
On Multi-Arm Manipulation Planning

Yoshihito Koga and Jean-Claude Latombe
Robotics Laboratory, Department of Computer Science, Stanford University

Stanford, CA 94305, USA

Abstract: This paper considers the automatic generation
of motion paths for several cooperating robot arms to ma-
nipulate a movable object between two configurations among
obstacles. To avoid collisions the robots may have to change
their grasp of the object, for example, by passing it from one
arm to another. The case where the movable object can only
be moved by two arms acting simultaneously is also consid-
ered. An approach for solving this planning problem is de-
scribed and illustrated with a robot system made of three
arms moving in a 30 environment. Experiments with a
planner implementing this approach show that it is not only
fast, but also reliable in finding collision-free paths.

Acknowledgments: This research was funded by ARPA
grant NOOO14-92-5-1809. Y. Koga is supported in part by
an NSERC fellowship. This research benefited from com-
ments by Tsai-Yen Li and Gerard0 Pardo-Castellote.

1 Introduction

Consider the task of programming a single robot arm to
open a water faucet, and suppose two full revolutions
of the handle are required. The robot must move and
grasp the handle along a collision-free path. Then it
must rotate the handle in the required direction. Dur-
ing this rotation, one joint of the arm will reach its
limit, consequently requiring the robot to ungrasp the
handle and regrasp it such that again it can be rotated.
This process must be repeated until the two full revolu-
tions are completed. Finally, the robot should ungrasp
the handle and move back to some home position. Ma-
nipulation planning is the automatic generation of such
a sequence of motion paths that delivers one or several
movable objects (the faucet handle in this example) to
a given goal configuration. This sequence is called a
manipulation path. A crucial aspect of manipulation
planning, relative to more classical path planning, is
that it must account for the robot’s ability to change
its grasp of an object.

Manipulation planning becomes even more challeng-
ing when the robot system contains multiple arms.
This brings the additional difficulty of deciding which
arm(s), at any one time, must grab and move a mov-
able object and how the various arms should cooperate
along the manipulation path to ensure the delivery of
the object to its goal configuration. Regrasping the ob-
ject may now involve changing the arms grasping it. We
call this the multi-arm manipulation planning problem.
There is much motivation for the study of automatic
multi-arm manipulation planning. Multi-arm systems
can be significantly more efficient than single-arm sys-
tems, e.g., by performing several motions simultane-
ously. They can also accomplish a greater variety of
tasks. For example, in addition to the arms working
independently of each other, they can cooperate to ma-
nipulate heavy and/or bulky objects by sharing the load
for fast and responsive motions. One can also increase
the workspace of the movable objects by having the
robots pass the object from one arm to another.

In this paper we propose an implemented approach
for solving the multi-arm manipulation planning prob-
lem. We illustrate our approach with a robot system
consisting of three identical arms, each with six revo-
lute degrees of freedom, operating in a 3D workspace.
This system is similar to an experimental setup of three
PUMA 560 arms operating in our laboratory. We re-
strict ourselves to the case where there is a single mov-
able object in the environment, but we allow two types
for this object: for one type, it requires two arms to
move (e.g., the object is heavy); for the other type, it
can be moved by a single arm at any one time. A task is
specified by the description of the workspace (geometry
of the obstacles, movable object, and arms), the initial
and goal configurations of the movable object and arms,
and the type of the movable object. The implemented
planner computes a collision-free manipulation path to
deliver the object to its goal configuration. It allows for
the robots to change their grasp of the object, but, in
its current version, it is not able to compute grasps. A
set of potential grasps must be given as input, and the

1050-4729/94 $03.00 0 1994 IEEE
945

planner chooses among them

Fig. 1 shows a series of snapshots along a manipulation
path computed by our planner. The movable object is
L-shaped and requires two arms to move.
Section 2 relates our work to previous work in manip-
ulation planning. Section 3 gives a formal presentation
of the multi-arm manipulation problem. Section 4 de-
scribes our planning approach; i t introduces some sim-
plifications to make the problem more tractable. Sec-
tion 5 presents results obtained with the implemented
planner.

Figure 1. A multi-arm manipulation path. The object
requires two arms to move i t , but only one arm to

hold i t statically.

2 Related Work

Path planning for one robot among fixed obstacles and
various extensions of this basic problem have been ac-
tively studied during the past two decades [8]. However,
research strictly addressing manipulation planning is
fairly recent.
The first paper to tackle this problem is by Wilfong
[19]. I t considers a single-body robot translating in

a 2D workspace with multiple movable objects. The
robot, movable objects, and obstacles are modeled as
convex polygons. The robot “grasps” an object by mak-
ing one of its edges coincide with an edge of the object.
This definition of “grasping” extends to several movable
objects. Wilfong shows that planning a manipulation
path to bring the movable objects to their specified goal
locat,ions is PSPACE-hard. When there is a single mov-
able object, he proposes a complete algorithm that runs
in O(n3 log’ n) time, where n is the total number of ver-
tices of all the objects in the environment. Laumond
and Alami [9] propose an O(n4) algorithm to solve a
similar problem where the robot and the movable ob-
ject are both discs and the obstacles are polygonal.
Alami, SimkoIi and Laumond [1] describe a manipula-
tion planner for one robot and several movable objects.
Both the number of legal grasps of each object (posi-
tions of the robot relative to the object) and the num-
ber of legal placements of the movable objects are finite.
The method was implemented for two simple robots: a
translating polygon [1] and a three-revolute-joint pla-
nar arm [lo]. A theoretical study of the more general
case where the set of legal grasps and placements of
the movable objects are manifolds (continuous sets) is
presented in [lo].

Our work differs from this previous research in several
ways. Rather than dealing with a single robot, we con-
sider the case of multiple cooperating robot arms mov-
ing in a 3D workspace. In addition, whereas the previ-
ous work is more theoretical in nature, our focus is more
on developing an effect,ive approach to solve manipula-
tion planning problenis of a complexity comparable t,o
that of the tasks encountered in manufacturing (e.g..
assembling, welding and/or riveting the body of a car
or t,he fuselage of a plane) and const,ruction work (e.g..
assembling truss structures). Similarly, in [3] , Ferbach
and Barraquand introduce a practical approach to this
manipulation planning problem using the method of
variational dynamic programming.
Along a slightly different line of research, Lynch ad-
dresses the problem of planning pushing paths [13]. He
establishes the conditions under which the cont3act be-
tween the robot and the movable object is stable, given
the friction coefficients and the center of friction be-
tween the movable object and its supporting surface.
These conditions yield nonholonomic constraints on t’he
the motion of t,he robot.

Regrasping is a vital component in nianipulat,ion tasks.
Tournassoud, Lozano-P&rez, and Mazer [18] specifically
address this problem. They describe a method for plan-
ning a sequence of regrasp operations by a single arm to
change an initial grasp into a goal grasp. At every re-

946

grasp, the object is temporarily placed on a horizontal
table in a stable position selected by the planner. We
too need to plan regrasp operations. However, the only
regrasps we consider avoids contact between the object
and the environment; they necessarily involve multiple
arms.
The work on regrasping presented in [18] is part of an
integrated manipulation system, HANDEY , described in
[12]. This system controls a single PUMA arm which
builds an assembly in a 3D workspace. It integrates
vision, path planning, grasp planning, and motion con-
trol. While it embeds a solution to many issues not con-
sidered in this paper, it does not address the problem
of planning cooperative robot motions to accomplish
manipulation tasks.
Planning coordinated paths for multiple robots, with-
out movable objects, is studied in several papers, e.g.
see [14].
Grasp planning is potentially an important component
of manipulation planning. In our planner, grasps are
selected from a finite predefined set of grasps. A bet-
ter solution for the future will be to include the au-
tomatic computation of grasps. A substantial amount
of research has been done on this topic. See [16] for a
commented list of bibliographical references.
We have done some prior work in manipulation plan-
ning. In 151 we propose several planners to generate
manipulation paths for two identical arms in a 2D
workspace. In [6] we extend one of these planners to
allow the manipulation of several movable objects; this
problem raises the additional difficulty of selecting the
order in which the objects should be moved. Experi-
ments have been conducted with this planner using a
real dual-arm robot system developed in the Aerospace
Robotics Laboratory at Stanford University [15].
Research in multi-arm manipulation planning is made
more critical by the advent of new effective techniques
to control cooperative robot arms (closed-loop kine-
matic chains). For example, see [4, 171.

3 Problem Statement

We now give a presentation of the multi-arm manip-
ulation planning problem using a configuration space
formalization. We consider only a single movable ob-
ject, but for the rest, our presentation is general.
The environment is a 3D workspace W with p robot
arms di (i = 1, . . . , p) , a single movable object M , and
q static obstacles Bj (j = 1 , . . . , q) . The object M can
only move by having one or several robots grasp and

carry it to some destination.

Let ci and C o b j be the C-spaces (configuration spaces)
of the arms Ai and the object M, respectively [l l , 81.
Each Ci has dimension ni, where ni is the number of
degrees of freedom of the robot Ai, and C o b j is 6D.
The composite C-space of the whole system is C = C 1 x
. . . X cp x c o b ? . A configuration in c, called a system
configuration, is of the form (ql , . . . , qp , q o b j) , with qi E
ci and q o b j E C o b j . In the example of Fig. 1 , p = 3 and
ni = 6, for all i.
We define the C-obstacle region CB c C as the set of
all system configurations where two or more bodies in
{ d l , ~ . ~ , d p , M , B 1 , ...,a,} intersect.’ We describe all
bodies as closed subsets of W ; hence, CB is a closed
subset of C . The open subset C \ CB is denoted by
Cf,,, and its closure by c l (C f r e e) .

For the most part we require that the arms, object, and
obstacles do not contact one another. However, M may
touch stationary arms and obstacles for the purpose of
achieving static stability. M may also touch arms when
it is being moved, in order to achieve grasp stability;
then M can only make contact with the last link of
each grasping arm (grasping may involve one or several
arms). N o other contacts are allowed.
This leads us to define two subsets of Cl(Cfree):
- The stable space C S t a b l e is the set of all legal configu-
rations in cl(Cf,,,) where M is statically stable. M’s
stability may be achieved by contacts between M and
the arms and/or the obstacles.
- The grasp space Cgrasp is the set of all legal config-
urations in cl(Cfree) where one or several arms rigidly
grasp M in such a way that they have sufficient torque
to move M . C g r a s p C e s t a b l e .

Figure 2. Components of a manipulation path and
their relation to the subspaces of C l (C f r e e) .

There are two types of paths, transit and transfer paths,
which are of interest in multi-arm manipulation:
- A transit path defines an arms’ motion that does not

’We regard joint limits in A, as obstacles that only in-
terfere with the arms’ motions.

947

- T r

move M . Along such a path M’s static stability must
be achieved by contacts with obstacles and/or station-
ary arms. Examples of such a path involve moving an
arm to a configuration where it can grasp M or moving
an arm to change its grasp of M . A transit path lies in
the cross-section of C s t a b l e defined by the current fixed
configuration of M .
- A transfer path defines an arms’ motion that moves
M . It lies in the cross-section of Cgrasp defined by the
attachment of M to the last links of the grasping arms.
During a transfer path, not all moving arms need grasp
M ; some arms may be moving to allow the grasping
arms to move without collision.

A manipulation path is an alternate sequence of transit
and transfer paths that connects an initial system con-
figuration, qf,,, to a goal system configuration, q!ys
(see Fig. 2). Some paths in this sequence may be exe-
cuted concurrently as long as it does not yield collisions.
In a multi-arm manipulation planning problem, the ge-
ometry of the arms, movable object, and obstacles is
given, along with the location of the obstacles. The
goal is to compute a manipulation path between two
input system configurations.

4 Planning Approach

We now describe our approach for solving the multi-
arm manipulation planning problem. This approach
embeds several simplifications, so that the correspond-
ing planner is not fully general. Throughout our pre-
sentation, we carefully state the simplifications that we
make. Some of them illustrate the deep intricacies of
multi-arm manipulation planning.

Overview: A manipulation path alternates transit and
transfer paths. Each path may be seen as the plan for a
subtask of the total manipulation task. This yields the
following two-stage planning approach: first, generate
a series of subtasks to achieve the system goal configu-
ration; second, plan a transit or transfer path for each
subtask. An informal example of a series of subtasks is:
grab M , carry it to an intermediate location, change
grasp, carry M to its goal location, ungrasp.
Unfortunately, identifying a series of subtasks that can
later be completed into legal paths is a difficult prob-
lem. How can one determine whether a subtask can
be completed without actually completing it? We set-
tle for a compromise. Rather than planning for suit-
able transit and transfer subtasks, we focus solely on
identifying a sequence of transfer tasks that are guar-
anteed to be completed into transfer paths. In fact,
in the process of identifying these tasks, the planner

also generates the corresponding transfer paths. With
the transfer tasks specified, the transit tasks are imme-
diately defined: they link the transfer paths together
along with the initial and goal system configuration.
Consequently, it only remains to compute the corre-
sponding transit paths.

The assumption underlying this approach is that there
exists a legal transit path for every transit task (since
they are chosen without any guarantee that a transit
path exists for them). Fortunately, in a 3D workspace,
this is often the case. If the assumption is not verified,
the planner may try to generate another series of trans-
fer tasks, but in our current implementation it simply
returns failure.

Restr ic t ions on grasps: To simplifiy the selection
of transfer tasks, we impose two main restrictions on
grasps:
1. We consider two types of movable objects. An ob-
ject of the first type can be moved using a single arm,
for any grasp of the object. An object of the second
type requires being grasped by two arms to move. The
type of the movable object M is given as input to the
planner.

2. The various possible grasps of M are given as a fi-
nite grasp set. Each grasp in this set describes a rigid
attachment of the last link of an arm with M (first
type of movable object), or a pair of such attachments
(second type of movable object).

Generating transfer tasks: The generation of the
transfer tasks is done by planning a path Tob j of M
from its initial to its goal configuration. During the
computation of T o b j , all the possible ways of grasping M
are enumerated and the configurations of M requiring
a regrasp are identified.

The planner computes the path Tobj so that M avoids
collision with the static obstacles B j . This is done us-
ing RPP (Randomized Path Planner), which is thus a
component of our planner. RPP is described in detail
in [2, 81.
RPP generates Tobj as a list of adjacent configurations
in a fine grid placed over C o b j (the 6D C-space of M) ,
by inserting one configuration after the other starting
with the initial configuration of M . The original RPP
only checks that each inserted configuration is collision-
free. To ensure that there exists a sequence of transfer
paths moving M along T o b j , we have modified RPP.
The modified RPP also verifies that at each inserted
configuration, M can be grasped using a grasp from
the input grasp set. This is done in the following way.
A grasp assignment at some configuration of M is a

948

pair associating an element of the grasp set defined for
M and the identity of the grasping robot(s). Note that
the same element of the grasp set may yield different
grasp assignments involving different robots. The plan-
ner enumerates all the grasp assignments at the ini-
tial configuration of M and keeps a list of those which
can be achieved without collision between the grasping
arm(s) and the obstacles, and between the two grasping
arms (if M must be moved by two arms). We momen-
tarily ignore the possibility that the grasping arm(s)
may collide with the other arms. The list of possible
grasp assignments is associated to the initial config-
uration. Prior to inserting any new configuration in
the path being generated, RPP prunes the list of grasp
assignments attached to the previous configuration by
removing all those which are no longer possible at the
new configuration. The remaining sublist, if not empty,
is associated with this configuration and appended to
the current path.
If during a down motion of RPP (a motion along the
negated gradient of the potential field used by RPP)
the list of grasp assignments pruned as above vanishes
at all the successors of the current configuration (call it
qoaj), the modified RPP resets the list attached to qoa,
to contain all the possible grasp assignments at qoa,
(as we proceed from the initial configuration). Dur-
ing a random motion (a motion intended to escape a
local minimum of the potential), the list of grasp as-
signments is pruned but is constrained to never vanish.
In the process of constructing rob,, the modified RPP
may reset the grasp assignment list several times.
If successful, the outcome of RPP is a path Toaj de-
scribed as a series of configurations of M , each anotated
with a grasp assignment list. The path rob, is thus par-
titioned into a series of subpaths, each connecting two
successive configurations. It defines as many transfer
tasks as there are distinct grasp assignments associated
with it. By construction, f o r each such transfer task,
there exists a transfer path satisfying the correspond-
ing grasp assignment. The number of regrasps along
the generated path Toaj is minimal, but RPP does not
guarantee that this is the best path in that respect.

Details and comments: The condition that the same
grasp assignment be possible at two neighboring con-
figurations of M does not guarantee that the displace-
ment of M can be done by a short (hence, collision-
free) motion of the grasping arm(s). An additional test
is needed when the set of grasps between two consec-
utive configurations is pruned. In our implementation,
we assume that each arm is a non-redundant 6-DOF
arm. Hence, an arm can attain a grasp with a small

number of different postures, which can easily be com-
puted using the arm’s inverse kinematics. We include
the posture of each involved arm in the description of
a grasp assignment. Hence the same combination of
arms achieving the same grasp, but with two different
postures of a t least one arm, defines two distinct grasp
assignments. Then a configuration of M , along with
a grasp assignment, uniquely defines the configurations
of the grasping arms. The resolution of the grid placed
across Coaj is set fine enough to guarantee that the m u
tion between any two neighboring configurations of M
results in a maximal arm displacement smaller than
some prespecified threshold.
A transfer path could be obstructed by the arms not
currently grasping M . Dealing with these arms can
be particularly complicated. In our current implemen-
tation, we assume that each arm has a relatively non-
obstructive configuration given in the problem defini-
tion (in the system shown in Fig. 1, the given non-
obstructive configuration of each arm is when it stands
vertical). Prior to a transfer path, all arms not involved
in grasping M are moved to their non-obstructive con-
figurations. The planner nevertheless checks that no
collision occurs with them during the construction of
T o b j .

Perhaps the most blatant limitation of our approach is
that it does not plan for regrasps at configurations of
M where it makes contact with obstacles (as we said,
Tobj is computed free of collisions with obstacles). Since
the object cannot levitate, we require that M be held
at all times during regrasp. We assume that if M re-
quires more than one robot to move, any subset of a
grasp is sufficient to achieve static stability during the
regrasp. For example, if a grasp requires two robots,
anyone of these robots, alone, achieves static stability,
allowing the other robot to move along a transit path.
An obvious example where this limitation may prevent
our planner from finding a path is when the robot sys-
tem contains a single arm; no regrasp is then possible.
RPP is only probabilistically complete [2]. If a path
exists for M , it will find it, but the computation time
cannot be bounded in advance. Furthermore, if no path
exists, RPP may run for ever. Nevertheless, for a rigid
object (as is the case for M) , RPP is usually very quick
to return a path, when one exists. Hence, we can easily
set a time limit beyond which it is safe to assume that
no path exists. Other path planners could possibly be
used in place of RPP.

Generation of transit paths: The transfer tasks
identified as above can be organized into successive lay-
ers, as illustrated in Fig. 3. Each layer contains all the

949

transfer tasks generated for the same subpath of TOi,j;

the transfer tasks differ by the grasp assignment. Se-
lecting one such task in every layer yields a series of
transit tasks: the first consists of achieving the first
grasp from the initial system configuration; it is fol-
lowed by a possibly empty series of transit tasks to
change grasps between two consecutive transfer tasks;
the last transit task is to achieve the goal system con-
figuration. Hence, it remains to identify a grasp as-
signment in each layer of the graph shown in Fig. 3,
such that there exist transit paths accomplishing the
corresponding transit tasks.
Assume without loss of generality that all arms are
initially at their non-obstructive configurations. Our
planner first chooses a transfer task (anyone) in the
first layer. Consider the transit task of going from the
initial system configuration to the configuration where
the arms achieve the grasp assignment specified in the
chosen transfer task, with M being at its initial con-
figuration. The coordinated path of the arms is gen-
erated using RPP. If this fails, a new attempt is made
with another transfer task in the first layer; otherwise,
a transfer task is selected in the second layer. The con-
nection of the system configuration at the end of the
first transfer task to the system configuration at the
start of this second transfer task forms a new transit
task.

A link M be m n r t ~ ~ t d '00' N*
betwe+n d e s

0

i fYS"
L
God Node

Figure 3. The directed and layered graph.

The transit task between two transfer tasks is more dif-
ficult to solve. To understand the difficulty, imagint the
case where M is a long bar requiring two arms to move.
Assume that the robot system contains only two arms
and that the bar can be grasped at its two ends and
at its center. Consider the situation where the bar is
grasped at its two ends and the regrasp requires swap-
ping the two arms. This regrasp is not possible without
introducing an intermediate grasp. For example: arm

1 will ungrasp one end of the bar and regrasp it at its
center (during this regrasp, arm 2 will be holding the
bar without moving); then arm 2 will ungrasp the bar
and regrasp it at the other end; finally, arm 1 will un-
grasp the center of the bar and will regrasp it at its free
end. Fig. 4 illustrates this example.

Figure 4. An example illustrating the complexity of
changing grasps.

We address this difficulty by breaking the transit task
between two transfer tasks into smaller transit sub-
tasks. Each transit subtask consists of going from one
grasp assignment to another in such a way that no two
arms use the same grasp at the same time. In this pro-
cess, we allow arms not involved in the first and last
assignment to be used. We start with the first grasp as-
signment and we generate all the potential grasp assign-
ments that we may be able to achieve from it (assuming
the corresponding transit paths exist). We generate the
successors of these new assignments, and so on until we
reach the- desired assignment (the one used in the next
transfer task). For each sequence that achieves this de-
sired assignment, we test that it is actually feasible by
using RPP to generate a transit path between every
two successive grasp assignments. We stop as soon as
we obtain a feasible sequence. The concatenation of the
corresponding sequence of transit paths forms the tran-
sit path connecting the two considered transfer tasks.
We then proceed to link to the next layer of transfer
tasks.
When we reach a transfer path in the last layer, its
connection to the goal system configuration is carried

950

out in the same way as the connection of the initial
system configuration to the first layer.

transit paths and Tobj, we limit the amount of compu-
tation spent in RPP to three backtrack operations [8],
after which the planner returns failure. Failure to find
r o b j results in the immediate failure to find a manip-
ulation path. Similarly, a failure to find transit paths
to link together the layers of transfer paths results in a
failure to find a manipulation path. The time for the
Planner to report its failure depends on the problem,
with Some examples being from 30 seconds to a few
minutes.

5 Examples of Generated Paths

We implemented the above approach in a planner writ-
ten in c and running of a DEC Alpha workstation un-
der UNIX. All experiments so far were conducted with
a robot system made of 3 identical arms, each with 6
revolute joints. The non-obstructive configuration of
each arm is one where the arm stands vertical.
Fig. 1 shows a manipulation path generated by the
planner for an L-shaped object. This object requires
two arms to move it. The object is taken through the
window in the large obstacle located in the middle of
the workspace. Notice that in the change of grasp, a t
least one arm is holding the object a t all times. For this
path, it took 45 seconds to identify the transfer tasks
and 30 additional seconds to complete the manipulation
path. For the generation of T o b j , the object’s C-space
was discretized into a 100 x 100 x 100 grid. For the
generation of the transit paths, the joint angles of the
arms were discretized into intervals of 0.05 radians. The
grasp set contains 64 grasps, yielding grasp assignment
lists up to around 15,000 elements.
Fig. 4 shows a manipulation path generated for a long
bar requiring two arms to move it. This example il-
lustrates the complexity of changing grasps. For this
path, it took 25 seconds to identify the transfer tasks
and an additional 20 seconds to complete the manip-
ulation path. The same discretizations as above were
used. The grasp set of the long bar contains 24 grasps,
yielding grasp assignment lists up to around 3,000 ele-
ments.

Fig. 5 shows a manipulation path found for a T-shaped
object. This object requires a single arm to move it,
and only two arms are used along the computed path.
One arm first grasps the object at one end of the T. It
passes the object to another arm that grasps it a t its
other end and brings it to its goal configuration. For
this path, the planner took 40 seconds to identify the
transfer tasks and then another 25 seconds to complete
the manipulation path. The same discretizations as
above were used. The grasp set of the T-shaped object
contains 49 grasps. It yields grasp assignment lists up
to around 2,000 elements.
For these examples, in computing the transit paths
RPP uses the sum of the angular joint distances to the
goal configuration as the guiding potential. However, in
computing r o b j RPP uses an NF2-based potential with
three control points [8]. For both cases of finding the

Figure 5. Another example of a manipulation path.
The object is T-shaped and requires only one arm to

manipulate it.

6 Conclusion

Multi-arm manipulation planning is a new motion plan-
ning problem with application in various tasks, such as
assembly and construction. We have presented an ap-
proach for solving this complicated problem. Our ap-
proach embeds several simplifications yielding an im-
plemented planner that is not fully general. However,
experiments with this planner show that it is quite reli-
able and fast in finding manipulation paths, when such
paths exist, making it suitable as an interactive tool to
facilitate robot programming. We believe the robust
nature of the planner is the result of careful considera-
tion of the general manipulation problem, the introduc-
tion of reasonable simplifications, and the appropriate
utilization of the efficient randomized path planner.
Most of our experiments so far have been conducted
with simulated mechanical arms. However, we have

951

1-

completed a first integration of the planner with a soft-
ware module simulating human arms which incorpo-
rates the inverse kinematics of such arms [7]. The result
is a system that computes natural human-arm manip-
ulation motions. The goal of this work is to help in
the interactive generation of animated video sequences
for studying task ergonomy. Also, such videos would
usefully replace cumbersome instruction manuals ac-
companying some assembly kits.
Our next step is to connect our planner to the controller
of our 3-PUMA system and experiment with the paths
generated by the planner to verify our assumptions in
the real world. Later, we hope to include the abil-
ity to regrasp the movable object by having the arms
place it in a stable configuration against some obstacles.
We also plan to use existing results to automatically
compute the grasp set of an object from its geomet-
ric model. The technique described in [6] to deal with
multiple movable objects in a 2D space should also be
applicable in our planner. Furthermore, like in [6], we
plan to allow parallel execution of consecutive transfer
and transit paths as long as this parallelism does not
yield collisions. Finally, we hope to incorporate con-
siderations of torque constraints and dynamics issues
in the planning process. Indeed, for the regrasping ac-
tions we currently assume that a single arm is sufficient
to hold the object statically, when actually there may
be certain configuations where the actuator torques are
too limited. Furthermore, allowing the object to slip in
the grasp of the robots due to gravitational or inertial
effects may be another way of changing grasps.

References

[l] R. Alami, T. SimCon and J.P. Laumond, “A Geomet-
rical Approach to Planning Manipulation Tasks: The
Case of Discrete Placements and Grasps,” in Robotics
Research 5, H. Miura and S. Arimoto, eds., MIT Press,
Cambridge, 1990, pp. 453-459.

[2] J. Barraquand and J.C. Latombe, “Robot Motion
Planning: A Distributed Representation Approach,”
Znt. J . Robotics Research, 10(6), December 1991.

[3] P. Ferbach and J. Barraquand, A Penalty Function
Method for Constrained Motion Planning, Rep. No. 34,
Paris Research Lab., DEC, Sept. 1993.

[4] 0. Khatib, “Object Manipulation in a Multi-Effector
Robot System,” Robotics Research 4 , R. Bolles and
B. Roth, eds., MIT Press, Cambridge, MA, 1988,
pp. 137-144.

[5] Y. Koga and J.C. Latombe, “Experiments in
Dual-Arm Manipulation Planning,” Proc. IEEE

Int. Conf. Robotics and Automation, Nice, France,
1992, pp. 2238-2245.

[6] Y. Koga, T. Lastennet, J.C. Latombe, and T.Y. Li
“Multi-Arm Manipulation Planning,” Proc. 9th
Znt. Symp. Automation and Robotics in Construction,
Tokyo, June 1992.

[7] K. Kondo, Inverse Kinematics of a Human Arm, in
preparation, 1993.

[8] J.C. Latombe, Robot Motion Planning, Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[9] J.P. Laumond and R. Alami, A Geometrical Approach
to Planning Manipulation Tasks: The Case of a Circu-
lar Robot and a Movable Circular Object Amidst Polyg-
onal Obstacles, Rep. No. 88314, LAAS, Toulouse, 1989.

[lo] J.P. Laumond and R. Alami, A Geometrical Ap-
proach to Planning Manipulation Tasks in Robotics,
Rep. No. 89261, LAAS, Toulouse, 1989.

[l I] T. Lozano-PCrez, “Spatial Planning: A Configuration
Space Approach,” IEEE Tr. Computers, 32(2), 1983,

[12] T. Lozano-PCrez et al., “Handey: A Task-Level Robot
System,” Robotics Research 4 , R. Bolles and B. Roth,
eds., MIT Press, Cambridge, MA, 1988, pp. 29-36.

[13] K.M. Lynch, “Planning Pushing Paths,” Proc. JSME
Int. Conf. Advanced Mechatronics, Tokyo, 1993, pp.

pp. 108-120.

451-456.

[14] P.A. O’Donnell and T. Lozano-PCrez, “Deadlock-Free
and Collision-Free Coordination of Two Robot Manip-
ulators,” Proc. IEEE Int. Conf. Robotics and Automa-
tion, 1989, pp. 484-489.

[I51 G. Pardo-Castellote, T.Y. Li, Y. Koga, R.H. Cannon,
J.C. Latombe, and S.A. Schneider, “Experimental In-
tegration of Planning in a Distributed Control Sys-
tem,” Preprints 3rd Int. Symp. Ezperimental Robotics,
Kyoto, October 1993.

[16] J. Pertin-Troccaz, “Grasping: A State of the Art,” in
The Robotics Review 1 , 0. Khatib, J.J. Craig, and
T. Lozano-PCrez, eds., MIT Press, Cambridge, MA,

[17] S.A. Schneider and R.H. Cannon, “Object Impedance
Control for Cooperative Manipulation: Theory and
Experimental Results,” IEEE Tr. Robotics and Au-
tomation, 8(3), 1992, pp. 383-394.

1989, pp. 71-98.

[la] P. Tournassoud, T. Lozano-Perez, and E. Mazer, “Re-
grasping,” Proc. IEEE Int. Conf. Robotics and Au-
tomation, Raleigh, NC, 1987, pp. 1924-1928.

[19] G. Wilfong, “Motion Planning in the Presence of Mov-
able Obstacles,” Proc. 4th A CM Symp. Computational
Geometry, 1988, pp. 279-288.

952

