Math Background: Review & Beyond

<u>To do:</u> [CLRS] 2, 3.1
#1

Design & Analysis of Algorithms COMP 482 / ELEC 420

John Greiner

Upper Bounds

Creating an algorithm proves we can solve the problem within a given bound.

But another algorithm might be faster.

E.g., sorting an array. Insertion sort $\rightarrow O(n^2)$

Lower Bounds

Sometimes can prove that we cannot compute something without a sufficient amount of time.

That doesn't necessarily mean we know how to compute it in this lower bound.

E.g., sorting an array. # comparisons needed in worst case $\rightarrow \Omega(n \log n)$

Will prove this soon.

Upper & Lower Bounds: Informal Summary

Bounding	allows	abstractions	of details
----------	--------	--------------	------------

2n+13 ∈ O(?)	O(n)	Also, O(n²), O(5n), … Can always weaken the bound.
$2n+13 \in \Omega(?)$	Ω(n), also	ο Ω(log n), Ω(1), …
$2^n \in O(n)$? $\Omega(n)$?	Given a c Ω(n), not	c, $2^n ≥ c × n$, for all but small n. O(n).
$n^{\log n} \in O(n^5) ?$	No. Give large enc	n a c, log n ≥ c×5, for all ugh n. Thus, Ω(n⁵).
		8

Examples: ο, ω			
2n+13 ∈ o(n) ? ω(n) ?	No to both! 2n+13 < c×n fails for many c. 2n+13 > c×n fails for many c.		
$2n+13 \in o(?) \omega(?)$	o(n log n), o(n²), ω(log n), ω(1),		
1 / log n ∈ o(1) ?	Yes. $\lim_{n \to \infty} \frac{T(n)}{g(n)} = \lim_{n \to \infty} \frac{1/\log n}{1} = \lim_{n \to \infty} \frac{1}{\log n} = 0$		
	10		

Three types of measures

Most common.

+	
Worst case	$T(n) = max \{T(x) \mid x \text{ is an instance of size } n\}$
Best case	$T(n) = min \{T(x) \mid x \text{ is an instance of size } n\}$
Average case	$T(n) = \Sigma_{ x =n} \Pr{x} \times T(x)$

13

Determining the input probability distribution can be difficult.