
1 

Design & Analysis of Algorithms  

COMP 482 / ELEC 420 

 

 
John Greiner 

Math Background: Review & Beyond 

1. Asymptotic notation 

 

2. Math used in asymptotics 

 

3. Recurrences 

 

4. Probabilistic analysis 

2 

To do: 

[CLRS] 2, 3.1 

#1 

Asymptotes 

Want to describe an algorithm’s running time. 
(or space, …) 

 

 

 

Described by O(n2), Ω(n log n), Θ(n), … 

 

 

What do these mean? 

Why do we use these notations? 
 

3 

? 
? 

Upper Bounds 

Creating an algorithm proves we can solve the 

problem within a given bound. 

 

But another algorithm might be faster. 

4 

E.g., sorting an array. 

Insertion sort  O(n2) 

Lower Bounds 

Sometimes can prove that we cannot compute 

something without a sufficient amount of time. 

 

That doesn't necessarily mean we know how to 

compute it in this lower bound. 

 

5 

E.g., sorting an array. 

# comparisons needed in worst case  Ω(n log n) 
 

Will prove this soon… 

Upper & Lower Bounds: Informal Summary 

Upper bounds: 

    O()  <   o()  

 

 

Lower bounds: 

    Ω()   >   ω() 

 

 

Upper & lower (“tight”) bounds: 

=   Θ() 

6 



2 

Definitions: O, Ω 

7 

T(n) 

T(n)  O(g(n)) 

 

 constants c,n0 > 0 
such that 

 nn0, T(n)  cg(n) 

cg(n) 

n0 

T(n)  Ω(g’(n)) 

 

 constants c’,n’0 > 0 
such that 

 nn’0, T(n)  c’g’(n) 

c’g’(n) 

n’0 

Bounding allows abstractions of details 

8 

2n+13  O( ? ) O(n) Also, O(n2), O(5n), …  Can 

always weaken the bound. 

2n  O(n) ?  Ω(n) ? Given a c, 2n  cn, for all but small n. 

Ω(n), not O(n). 

nlog n  O(n5) ? No.  Given a c, log n  c5, for all 

large enough n.  Thus, Ω(n5). 

2n+13  Ω( ? ) Ω(n), also Ω(log n), Ω(1), …  

Definitions: o, ω 

Might know that our upper & lower bounds aren’t tight. 

9 

T(n)  ω(g’(n)) 

 

 constants c’>0,  constant n’0>0, 
such that 

 nn’0, T(n) > cg’(n) 

T(n)  o(g(n)) 

 

 constants c>0,  constant n0>0, 
such that 

 nn0, T(n) < cg(n) 

Never equal, 

for any constant. 

Also, T(n)  o(g(n)) 

 

 
 

0
ng

nT
lim
n




Examples: o, ω 

10 

2n+13  o(n) ?  ω(n) ? No to both! 

2n+13 < cn fails for many c. 

2n+13 > cn fails for many c. 

2n+13  o( ? )   ω( ? ) o(n log n), o(n2), … 

ω(log n), ω(1), … 

1 / log n  o(1) ? Yes. 

 
 

0
n log

1

1

n log
1

ng

nT
limlimlim
nnn




Definition: Θ 

T(n)  Θ(g(n)) 

 

T(n)  O(g(n))  and  T(n)  Ω(g(n)) 

 

 

Ideally, find algorithms that are asymptotically as good 

as possible. 

11 

Standard notational abuse 

O(), Ω(), … are sets of functions. 

12 

T(n) = O(…) T(n)  O(…) 

T(n) = f(n) + O(…) 
T(n) = f(n) + g(n) 

g(n)  O(…) 



3 

Three types of measures 

13 

Worst case  T(n) = max {T(x) | x is an instance of size n} 

 

Best case  T(n) = min {T(x) | x is an instance of size n} 

 

Average case T(n) = Σ|x|=n Pr{x}  T(x) 

Most common. 

Determining the input probability distribution can be difficult. 


