., Švestka, P., Latombe, J.C., and Overmars, M., Probabilistic Roadmaps for Fast Path

Planning in High Dimensional Configuration Spaces. IEEE Tr. on Robotics and Automation, 12,

566–580, 1996.

[28] Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. of Robotics

Research, 5, 90–98, 1986.

[29] Koga, Y., Kondo, K., Kuffner, J., and Latombe, J.C., Planning Motions with Intentions. Proc. ACM

SIGGRAPH’94, 395–408, 1994.

[30] Latombe J.C., Robot Motion Planning, Kluwer Academic Publishers, Boston, MA, 1991.

[31] Laumond, J.P., Jacobs, P., Taix, M., and Murray, R., A Motion Planner for Nonholonomic Mobile

Robots. IEEE Tr. on Robotics and Automation, 10, 577–593, 1994.

[32] Laumond, J.P. and Overmars, M., Eds., Algorithms for Robot Motion and Manipulation, AK Peters,

Wellesley, MA, 1997.

[33] Lazanas, A. and Latombe, J.C., Landmark-Based Robot Navigation. Algorithmica, 13, 472–501,

1995.

[34] Lin, M.C. and Canny, J.F., A Fast Algorithm for Incremental Distance Computation. Proc. IEEE

Int. Conf. on Robotics and Automation, 1008–1014, 1991.

[35] Lozano-Pérez T., Spatial Planning: A Configuration Space Approach, IEEE Tr. on Computers,

32(2), 108–120, 1983.

[36] Lozano-Pérez T., Mason, M.T., and Taylor, R.H., Automatic Synthesis of Fine-Motion Strategies

for Robots, Int. J. of Robotics Research, 3(1), 3–24, 1984.

[37] Lumelsky, V., A Comparative Study on the Path Length Performance of Maze-Searching and Robot

Motion Planning Algorithms. IEEE Tr. on Robotics and Automation, 7, 57–66, 1991.

[38] Mason, M.T., Mechanics and Planning of Manipulator Pushing Operations, Int. J. of Robotics

Research, 5(3), 53–71, 1986.

[39] Mirtich, B., Zhuang, Y., Goldberg, K., Craig, J.J., Zanutta, R., Carlisle, B., and Canny, J.F., Esti-

mating Pose Statistics for Robotic Part Feeders. Proc. IEEE Int. Conf. on Robotics and Automation,

1140–1146, 1996.

36 BIBLIOGRAPHY

[40] Mishra B., Schwartz, J.T., and Sharir, M., On the Existence and Synthesis of Multifinger Positive

Grips, Algorithmica, 2, 541–558, 1987.

[41] Natarajan, B.K., On Planning Assemblies. Proc. 4th ACM Symp. on Computational Geometry, 299–

308, 1988.

[42] Nguyen, V.D., Constructing Force-Closure Grasps. Int. J. of Robotics Research, 7, 3–16, 1988.

[43] Nourbakhsh, I.R., Interleaving Planning and Execution. Ph.D. Thesis. Dept. of Computer Science,

Stanford University, Stanford, CA, 1996.

[44] Papadimitriou, C.H. and Yannakakis, M., Shortest Paths Without a Map. Theoretical Computer

Science, 84, 127–150, 1991.

[45] Ponce, J., Sudsang, A., Sullivan, S., Faverjon, B., Boissonnat, J.D., and Merlet, J.P., Algorithms

for Computing Force-Closure Grasps of Polyhedral Objects. In Algorithmic Foundations of Robotics,

Golberg, K.Y and Wellesley, M.A., Eds., AK Peters, 167–184, 1995.

[46] Quinlan, S., Efficient Distance Computation between Non-Convex Objects. Proc. IEEE Int. Conf. on

Robotics and Automation, 3324–3329, 1994.

[47] Reif J.H., Complexity of the Mover’s Problem and Generalizations. Proc. FOCS, 421–427, 1979.

[48] Reif, J.H. and Sharir, M., Motion Planning in the Presence of Moving Obstacles. Journal of the

ACM, 41(4), 764–90, 1994.

[49] Schwartz, J.T. and Sharir, M., On the ‘Piano Movers’ Problem: II. General Techniques for Com-

puting Topological Properties of Real Algebraic Manifolds, Advances in Applied Mathematics, 4,

298–351, 1983.

[50] Skiena, S.S., Geometric reconstruction problems. In Goodman, J.E. and O’Rourke, J., Eds., Hand-

book of Discrete and Computational Geometry, CRC Press, Boca Raton, FL, 481–490, 2004.

[51] Snoeyink, J. and Stolfi, J., Objects That Cannot Be Taken Apart with Two Hands. Discrete Com-

putational Geometry, 12, 367–384, 1994.

[52] Talluri, R. and Aggarwal, J.K., Mobile Robot Self-Location Using Model-Image Feature Correspon-

dence. IEEE Tr. on Robotics and Automation, 12, 63–77, 1996.

[53] Wilfong, G.T., Motion Planning in the Presence of Movable Objects. Annals of Mathematics and

Artificial Intelligence, 3, 131–150, 1991.

BIBLIOGRAPHY 37

[54] Wilson, R.H. and Latombe, J.C., Reasoning About Mechanical Assembly. Artificial Intelligence, 71,

371–396, 1995.

[55] Zhang, Z. and Faugeras, O., A 3D World Model Builder with a Mobile Robot. Int. J. of Robotics

Research, 11, 269–285, 1996.

[56] Zhuang, Y., Goldberg, K.Y., and Wong, Y., On the existence of modular fixtures. Proc. IEEE

Int. Conf. on Robotics and Automation, 543–549.

[57] Thrun, S., Fox, D., Burgard, W. and Dellaert, F., Robust Monte Carlo Localization for Mobile

Robots. Artificial Intelligence, 128, 99–141, 2000.

[58] Montemerlo, M.,Thrun, S., Koller, D. and Wegbreit, B., FastSLAM: A Factored Solution to the

Simultaneous Localization and Mapping Problem, Proceedings of the AAAI National Conference on

Artificial Intelligence, 2002.

[59] Ferris, B., Hhnel, D. and Fox, D., Gaussian Processes for Signal Strength-Based Location Estimation.

Robotics: Science and Systems, 2006.

[60] S. Thrun, W. Burgard, and D. Fox., Probabilistic Robotics, MIT Press, Cambridge, MA, 2005.

[61] LaValle, S. M. , Planning Algorithms, Cambridge University Press, 2006.

[62] Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, E.L. and Thrun, S. ,

Principles of Robot Motion, MIT Press, 2005.

[63] Lin, M. C.and Manocha, D., Collision and Proximity Queries, Handbook of Discrete and Computa-

tional Geometry, 2nd Ed., 787–807, 2004.

[64] Clark, C. M., Rock, S. M. and Latombe, J.-C., Motion Planning for Multiple Mobile Robots using

Dynamic Networks, Proceedings IEEE International Conference on Robotics & Automation, vol 3,

4222–4227, 2003.

[65] Berg, J.P. van den and Overmars, M.H., Planning the shortest safe path amidst unpredictably

moving obstacles, Proc. Workshop on Algorithmic Foundations of Robotics, 2006.

[66] Nieuwenhuisen, D., Stappen, A. F. van der and Overmars, M. H., An Effective Framework for Path

Planning amidst Movable Obstacles Proc. Workshop on the Algorithmic Foundations of Robotics,

2006.

38 BIBLIOGRAPHY

[67] Berg, J. van den and Ferguson, D. and Kuffner, J., Anytime Path Planning and Replanning in

Dynamic Environments, Proc. IEEE Int. Conf. on Robotics and Automation, 2366–2371, 2006.

[68] Kuffner, J. and LaValle, S.M., RRT-connect: An efficient approach to single-query path planning,

Proc. IEEE Int. Conf. on Robotics and Automation, 995-1001, 2000.

[69] Hsu, D., Latombe, J.C., Motwani, R., Path planning in expansive configuration spaces. Int. Journal

of Computational Geometry and Applications, 9(4/5):495-512, 1998.

[70] Bekris, K.E. and Kavraki, L.K., Greedy but safe replanning under kinodynamic constraints, Proc.

IEEE Int. Conf. on Robotics and Automation, 2007.

[71] Laumond, J.P., Robot Motion Planning and Control, Springer-Verlag, 1998.

[72] Tsianos, K.I., Sucan, I.A., Kavraki, L.E., Sampling-based robot motion planning: Towards realistic

applications, Computer Science Review,, Vol 1, 2-11, August 2007.

[73] Kindel, R., Hsu, D., Latombe, J.C. and Rock, S., Kinodynamic motion planning amidst moving

obstacles, Proc. IEEE Int. Conf. on Robotics and Automation, 537-543, 2000.

[74] LaValle, S.M. and Kuffner, J., Randomized kinodynamic planning, Int. Journal of Robotics Research,

20(5):378-400, May 2001.

[75] Ladd, A. M. and Kavraki, L. E. . Motion Planning in the Presence of Drift, Underactuation and

Discrete System Changes. In Robotics: Science and Systems, MIT, Boston, MA, June 2005.

[76] Bekris, K.E., Tsianos, K.I., and Kavraki, L.E., Distributed and Safe Real-Time Planning for Net-

works of Second-Order Vehicles, Internationl Conference in Robot Communication and Coordination

, October 2007.

[77] Bekris, K.E., Tsianos, K.I., and Kavraki, L.E., A Decentralized Planner that Guarantees the Safety

of Communicating Vehicles with Complex Dynamics that Replan Online, International Conference

on Intelligent Robots and Systems, October 2007.

[78] Plaku, E., Bekris, K. E., Chen, B. Y., Ladd, A. M., and Kavraki, L. E.. Sampling-Based Roadmap

of Trees for Parallel Motion Planning. IEEE Transactions on Robotics, vol. 21, n. 4, 597-608, August

2005.

[79] Smith, R. C., and Cheeseman, P.. On the Representation and Estimation of Spatial Uncertainty.

IJRR, 5(4):5668, 1987.

BIBLIOGRAPHY 39

[80] Kwok,C., Fox, D., and Meila, M., Real-time Particle Filters, Proceedings of the IEEE, Vol 92(2),

469- 484 2004.

[81] Davison, A. J. Real-time simultaneous localisation and mapping with a single camera. In 9th ICCV,

volume 2, pages 14031410, October 13-16 2003.

[82] Thrun, S. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors, Exploring Artificial

Intelligence in the New Millenium. 2002.

[83] Dellaert, F. and Kaess, M. Square Root SAM: Simultaneous Localization and Mapping via Square

Root Information Smoothing, The International Journal of Robotics Research, Vol. 25, No. 12,

1181-1203, 2006.

[84] Durrant-Whyte, H. and Bailey, T. Simultaneous localization and mapping: part I IEEE Robotics

and Automation Magazine, Vol 13(2),99- 110 June 2006.

[85] Bailey, T. and Durrant-Whyte, H. Simultaneous localization and mapping: part II IEEE Robotics

and Automation Magazine, Vol 13(2),110- 117 June 2006.

[86] Larsen, E., Gottschalk, S., Lin, M.C and Manocha, D., Fast Distance Queries using Rectangular

Swept Sphere Volumes IEEE Int. Conference on Robotics and Automation, 2000.

[87] Zhang,L., Kim, Y.J. and Manocha, D., C-DIST: Efficient Distance Computation for Rigid and

Articulated Models in Configuration Space, ACM Solid and Physical Modeling Symposium , 2007.

[88] Schwarzer, F., Saha, M. and Latombe, J.C., Adaptive Dynamic Collision Checking for Single and

Multiple Articulated Robots in Complex Environments, IEEE Transactions on Robotics, 21(3):338-

353, June 2005.

[89] Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hhnel, D., Montemerlo,

M., Morris, A., Omohundro, Z. and Reverte, C., Autonomous exploration and mapping of abandoned

mines. IEEE Robotics and Automation, 11(4), 2005.

[90] Mason, M.T., Mechanics of Robotic Manipulation, The MIT press, 2001.

[91] Stilman, M. and Kuffner, J., Planning Among Movable Obstacles with Artificial Constraints, Proc.

Workshop on the Algorithmic Foundations of Robotics, 2006.

[92] Ladd, A., Motion planning for physical simulation, PhD thesis, Rice University, USA, 2007.

40 BIBLIOGRAPHY

[93] Guibas, L. J., Halperin, D., Hirukawa, H., Latombe, J.C. and Wilson, R. H., Polyhedral Assembly

Partitioning Using Maximally Covered Cells in Arrangements of Convex Polytopes, Int. Journal of

Computational Geometry and Applications,vol 8:179–200, 1998.

[94] Berg, J. van den, Path Planning in Dynamic Environments, PhD Thesis, Utrecht University, The

Netherlands, 2007.

[95] . Stappen, A.F. van der, Wentink, C., Overmars, M.H., Computing immobilizing grasps of polygonal

parts, Int. Journal of Robotics Research, 19(5), pp. 467-479, 2000.

[96] Rimon, E. and Burdick, J., Mobility of Bodies in Contact–I: A 2nd Order Mobility Index for Multiple-

Finger Grasps, IEEE Trans. on Robotics and Automation, vol. 14, no. 5, 1998.

[97] Cheong, J.-S., Stappen, A.F. van der, Goldberg, K., Overmars, M.H. and Rimon, E., Immobilizing

hinged parts, Int. Journal on Computational Geometry and Applications, 17, pp. 45-69, 2007.

[98] Berretty, R-P. M., Geometric design of part feeders, PhD Thesis, Utrecht University, The Nether-

lands, 2000.

Further Information

For an introduction to robot arm kinematics, dynamics and control, see [12]. More on robotic manipu-

lation can be found in [90] Robot motion planning and its variants are discussed in a number of books

[30, 62, 61, 71]. Research in all aspects of robotics is published in the IEEE Transactions of Robotics

and Automation and the International Journal of Robotics Research, as well as in the proceedings of

the IEEE International Conference on Robotics and Automation and the International Symposium on

Robotics Research [19]. The Workshop on Algorithmic Foundations of Robotics [21, 32] emphasizes algo-

rithmic issues in robotics. Several computational geometry books contain sections on robotics or motion

planning [6].

