Math Background: Review \& Beyond

1. Asymptotic notation

To do: [CLRS] 2, 3.1
\#1
2. Math used in asymptotics
3. Recurrences
4. Probabilistic analysis

Asymptotes

Want to describe an algorithm's running time.
(or space, ...)

Described by $O\left(n^{2}\right), \Omega(n \log n), \Theta(n), \ldots$

2 What do these mean?

Why do we use these notations?

Lower Bounds

Sometimes can prove that we cannot compute something without a sufficient amount of time.

That doesn't necessarily mean we know how to compute it in this lower bound.
E.g., sorting an array.
\# comparisons needed in worst case $\rightarrow \Omega(n \log n)$

Upper \& Lower Bounds: Informal Summary
Upper bounds:
$\leq \mathrm{O}() \quad<\mathrm{O}()$

Lower bounds:
$\geq \Omega() \quad>\omega()$

Upper \& lower ("tight") bounds:
$=\Theta()$

Definitions: $0, \Omega$

$T(n) \in O(g(n))$
 \exists constants $\mathrm{c}, \mathrm{n}_{0}>0$ such that
 $\forall n \geq n_{0}, T(n) \leq c \times g(n)$

Definitions: $\mathbf{0}, \boldsymbol{\omega}$
Might know that our upper \& lower bounds aren't tight.

Also, $T(n) \in O(g(n))$
$\lim _{n \rightarrow \infty} \frac{\leftrightarrow}{T(n)}=0$

Never equal, for any constant.

Bounding allows abstractions of details

```
2n+13\inO(?)
    O(n)
    \Omega(n), also \Omega(log n), \Omega(1),..
2n}\inO(n)?\Omega(n)?\quadGiven a c, 2n \geqc\timesn, for all but small n.
    \Omega(n), not O(n).
nog}\mp@subsup{|}{}{\operatorname{log}}\in\textrm{O}(\mp@subsup{n}{}{5})?\quad No. Given a c, log n\geqc\times5, for all
    large enough n. Thus, \Omega(n}\mp@subsup{n}{}{5})\mathrm{ .
```

Examples: $0, \omega$

```
2n+13\ino(n) ? \omega(n)? No to both!
                                    2n+13<c\timesn fails for many c.
                                    2n+13>c\timesn fails for many c.
2n+13\ino(?) \omega(?) o(n log n),o(n2),\ldots
                                    \omega(log n), \omega(1),\ldots
1/ log n < O(1)?
    Yes.
                                    lim
```

Definition: 0

$$
\begin{gathered}
T(n) \in \Theta(g(n)) \\
\leftrightarrow \\
T(n) \in O(g(n)) \text { and } T(n) \in \Omega(g(n))
\end{gathered}
$$

Ideally, find algorithms that are asymptotically as good as possible.

Standard notational abuse

O()$, \Omega(), \ldots$ are sets of functions.

$$
\mathrm{T}(\mathrm{n})=\mathrm{O}(\ldots) \quad \square \quad \mathrm{T}(\mathrm{n}) \in \mathrm{O}(\ldots)
$$

$$
\mathrm{T}(\mathrm{n})=\mathrm{f}(\mathrm{n})+\mathrm{O}(\ldots) \quad \square
$$

Three types of measures

Most common.
Worst case $\quad T(n)=\max \{T(x) \mid x$ is an instance of size $n\}$

Best case $\quad T(n)=\min \{T(x) \mid x$ is an instance of size $n\}$
Average case $\quad T(n)=\Sigma_{|x|=n} \operatorname{Pr}\{x\} \times T(x)$

Determining the input probability distribution can be difficult.

