
1

Design & Analysis of Algorithms

COMP 482 / ELEC 420

John Greiner

Pragmatics

• Prerequisites

• Textbook

• Wikipedia, …

• www.clear.rice.edu/comp482/

• OWL-Space

• Assignments, late policy, exams

2

[CLRS] 1-2

Policies

#0

Start #1

To do:

Solving Interesting Problems

1. Create algorithms & data structures to solve

problems.

2. Prove algorithms work.

Buggy algorithms are worthless!

3. Examine properties of algorithms.

Running time, space needed, simplicity, …

3

Alg. efficiency depends on

data structure.

Two parts of the same idea.

A Quick Example of Interesting Results

Roughly how much time for each?
1. Find shortest path between two points in graph.

2. Find shortest path between each pair of points in graph.

3. Find longest path between two points in graph.

4

?
?

1. O(VE)

2. O(VE)

3. No known polynomial-time algorithm.

Abstract vs. Concrete Data Structures

5

Familiar idea, but…

people & algorithm textbooks often don’t distinguish.

Abstract:

What can it do?

I.e., its interface – what operations?

Queue:

enqueue(elt,Q)

dequeue(Q)

isEmpty(Q)

Concrete:

How is it implemented?

How efficient?

Array-Queue:

Elements stored circularly,

with first & last indices.

Constant-time operations.

Mutability

6

Mutable:

Operations can change

data structure.

enqueue(elt,Q)

modifies Q to have new elt.

Immutable:

Operations can’t change

data structure.

enqueue(elt,Q)

creates & returns Q’ to have

 new elt. Q unchanged.

Most algorithm textbooks & this course: mostly mutable.

2

Outline of Semester

• Finish course overview – extended example

• Math background – review & beyond

• Algorithms & data structures

• Really hard problems

7

Techniques, as needed:

• Randomization

• Probabilistic analysis

• Amortized analysis

• Dynamic programming

Extended Example: Multiplication

Illustrates some of course’s interesting ideas.

Just an overview – not too much detail yet.

How to multiply two integers: xy.

Common & familiar. Simple?

Suggested algorithms & their efficiency?

8

? ?

Multiplication Algorithm 1

Single basic machine operation, O(1) time.

9

Only applies to bounded-sized integers.

Instead, explicitly assume unbounded-sized integers.

Problem with this answer? ? ?

Multiplication Algorithm 2

x y = x+…+x = y+…+y

10

y copies x copies

Back to multiplication:

• O(n x) = O(n 2n)

How long for each addition?

• Grade-school algorithm takes time result length.

• For simplicity, assume x,y have same length.

• Length n = log2 x (choice of base 2 is arbitrary)

• O(n)

Multiplication Algorithm 3

Grade-school “long-hand” algorithm.

11

x= 38

y= 473

114

2660

+ 15200

17974

Basically the same as

bit-shifting algorithms.

O(nn + nn) = O(n2) Much better! ? ? Total?

n multiplications of (x by 1 bit of y)

+

n additions of the resulting products.

Multiplication Algorithm 4: Part 1

Karatsuba, 1962

Break the bit strings of x,y into halves.

x = a 2n/2 + b = a << n/2 + b

y = c 2n/2 + d = c << n/2 + d

xy = ac << n + (ad+bc) << n/2 + bd
Compute 4 subproducts recursively.

Divide-and-conquer

12

1 0 1 1 0 1

1 1 1 0 0

x=45

y=28

a=5

c=3

b=5

d=4

0

3

Multiplication Algorithm 4: Part 1

How long does this take?

Form recurrence equation:

Solve recurrence equation.
• How? Discussed next week.

• T(n) = O(n2) – No better than previous.

13

k = arbitrary constant

to fill in for the details

4 subproducts + additions & shifts

k n =1

T n = n
4×T +k×n n >1

2

Multiplication Algorithm 4: Part 2

Previous:

xy = ac << n + (ad+bc) << n/2 + bd

Regroup (very non-obvious step!):

u = (a+b) (c+d)

v = ac

w = bd

xy = v << n + (u-v-w) << n/2 + w

Only 3 subproducts! But more additions & shifts.

14

1 0 1 1 0 1

1 1 1 0 0

x=45

y=28

a=5

c=3

b=5

d=4

0

Multiplication Algorithm 4: Part 2

How long does this take?

15

k n =1

T n = n
3×T +k ×n n >1

2

k’ = a new, larger

constant

 2 2log 3 log 3 1.59T n =3×k ×n -2×k ×n =O n O n

More complicated, but asymptotically faster.

Multiplication Algorithm 4: Part 2

Previous:

u = (a+b) (c+d) v = ac w = bd

xy = v << n + (u-v-w) << n/2 + w

An overlooked detail:

a+b and c+d can be n/2+1 bit numbers. Doesn’t fit recurrence.

16

Break sums into

(n/2+1)th bit & n bits.

Solution:

a+b = a1 << n/2 + b1

c+d = c1 << n/2 + d1

(a+b) (c+d) = (a1 c1) << n + (a1 d1 + b1 c1) << n/2 + b1 d1

O(1) time O(n/2) time

Single bits.

Multiplication Algorithms 5—8

Toom-Cook, 1963,1966: O(n1+)
– Generalizes both long-hand & Karatsuba

– Based upon polynomial multiplication & interpolation.

FFT-based:

Karp: O(n log2 n)

Schoenhage & Strassen, 1971: O(n log n log log n)

Fürer, 2007: O(n log n 2O(log* n))

17

Approaching the conjectured

Ω(n log n) lower bound.

log-shaving – slightly
improving logarithmic

terms

Multiplication Algorithms 9, ...

Use parallelism.

Even serial processors use some bit-level parallelism.

Divide-&-conquer & FFT algorithms easily parallelized.

18

4

Summary

19

Asymptotically-faster

often

 more complicated,

 higher constant factors, &

 slower for typical input sizes.

Good ideas lead to more

good ideas

 Karatsuba generalizes to

Strassen’s matrix multiplication

[CLRS] 4.2 & Toom-Cook.

 Toom-Cook & FFT generalize to

polynomial multiplication.

Algorithm Analysis Summary

1. State problem.

2. Characterize the input size.

3. State algorithm.

– Often difficult, of course

4. Prove algorithm correctness.

– Necessary!

5. Determine its resource usage.

– Often via recurrence equations

– Compare algorithms

– Decide which algorithm suitable for given application

– Guide the search for better algorithms

20

We almost missed an important

detail that would have produced

incorrect analysis.

