
1

Design & Analysis of Algorithms

COMP 482 / ELEC 420

John Greiner

Math Background: Review & Beyond

1. Asymptotic notation

2. Math used in asymptotics

3. Recurrences

4. Probabilistic analysis

2

To do:

[CLRS] 4

#2

Obtaining Recurrences

3

Key observation: Deterministic algorithms lead to recurrences.

1. Determine appropriate metric for the size “n”.

2. Examine how metric changes during recursion/iteration.

T(n) = O(1) n=1

T(n) = 4T(n/2) + kn n>1

T’(n) = O(1) n=1

T’(n) = 3T’(n/2) + k’n n>1

Obtained from straightforward reading of algorithms.

Introductory multiplication examples:

Solving for Closed Forms

4

How?

In general, hard. Solutions not always known.

Will discuss techniques in a few minutes…

T(n) = O(1) n=1

T(n) = 4T(n/2) + kn n>1

T’(n) = O(1) n=1

T’(n) = 3T’(n/2) + k’n n>1

 2nΘnT 3log2nΘnT'

Recurrences’ Base Case

5

T(n) = O(1) n<b

T(n) = … nb

For constant-sized problems, can

bound algorithm by some constant.

This constant is irrelevant for

asymptote. Often skip writing base

case.

Recurrences

6

T(n) = 4T(n/2) + kn n>1 T’(n) = 3T’(n/2) + k’n n>1

What if n is odd? ? ?

T(n) = 3T(n/2) + T(n/2) + kn n>1

Above more accurate.

The difference rarely matters, so usually ignore this detail.

Next iteration, n is not integral. Nonsense.

2

Two Common Forms of Recurrences

7

T(n) = a1T(n-1)+a2T(n-2) + f(n) n>b

T(n) = aT(n/b) + f(n) nb Divide-and-conquer:

Linear:

Techniques for Solving Recurrences

• Substitution

• Recursion Tree

• Master Method – for divide & conquer

• Summation – for simple linear

• Characteristic Equation – for linear

8

Techniques: Substitution

Guess a solution & check it.

9

More detail:

1. Guess the form of the solution, using unknown constants.

2. Use induction to find the constants & verify the solution.

Completely dependent on making reasonable guesses.

Substitution Example 1

10

More specifically:

T(n) cn3, for all large enough n.

Guess: T(n) = O(n3).

T(n) = 4T(n/2) + n n>1
Simplified version of

previous example.

Substitution Example 1

11

Assume: T(k) ck3 for k>n0, for k<n.

Show: T(n) cn3 for n>n0.

Which

means what

exactly?
? ?

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn3 for n>n0

Prove by strong induction on n.

Substitution Example 1

Base case, n=n0+1:

12

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn3 for n>n0

Assume T(k) ck3 for k>n0, for k<n. Show T(n) cn3 for n>n0.

Awkward. Fortunately, n0=0 works in these examples.

3

Substitution Example 1

Base case, n=1:

T(n) = 1 Definition.

1 c Choose large enough c for conclusion.

13

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn3

Assume T(k) ck3, for k<n. Show T(n) cn3.

Substitution Example 1

Inductive case, n>1:

T(n) = 4T(n/2) + n Definition.

 4c(n/2)3 + n Induction.

 = c/2 n3 + n Algebra.

14

Assume T(k) ck3, for k<n. Show T(n) cn3.

While this is O(n3), we’re not done.

Need to show c/2 n3 + n cn3.

Fortunately, the constant factor is shrinking, not growing.

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn3

Substitution Example 1

Inductive case, n>1:

T(n) c/2 n3 + n From before.

 = cn3 - (c/2 n3 - n) Algebra.

 cn3 For n>0, if c2.

15

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn3

Assume T(k) ck3, for k<n. Show T(n) cn3.

Substitution Example 1

16

T(n) = 4T(n/2) + n n>1

Proved: T(n) 2n3 for n>0

Thus, T(n) = O(n3).

Substitution Example 2

17

T(n) = 4T(n/2) + n n>1

Guess: T(n) = O(n2).

Same recurrence, but now try tighter bound.

More specifically:

T(n) cn2 for n>n0.

Substitution Example 2

T(n) = 4T(n/2) + n

 4c(n/2)2 + n

 = cn2 + n

18

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn2 for n>n0

Assume T(k) ck2, for k<n. Show T(n) cn2.

Follow same steps, and we get...

Not cn2 !

Problem is that the constant isn’t shrinking.

4

Substitution Example 2

19

T(n) = 4T(n/2) + n n>1

Guess:

T(n) cn2 - dn for n>0

Assume T(k) ck2 - dk, for k<n. Show T(n) cn2 - dn.

Solution: Use a tighter guess & inductive hypothesis.

Subtract a lower-order term – a common technique.

Substitution Example 2

Base case, n=1:

T(n) = 1 Definition.

1 c-d Choosing c, d appropriately.

20

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn2 - dn

Assume T(k) ck2 - dn, for k<n. Show T(n) cn2 - dn.

Substitution Example 2

Inductive case, n>1:

T(n) = 4T(n/2) + n Definition.

 4(c(n/2)2 - d(n/2)) + n Induction.

 = cn2 - 2dn + n Algebra.

 = cn2 - dn - (dn - n) Algebra.

 cn2 - dn Choosing d1.

21

T(n) = 4T(n/2) + n n>1
Guess:

T(n) cn2 - dn

Assume T(k) ck2 - dn, for k<n. Show T(n) cn2 - dn.

Substitution Example 2

22

T(n) = 4T(n/2) + n n>1

Proved: T(n) 2n2 – 1n for n>0

Thus, T(n) = O(n2).

Techniques: Recursion Tree

Guessing correct answer can be difficult!

Need a way to obtain appropriate guess.

1. Unroll recurrence to obtain a summation.

2. Solve or estimate summation.

3. Use solution as a guess in substitution.

23

Math sometimes tricky.

T(n) = 4T(n/2) + n n>1

Recursion Tree Example 1

24

n/2 n/2 n/2 n/2 2n

n/4 4n n/4 n/4 n/4 n/4 n/4 n/4 n/4 …

…

…

…

…

…

…

…

…

…

1 1 … 4#levels

How many levels? ? ?

Cost at

this level
T(n)

In this example, all terms on a level are the same.

Common, but not always true.

n n

log2 n

Now, turn picture

into a summation…

5

Recursion Tree Example 1

25

T(n) = 4T(n/2) + n n>1

n

Cost at

this level

n

n/2

T(n)

n/2 n/2 n/2 2n

n/4 4n n/4 n/4 n/4 n/4 n/4 n/4 n/4 …

…

…

…

…

…

…

…

…

…

1 1 … 4lg n

T(n) = n + 2n + 4n + … + 2lg n – 1n + 4lg n

 = n(1 + 2 + 4 + … + 2lg n – 1) + nlg 4

lg n 1
i 2

i 0

T(n) n 2 n

2
1n lg

n
12

2
n

2
n lg

n
2

2
n

2
2 lg

n
2

n
n

2n
2

n
n

= Θ(n2)

T(n) = T(n/3) + T(2n/3) + n n>1

Recursion Tree Example 2

26

Cost at

this level
T(n)

n n

n/3 2n/3 n

How many levels? ? ?

log3/2 n

But, not all branches

have same depth!

Makes cost near the

leaves hard to

calculate.

Estimate!

…

…

…

…

n/9 2n/9 2n/9 4n/9 n

…

Recursion Tree Example 2

27

T(n) = T(n/3) + T(2n/3) + n n>1

Cost at

this level
T(n)

n n

n/3 2n/3 n

…

…

…

…

n/9 2n/9 2n/9 4n/9 n

#levels = log3/2 n

Overestimate.

 Consider all branches to

be of max depth.

T(n) n (log3/2 n - 1) + n

T(n) = O(n log n)

…

n 1 1 …

Recursion Tree Example 2

28

T(n) = T(n/3) + T(2n/3) + n n>1

Cost at

this level
T(n)

n n

n/3 2n/3 n

…

…

…

…

n/9 2n/9 2n/9 4n/9 n

#levels = log3 n

Underestimate.

Count the complete

levels, & ignore the rest.

T(n) n (log3 n – 1)

T(n) = Ω(n log n)

Thus, T(n) = Θ(n log n)
…

Techniques: Master Method

Cookbook solution for many recurrences of the form

T(n) = a T(n/b) + f(n)
where

a1, b>1, f(n) asymptotically positive

First describe its cases, then outline proof.

29

Master Method Case 1

30

T(n) = a T(n/b) + f(n)

f(n) = O(nlogb a -) for some >0 T(n) = Θ(nlogb a)

T(n) = Θ(nlg 7)

cn2 =? O(nlogb a -) = O(nlog2 7 -) O(n2.8 -)

Yes, for any 0.8.

T(n) = 7T(n/2) + cn2 a=7, b=2

E.g., Strassen matrix multiplication.

6

Master Method Case 2

31

T(n) = a T(n/b) + f(n)

f(n) = Θ(nlogb a) T(n) = Θ(nlogb a lg n)

T(n) = 2T(n/2) + cn a=2, b=2

E.g., mergesort.

cn =? Θ(nlogb a) = Θ(nlog2 2) = Θ(n)

Yes.

T(n) = Θ(n lg n)

Master Method Case 3

32

T(n) = a T(n/b) + f(n)

f(n) = Ω(nlogb a +) for some >0 and

af(n/b) cf(n) for some c<1 and all large enough n

 T(n) = Θ(f(n))

T(n) = 4T(n/2) + n3 a=4, b=2

n3 =? Ω(nlogb a +) = Ω(nlog2 4 +) = Ω(n2 +)

Yes, for any 1.

4(n/2)3 = ½n3 ? cn3

Yes, for any c ½.

I.e., is the

constant factor

shrinking?

T(n) = Θ(n3)

Master Method Case 4

33

T(n) = a T(n/b) + f(n)

None of previous apply. Master method doesn’t help.

T(n) = 4T(n/2) + n2/lg n a=4, b=2

Case 1?

n2/lg n =? O(nlogb a -) = O(nlog2 4 -) = O(n2 -) = O(n2/n)

No, since lg n is asymptotically < n.

Thus, n2/lg n is asymptotically > n2/n.

Master Method Case 4

34

T(n) = a T(n/b) + f(n)

None of previous apply. Master method doesn’t help.

T(n) = 4T(n/2) + n2/lg n a=4, b=2

Case 2?

n2/lg n =? Θ(nlogb a) = Θ(nlog2 4) = Θ(n2)

No.

Master Method Case 4

35

T(n) = a T(n/b) + f(n)

None of previous apply. Master method doesn’t help.

T(n) = 4T(n/2) + n2/lg n a=4, b=2

Case 3?

n2/lg n =? Ω(nlogb a +) = Ω(nlog2 4 +) = Ω(n2 +)

No, since 1/lg n is asymptotically < n.

Master Method Proof Outline

36

…

T(n) = a T(n/b) + f(n)

Cost at

this level
T(n)

f(n) f(n)

n/b n/b af(n/b)

…

…

…

…

n/b2 n/b2 n/b2 n/b2 a2f(n/b2)

…

1 1 a#levels

How many levels? ? ?
logb n

Cases correspond to determining

which term dominates & how to

compute sum.

blog n 1

i i

i 0

a f n / b

 T n

blog an

…

… … …

7

Technique: Summation

For linear recurrences with one recursive term.

37

T(n) = T(n-1) + f(n)

T(n) = T(n-2) + f(n)

?

?

Techniques: Characteristic Equation

Applies to linear recurrences

• Homogenous:

an = c1an-1 + c2an-2 + … + ckan-k

• Nonhomogenous:

an = c1an-1 + c2an-2 + … + ckan-k + F(n)

38

