Design \& Analysis of Algorithms COMP 482 / ELEC 420

John Greiner

Solving Interesting Problems

1. Create algorithms \& data structures to solve problems.
2. Prove algorithms work. Buggy algorithms are worthless!

Alg. efficiency depends on data structure.
Two parts of the same idea.
3. Examine properties of algorithms

Running time, space needed, simplicity,

Abstract vs. Concrete Data Structures

Concrete:

How is it implemented?
How efficient?

Queue:
enqueue(elt, Q)
dequeue(Q)
isEmpty(Q)

Array-Queue:
Elements stored circularly, with first \& last indices. Constant-time operations.

Familiar idea, but...
people \& algorithm textbooks often don't distinguish.

- Prerequisites

- Textbook - Wikipedia, ...	$\frac{\text { To do: }}{\text { [CLRS] 1-2 }}$
- www. clear.rice.edu/comp482/ - OWL-Space	Policies
- Assignments, late policy, exams	\#0 Start \#1

2

A Quick Example of Interesting Results

Roughly how much time for each?

1. Find shortest path between two points in graph.
2. Find shortest path between each pair of points in graph.
3. Find longest path between two points in graph.
```
?
```

1. $\mathrm{O}(\mathrm{V} \times \mathrm{E})$
2. $\mathrm{O}(\mathrm{V} \times \mathrm{E})$
3. No known polynomial-time algorithm.

Most algorithm textbooks \& this course: mostly mutable.

Outline of Semester

- Finish course overview - extended example
- Math background - review \& beyond
- Algorithms \& data structures

Techniques, as needed:

- Randomization
- Probabilistic analysis
- Amortized analysis
- Dynamic programming
- Really hard problems

Multiplication Algorithm 1

Single basic machine operation, $O(1)$ time.

> ? Problem with this answer? ?

Only applies to bounded-sized integers. Instead, explicitly assume unbounded-sized integers.

Multiplication Algorithm 3

Grade-school "long-hand" algorithm.

38	
$\mathrm{y}=\frac{\times 473}{114}$	n multiplications of (x by 1 bit of y)
114 2660	+
+ 15200	n additions of the resulting products.
17974	

Basically the same as bit-shifting algorithms.

$$
\text { ? Total? ? } O(n \times n+n \times n)=O\left(n^{2}\right) \quad \text { Much better! }
$$

Extended Example: Multiplication

Illustrates some of course's interesting ideas. Just an overview - not too much detail yet.

How to multiply two integers: $x \times y$. Common \& familiar. Simple?
? Suggested algorithms \& their efficiency? ?

Multiplication Algorithm 2

$$
x \times y=\underbrace{x+\ldots+x}_{y \text { copies }}=\underbrace{y+\ldots+y}_{x \text { copies }}
$$

How long for each addition?

- Grade-school algorithm takes time \propto result length.
- For simplicity, assume x, y have same length.
- Length $\mathrm{n}=\log _{2} \mathrm{x} \quad$ (choice of base 2 is arbitrary)
- O(n)

Back to multiplication:

- $O(n \times x)=O\left(n \times 2^{n}\right)$

Multiplication Algorithm 4: Part 1

Karatsuba, 1962

Break the bit strings of x, y into halves.

	$\mathrm{c}=5$		$\mathrm{~b}=5$		
$\mathrm{x}=45$	1	0	1	1	0

$x y=\underline{a c} \ll n+(\underline{a d}+\underline{b c}) \ll n / 2+\underline{b d}$
Compute 4 subproducts recursively.
Divide-and-conquer

Multiplication Algorithm 4: Part 1

How long does this take?

Form recurrence equation:
$T(n)=\{\begin{array}{cc}k & n=1 \\ 4 \times T\left(\frac{n}{2}\right)+k \times n & n>1\end{array} \underbrace{4 \text { subproducts }+ \text { additions } \& \text { shifts }}$

Solve recurrence equation.

- How? Discussed next week.
- $T(n)=O\left(n^{2}\right)-$ No better than previous.

Multiplication Algorithm 4: Part 2

How long does this take?
$T^{\prime}(n)=\left\{\begin{array}{cc}k^{\prime} & n=1 \\ 3 \times T^{\prime}\left(\frac{n}{2}\right)+k^{\prime} \times n & n>1\end{array}\right.$

k' = a new, larger

 constant$$
\mathrm{T}^{\prime}(\mathrm{n})=3 \times \mathrm{k}^{\prime} \times \mathrm{n}^{\log _{2} 3}-2 \times \mathrm{k}^{\prime} \times \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\log _{2} 3}\right) \approx \mathrm{O}\left(\mathrm{n}^{1.59}\right)
$$

More complicated, but asymptotically faster.

Multiplication Algorithms 5-8

Toom-Cook, 1963,1966: O($\mathrm{n}^{1+\varepsilon}$)

- Generalizes both long-hand \& Karatsuba
- Based upon polynomial multiplication \& interpolation.

FFT-based:
Karp: O(n $\log ^{2} n$)
Schoenhage \& Strassen, 1971: O($n \log n \log \log n$)
Fürer, 2007: O(n log n $2^{0\left(\log ^{*} n\right)}$
log-shaving - slightly improving logarithmic terms
Approaching the conjectured
$\Omega(n \log n)$ lower bound.

Multiplication Algorithm 4: Part 2

Only 3 subproducts! But more additions \& shifts.

Multiplication Algorithm 4: Part 2

Previous:

$$
\begin{array}{lrl}
u=(a+b) \times(c+d) \\
x y=v \ll n+(u-v-w) \ll n / 2+\underline{a c} & w=\underline{b d}
\end{array}
$$

An overlooked detail:
$a+b$ and $c+d$ can be $n / 2+1$ bit numbers. Doesn't fit recurrence.

Multiplication Algorithms 9, ...
Use parallelism.
Even serial processors use some bit-level parallelism. Divide-\&-conquer \& FFT algorithms easily parallelized.

Summary

Algorithm Analysis Summary

1. State problem.
2. Characterize the input size.
3. State algorithm.

- Often difficult, of course

4. Prove algorithm correctness.

- Necessary!

5. Determine its resource usage.

- Often via recurrence equations

We almost missed an important detail that would have produced incorrect analysis.

- Decide which algorithm suitable for given application
- Guide the search for better algorithms

