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Abstract 

A simple and eficient randomized algorithm is pre- 
sented for solving single-query path planning problems 
an high-dimensional configuration spaces. The method 
works b y  incrementally building two Rapidly-exploring 
Random Bees (RRTs) rooted at the start and the goal 
configurations. The trees each explore space around 
them and also advance towards each other through the 
use of a simple greedy heuristic. Although originally 
designed to plan motions for a human arm (modeled as 
a '7-DOF kinematic chain) for the automatic graphic 
animation of collision-free grasping and manipulation 
tasks, the algorithm has been successfully applied to a 
variety of path planning problems. Computed exam- 
ples include generating collision-free motions for rigid 
objects in 2D and 3 0 ,  and collision-free manipulation 
motions for  a 6-DOF PUMA arm in a 3 0  workspace. 
Some basic theoretical analysis i s  also presented. 

1 Introduction 

Motion planning problems arise in such diverse 
fields as robotics, assembly analysis, virtual prototyp- 
ing, pharmaceutical drug design, manufacturing, and 
computer animation. Such problems involve searching 
the system configuration space of one or more compli- 
cated geometric bodies for a collision-free path that 
connects a given start and goal configuration, while 
satisfying constraints imposed by complicated obsta- 
cles. Although complete algorithms are known for this 
general class of problems [25, 61 , their computational 
complexity limits their use to low-dimensional config- 
uration spaces. This limitation, lower-bound hardness 
results [24], and strong motivation to handle practical 
planning problems have stimulated the development 
and success of many path planning methods that use 
randomization (e.g., [l, 3, 4, 5, 7, 10, 11, 16, 15, 17, 
23, 261). The accepted tradeoff is that the methods 
are incomplete, but will find a solution with any prob- 
ability given sufficient running time. The key is to 
develop randomized methods that converge quickly in 
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Figure 1: Path planning for a 7-DOF human arm 

practice, yet are simple enough to yield consistent be- 
havior and analysis. 

Randomized path planning algorithms have usu- 
ally been designed for one of two contexts: single- 
query planning, and multiple-query planning [15]. For 
single-query planning, it is assumed that a single path 
planning problem must be solved quickly, without any 
preprocessing. One of the earliest and most popular 
methods to solve this problem was the randomized po- 
tential field approach [4]. For multiple-query planning, 
it is assumed that many path planning problems will 
be solved for the same environment. In this case, it is 
worthwhile to  preprocess information and store it in a 
data structure that allows fast path planning queries. 
The probabilistic roadmap approach was the first to 
address this problem [15]. A graph is constructed in 
the configuration space by choosing many configura- 
tions at random, and using a local planner to connect 
pairs of nearby configurations. 

Due to its simplicity and reliable behavior, the 
probabilistic roadmap approach has enjoyed consid- 
erable success in recent years, and current research is 
focused on analysis [3] and treatment of pathological 
cases [l]. Even for single-query problems where the 
randomized potential field planner might yield better 
performance, the probabilistic roadmap method has 
been preferred due to its reliability. The randomized 
potential field planner often finds fast solutions for 
single-query problems by encoding a greedy heuristic 
in the form of a potential function over the config- 
uration space. When the planner becomes stuck in 
local minima, random walks are used to attempt an 
escape; however, it is very difficult to ensure reliable 
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performance. 
This naturally leads to the quest for a simple, reli- 

able approach that shares many of the great properties 
of probabilistic roadmaps, yet is specifically designed 
for single-query path planning. We present a simple 
path planning method called RRT-Connect that com- 
bines Rapidly-exploring Random Trees (RRTs) [18] 
with a simple greedy heuristic that aggressively tries 
to connect two trees, one from the initial configuration 
and the other from the goal. The idea of constructing 
search trees from the initial and goal configurations 
comes from classical AI bidirectional search, and an 
overview of its use in previous motion planning meth- 
ods appears in [12]. Recently, an interesting random- 
ized bidirectional planner was proposed for high-DOF 
problems in [ll]. The key to our ideas is the use of 
RRTs as a simple sampling scheme and data structure 
that reliably leads to fast and uniform exploration of 
the configuration space. RRT-Connect was originally 
developed to plan collision-free motions for 7-DOF hu- 
man arms for the automatic animation of grasping and 
manipulation tasks for animated characters in interac- 
tive 3D virtual environments [14] (see Figure 1). How- 
ever, it has also been found to  be both efficient and 
reliable for a variety of path planning problems. 

2 Rapidly-Exploring Random Trees 

Path planning can generally be viewed as a search 
in a configuration space, C, in which each q E C 
specifies the position and orientation of one or more 
geometrically-complicated bodies in a 2D or 3D world. 
A metric p is assumed to  be defined on C. Let Cfree  
denote the set of configurations for which these bodies 
do not collide with any static obstacles. The obstacles 
are modeled completely in the world, and an explicit 
representation of C f r e e  is not available. However, us- 
ing a collision detection algorithm, a given q E C can 
be tested to determine whether q E C f r e e .  The single- 
query path planning task is to compute a continuous 
path from an initial configuration, qinit, to  a goal con- 
figuration, qgoal , without performing any preprocess- 
ing. 

The Rapidly-exploring Random Tree (RRT) was 
introduced in [18] as an efficient data structure and 
sampling scheme to quickly search high-dimensional 
spaces that have both algebraic constraints (arising 
from obstacles) and differential constraints (arising 
from nonholonomy and dynamics). The key idea is 
to bias the exploration toward unexplored portions of 
the space. Related ideas have been developed in path 
planning research, such as Ariadne's clew algorithm 
[21] and expansive configuration spaces [ll]. In [19] 
an RRT-based approach to kinodynamic and nonholo- 
nomic planning was presented that generated and con- 
nected two RRTs in a state space, which generalizes C. 
In the current paper, we present an approach that is 

BUILD-RRT(qinit) 
1 7.init(qinit); 
2 for k = 1 to K do 
3 q,i-and t RANDOM-CONFIG(); 
4 EXTEND('7-1 qrand); 
5 Return 7 

EXTEND(7, q)  
1 qnear t NEAREST-NEIGHBOR(q, 7); 
2 if NEW-CONFIG(q, qnear,  qnew) then 
3 T.add-vertex( qnew) ; 

5 
6 Return Reached; 
7 else 
8 Return Advanced; 
9 Return Trapped; 

4 T.add-edge(qnear 7 qnew); 
if qnew = q then 

Figure 2: The basic RRT construction algorithm. 

Figure 3: The EXTEND operation. 

tailored to problems in which there are no differential 
constraints, and the problem can be expressed in C. 

The basic RRT construction algorithm is given in 
Figure 2. A simple iteration in performed in which 
each step attempts to  extend the RRT by adding 
a new vertex that is biased by a randomly-selected 
configuration. The EXTEND function, illustrated in 
Figure 3, selects the nearest vertex already in the 
RRT to the given sample configuration, q. The func- 
tion NEW-CONFIG makes a motion toward q with 
some fixed incremental distance 6, and tests for col- 
lision. This can be performed quickly ("almost con- 
stant time") using incremental distance computation 
algorithms [9, 20, 221. Three situations can occur: 
Reached, in which q is directly added to the RRT be- 
cause it already contains a vertex within e of q; Ad- 
vanced, in which a new vertex qnev # q is added to 
the RRT; Trapped, in which the proposed new vertex 
is rejected because it does not lie in C j r e e .  The top row 
of Figure 4 shows an RRT constructed in a 2D square 
space. The lower figure shows the Voronoi diagram 
of the RRT vertices; note that the probability that a 
vertex is selected for extension is proportional to the 
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Figure 4: An RRT is biased by large Voronoi regions to 
rapidly explore, before uniformly covering the space. 

CONNECT(T,Q) 
~ ~ 

1 repeat 
2 S t EXTEND(7, q ) ;  
3 until not (S = Advanced) 
4 Return S; 

RRT-CONNECTPLANNER(qinit, qgoal) 

1 
2 
3 qTand t RANDOM-CONFIG(); 
4 
5 
6 Return PATH(%, 3); 

8 Return Failure 

7, .init ( q i n z t )  ; % .init ( qgoal ) ;  
for IC = 1 to K do 

if not (EXTEND(%, q r a n d )  = Dapped) then 
if (CONNECT(%, qnew) =Reached) then 

7 SWAP(%, %); 

area of its Voronoi region. This causes the RRT to be 
biased to rapidly explore. In addition, Section 4 shows 
that RRTs arrive at a uniform coverage of the space, 
which is also a desirable property of the probabilistic 
roadmap planner. 

3 The RRT-Connect Path Planner 

The RRT-Connect planner is designed specifically 
for path planning problems that involve no differential 
constraints. In this case, the need for incremental mo- 
tions is less important. The method is based on two 
ideas: the Connect heuristic that attempts to move 
over a longer distance, and the growth of RRTs from 

The Connect heuristic is a greedy function that can 
be considered as an alternative to the EXTEND func- 
tion in Figure 2. Instead of attempting to extend an 
RRT by a single E step, the Connect heuristic iterates 
the EXTEND step until q or an obstacle is reached, 
as shown in the CONNECT algorithm description in 
Figure 5. This operation serves a similar function as 
the artificial potential function in a randomized po- 
tential field approach. In both cases, the heuristic 
allows rapid convergence to a solution. However, with 
our method, the greedy heuristic is combined with 
the rapid and uniform exploration properties of RRTs, 
which seems to avoid the well-known pitfalls of local 
minima. In a sense, with the CONNECT heuristic, 
the basin of attraction continues to move around as 
the RRT grows, as opposed to an artificial potential 
field method, in which the basin of attraction remains 
fixed at the goal. 

Figure 5 shows the RRT-CONNECT-PLANNER al- 
gorithm, which may be compared to the BUILDRRT 
algorithm of Figure 2. Two trees, % and are main- 
tained at all times until they become connected and 
a solution is found. In each iteration, one tree is ex- 

both qinit  and qgoal.  

Figure 5: The RRT-Connect algorithm. 

tended, and an attempt is made to connect the nearest 
vertex of the other tree to the new vertex. Then, the 
roles are reversed by swapping the two trees. This 
causes both trees to explore CfTee, while trying to es- 
tablish a connection between them. The growth of 
two RRTs was also proposed in [19] for kinodynamic 
planning; however, in each iteration both trees were 
incrementally extended toward a random configura- 
tion. The current algorithm attempts to also grow 
the trees towards each other, which has been found to 
yield much better performance. 

Several variations of the above planner can also 
be considered. By replacing CONNECT by EX- 
TEND in RRT-CONNECT-PLANNER, a simple, two- 
RRT planner is obtained. Adapting this planner to 
problems that involve differential constraints would 
most likely give significant performance improvement 
over the planner in [19]. Another variant can be 
obtained by replacing EXTEND with CONNECT in 
RRT-CONNECTPLANNER. This would lead to a path 
planner with an even stronger greedy heuristic. One 
of the key advantages of the CONNECT function is 
that a long path can be constructed with only a single 
call to the NEAREST-NEIGHBOR algorithm (each new 
vertex will become the nearest neighbor for the next 
one). This advantage motivates the choice of a greed- 
ier algorithm; however, if an efficient nearest-neighbor 
algorithm [2, 131 is used, as opposed to the obvious 
linear-time method, then it might make sense to be 
less greedy. Another possible variation is to make 
CONNECT add only the last vertex in the EXTEND 
iteration to the RRT, in order to reduce the number 
of nodes. Since these choices depend on the nearest- 
neighbor method and the distribution of problems, we 
focus on a single variation in this paper. 
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Figure 6: Growing two trees towards each other. 

4 Analysis 

Both the basic RRT and the RRT-Connect algo- 
rithms are analyzed in this section. The key result is 
that the distribution of the RRT vertices converges to- 
ward the sampling distribution, which is usually uni- 
form. Furthermore, the RRT-Connect algorithm is 
probabilistically complete. Unfortunately, we do not 
have a theoretical characterization of the rate of con- 
vergence (which is observed to be very fast in prac- 
tice). 

Let D k ( q )  denote a random variable whose value is 
the distance of q to the closest vertex in G, in which 
k is the number of vertices in an RRT. Let d k  denote 
the value of D k .  Let E denote the incremental dis- 
tance traveled in the EXTEND procedure (the RRT 
step size). 

Lemma 1 Suppose Cf,,, is a convex, bounded, open, 
n-dimenstonal subset of an n-dimensional conjigura- 
t ion space. For any q E Cf,,, and positive constant 
E > 0, lim P[da(q) < €1 = 1. 

Sketch of Proof: Let q be any point in C f r e e ,  and 
let qo denote any initial RRT vertex. Let B(q)  denote 
a ball of radius E ,  centered on q. Let B ’ ( q )  = B ( q )  n 
Cf,,,. Note that p ( B ’ ( q ) )  > 0, in which p denotes 
the volume (or measure) of a set. Initially, d l ( q )  = 
p(q,qo). At each RRT iteration, the probability that 
the randomly-chosen point will lie in B ’ ( q )  is strictly 
positive. Therefore, if all RRT vertices lie outside of 
B(q),  then E[&] - E[Dk+l] > b for some positive real 
number b > 0. This implies that lim P[dk(q) < E ]  = 
1. A 

k-tca 

k-tm 

For the statements that follow, assume that Cf,,, 
is a nonconvex, open set with a single connected com- 
ponent. 

Lemma 2 Suppose Cf,,, is a nonconvex, bounded, 
open, n-dimensional connected component of an n- 
dimensional configuration space. For any q E C f T e e  
and positive real number E > 0, lim P[d,(q) < E ]  = 
1. 

n+w 

Sketch of Proof: Let qo denote any initial RRT ver- 
tex. If qo and q are in the same connected component 
of a bounded open set, then there exists a sequence, 
41, 4 2 ,  . . ., q k ,  of configurations such that a sequence 
of balls, 23 = B l ( q l ) ,  . . ., B k ( q k ) ,  can be constructed 
withBinBi+l # 0 f o r e a c h i E { l ,  ..., n - l } , q o E B l ,  
and q E B k .  Let Ci = Bi f l  Bi+l. Note that 23 can 
be constructed so that each Ci is open, which implies 
that p ( C i )  > 0. Lemma 1 can be applied inductively 
to each Ci to conclude that ;;mm P [ d n ( q i )  < E]  = 1 for 
a point in qi E Ci. In each case, E can be selected to 
guarantee that an RRT vertex lies in C,. Eventually, 
the probability approaches one that an RRT vertex 
will fall into B k .  One final application of Lemma 1 
implies that P[d,,(q) < E ]  = 1. A 

Let X denote a vector-valued random variable that 
represents the sampling process used to construct an 
RRT. This reflects the distribution of samples that 
are returned by the RANDOM-CONFIG function in 
the EXTEND algorithm. Usually, X is characterized 
by a uniform probability density function over C f r e e ;  
however, we will allow X to be characterized by any 
smooth probability density function. Let x k  denote 
a vector-valued random variable that represents the 
distribution of the RRT vertices. 

Theorem 1 Xk converges to  X in probability. 

Sketch of Proof: Consider the set Y k  = { q  E 
C f T e e  I p(q,v)  > E VU E v k } ,  in which v k  is the 
set of RRT vertices after iteration k. Intuitively, this 
represents the “uncovered” portion of Cf,,,. From 
Lemma 2, it follows that Y k + l  c Y k  and p ( Y k )  ap- 
proaches zero as k approaches infinity. Recall that 
the RRT construction algorithm adds a vertex to V if 
the sample lies within E of another vertex in V ( E  is 
the RRT step size). Each time this occurs, the new 
RRT vertex follows the same probability density as 
X .  Because p ( Y k )  approaches zero, the probability 
density functions of x and xk differ only on some set 
z k  c Y k  . Since p ( Y k )  approaches zero as k approaches 
infinity, p ( z k )  also approaches zero. Since p ( Z k )  ap- 
proaches zero and the probability density function of 
X is smooth, x k  converges to X in probability. A 

Corollary 1 The RRT-Connect algorithm is proba- 
bilistically complete and vertices converge to a uniform 
distribution over Cf,,, . 
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Sketch of Proof: The result follows by observing 
that Theorem 1 holds for multiple RRTs, in addition 
to a single RRT. Furthermore, the Connect heuristic 
generates all of the usual RRT vertices, plus additional 
vertices. These additional vertices will contribute to 
the covering of CfTee,  and therefore do not adversely 
affect the convergence results, in which p ( Y k )  and 
p(Zk) approach zero. A 

5 Experiments 

This section presents some preliminary experiments 
performed on a 270 MHz SGI 0 2  (R12000) worksta- 
tion. We first performed hundreds of experiments on 
over a dozen examples for planning the motions of 
rigid objects in 2D, resulting in 2D and 3D configu- 
ration spaces. Path smoothing was performed on the 
final paths to reduce jaggedness. Some of these results 
are shown in Figure 7, in which the left column shows 
the RRTs, and the right column shows the correspond- 
ing solutions. Averaging over 100 trials, the (wall- 
clock) computation times were 0.13s, 1.52s, and 1.02~4 
for these three examples. The collision checking soft- 
ware used for all experiments was the RAPID library 
based on OBB-Trees developed by the University of 
North Carolina [8]. The performance was compared 
between RRT-Connect and several other RRT-based 
variants, including an adaptation of the algorithm pre- 
sented in [19]. We determined that for most problems, 
the Connect heuristic improves the running time, of- 
ten by a factor of three or four, especially for unclut- 
tered environments. In very cluttered environments, 
the Connect heuristic only slightly increases running 
time in comparison to using the EXTEND function to 
construct two trees. Thus, it seems that the greedy 
behavior is worthwhile on average. Additional experi- 
ments may reveal other variants that further improve 
performance. We are currently comparing some of the 
variants discussed in Section 3. 

A variety of more challenging experiments were per- 
formed. Figure 8 depicts a computed solution for a 3D 
model of a grand piano (over 4500 triangles) moving 
from one room to another amidst walls and low obsta- 
cles. Several tricky rotations are required of the piano 
in order to solve this query. The average computation 
time was 12.5 seconds (100 trials). Manipulation plan- 
ning experiments have been conducted for a model of 
a 6-DOF Puma industrial manipulator arm. Com- 
bined with an inverse kinematics algorithm, the RRT- 
Connect planner facilitates a task-level control mecha- 
nism for planning manipulation motions by computing 
three motions for a high-level request to move an ob- 
ject: 1) move the arm to grasp an object; 2) move the 
object to a target location; 3) release the object and 
return the arm to its rest position. Several snapshots 
of a path to move a book from the middle shelf to the 
bottom shelf of a desk is shown in Figure 9. This set 

RRTs 

I C - - - -  

Final Path 

I 

Figure 7: Several basic results. 

of three queries were each solved in under 4 seconds 
on average. 

As mentioned previously, the Connect heuristic 
works most effectively when one can expect relatively 
open spaces for the majority of the planning queries. 
The Connect heuristic was originally developed with 
this kind of problem in mind [14]. Figure 1 shows a 
human character playing chess. Each of the motions 
necessary to reach, grasp, and reposition a game piece 
on the virtual chessboard were generated using the 
RRT-Connect planner in under 2 seconds on average. 
The human arm is modeled as a 7-DOF kinematic 
chain, and the entire scene contains over 8,000 trian- 
gle primitives. The speed of the planner allows for the 
user to interact with the character in real-time, and 
engage in a game of “interactive virtual chess.” The 
planner can also handle more complicated queries with 
narrow passages in Cf,,, , such as the assembly mainte- 
nance scene depicted in Figure 10. Here, the task is to  
grasp the tool from within the box and place it inside 
the tractor wheel housing. Solving this particular set 
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Figure 9: Path planning for a 6-DOF Puma robot. 

Figure 8: Moving a Piano 

of queries takes an average of 17 seconds. The scene 
contains over 13,000 triangles. Since we used a non- 
incremental 3D collision checking algorithm, perfor- 
mance could potentially be improved significantly by 
using an alternate algorithm (for example [9, 20, 221). 

6 Conclusions 

A randomized approach to single-query path plan- 
ning is proposed that yields good experimental per- 
formance over a wide variety of examples. The tech- 
nique is based on Rapidly-exploring Random Trees 
(RRTs) and the Connect heuristic. Some of the key 
practical advantages of the planning method include: 
1) it does not require parameter tuning; 2) prepro- 
cessing is not required, yet interactive performance 
can be obtained for many difficult problems; 3) sim- 
ple and consistent behavior was observed through re- 
peated experiments; 4) a reasonable balance has been 
struck between greedy searching (as in a potential field 
planner) and uniform exploration (as in a probabilis- 
tic roadmap planner); 5) the method is well-suited 
for incremental distance computation algorithms and 
fast nearest-neighbor algorithms. The practical per- 
formance observed so far is encouraging; however, an 
extensive study that involves many benchmarking ex- 
amples would be useful, and is currently under in- 
vestigation. Undoubtedly, pathological cases exist for 
RRT-Connect, and more experimental work is needed 
to determine conditions under which RRT-Connect 

will yield very poor performance. We have shown 
theoretically that the planner is probabilistically com- 
plete and the vertices tend to a uniform distribution 
over Cf,,,. Theoretical analysis of the convergence 
rate remains, which is one topic under current inves- 
tigation. 

Although the RRT-Connect has proven to be very 
successful in our experiments, we are aware of several 
intertwined factors that could improve performance 
even further. Experimental evaluation of these issues 
form the basis of our future research: 1) the length of 
each RRT step can be optimized by computing the ra- 
dius of a collision-free ball in Cjree using the result of 
the distance computation algorithm; 2) the CONNECT 
heuristic can be used entirely in the RRT-Connect 
planner, as opposed to a combination of CONNECT 
and EXTEND; 3) vertices that are discovered during 
each incremental step within CONNECT do not need 
to  be added to the RRT to increase efficiency; 4) ap- 
proximate nearest neighbor methods can be used to  
reduce computation time for n vertices from O(n) to  
near-logarithmic time; 5) incremental collision detec- 
tion algorithms can be used. 
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Figure 10: A path planning problem that involves 
finding and using a hammer in a virtual world. 
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