Math Background: Review & Beyond

1. Asymptotic notation

Design & Analysis of Algorithm	S
COMP 482 / ELEC 420	

John Greiner

2. Math used in asymptotics	To dev
3. Recurrences	<u>To do:</u> [CLRS] 4 #2
4. Probabilistic analysis	

Obtaining Recurrences

Introductory multiplication examples:			
T(n) = O(1)	n=1	T'(n) = O(1)	n=1
T(n) = 4T(n/2) + kn	n>1	T'(n) = O(1) T'(n) = 3T'(n/2) + k'n	n>1

Obtained from straightforward reading of algorithms.

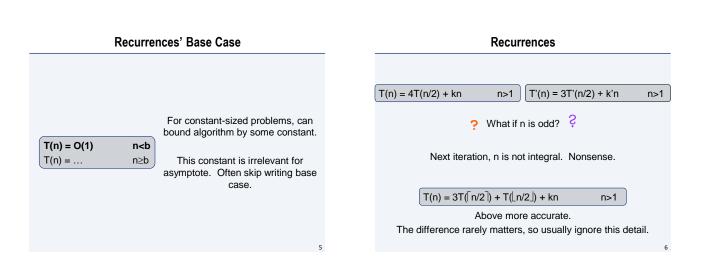
Key observation: Deterministic algorithms lead to recurrences. 1. Determine appropriate metric for the size "n".

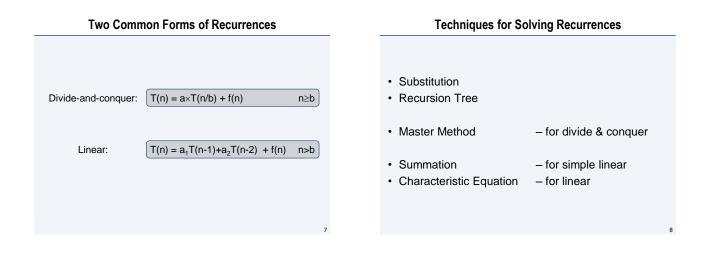
- 2. Examine how metric changes during recursion/iteration.

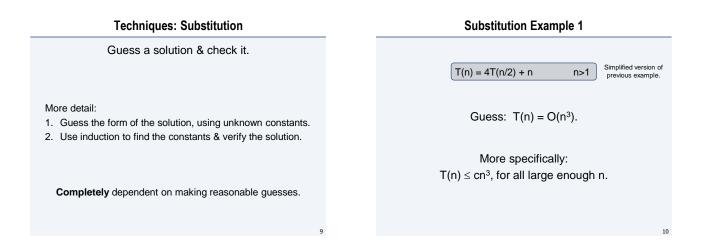
Solving for Closed Forms

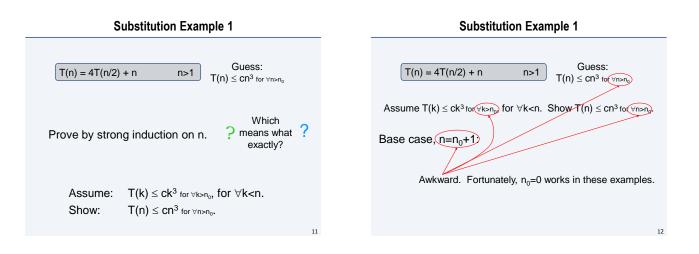
T(n) = O(1)	n=1	T'(n) = O(1) T'(n) = 3T'(n/2) + k'n	n=1
T(n) = 4T(n/2) + kn	n>1	T'(n) = 3T'(n/2) + k'n	n>1
$T(n) = \Theta(n^2)$		$T'(n) = \Theta(n^{\log_2 3})$	

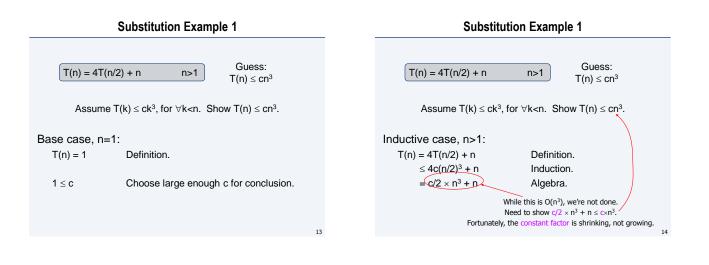
<u>How?</u> In general, hard. Solutions not always known. Will discuss techniques in a few minutes...

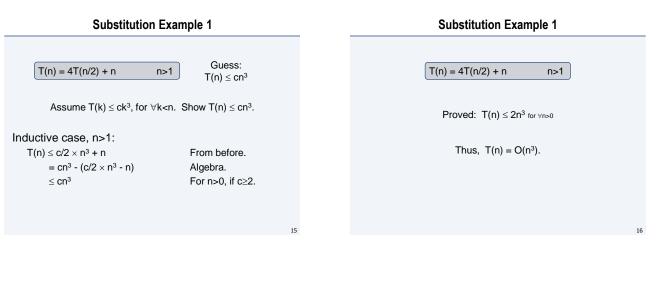


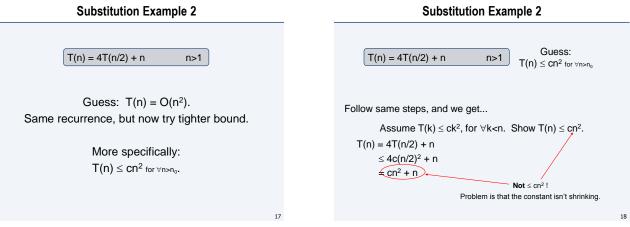


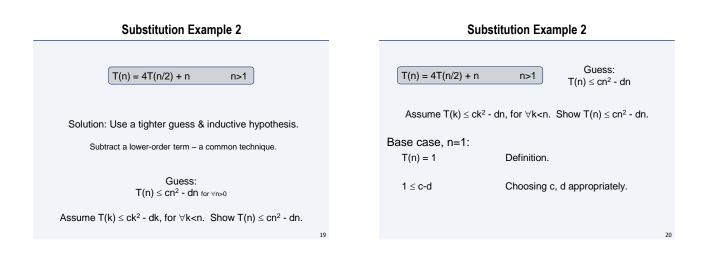


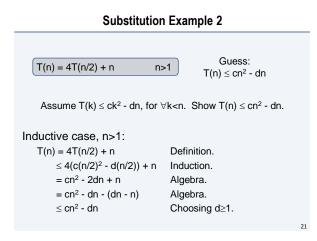


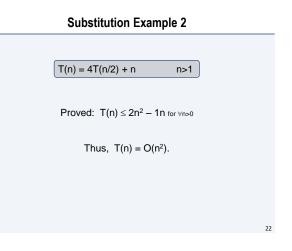


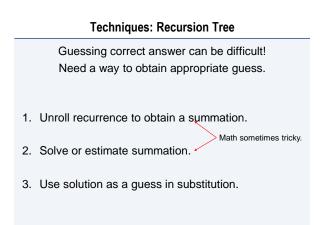


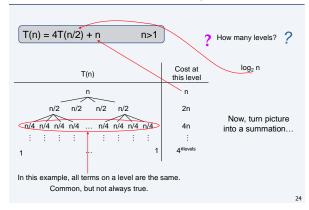




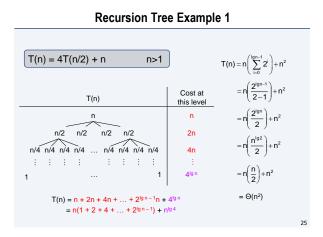


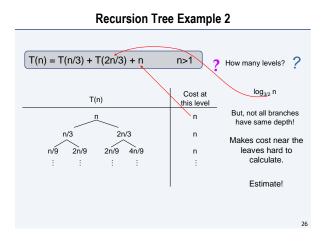




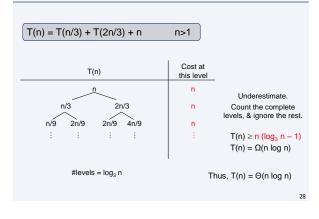


Recursion Tree Example 1





Recursion Tree Example 2 T(n) = T(n/3) + T(2n/3) + nn>1 Cost at T(n) this level n Overestimate. n/3 2n/3 n Consider all branches to be of max depth. n/9 2n/9 2n/9 4n/9 n $T(n) \le n (log_{3/2} n - 1) + n$ 1 1 n $T(n) = O(n \log n)$ #levels = log_{3/2} n



Techniques: Master Method

Cookbook solution for many recurrences of the form

First describe its cases, then outline proof.

Master Method Case 1

 $T(n) = a \times T(n/b) + f(n)$

 $f(n) = O(n^{\log_b a - \epsilon}) \text{ for some } \epsilon > 0 \rightarrow T(n) = \Theta(n^{\log_b a})$

 $T(n) = 7T(n/2) + cn^2 \qquad a=7, b=2 \\ E.g., Strassen matrix multiplication.$

$$\begin{split} &cn^2 = \ensuremath{^?} O(n^{\log_b a - \epsilon}) = O(n^{\log_2 7 - \epsilon}) \approx O(n^{2.8 - \epsilon}) \\ & \text{Yes, for any } \epsilon \leq 0.8. \end{split}$$

 $\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n}^{\lg 7})$

29

30

Master Method Case 2

 $T(n) = a \times T(n/b) + f(n)$

 $f(n) = \Theta(n^{\log_b a}) \rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$

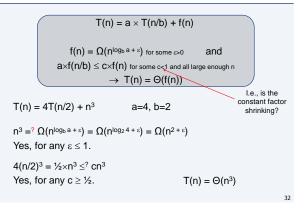
T(n) = 2T(n/2) + cnE.g., mergesort.

a=2, b=2

 $cn = {}^{?} \Theta(n^{\log_{b} a}) = \Theta(n^{\log_{2} 2}) = \Theta(n)$ Yes.

 $\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{n} \, \lg \, \mathsf{n})$

Master Method Case 3



Master Method Case 4

$T(n) = a \times T(n/b) + f(n)$	
None of previous apply. Master method doesn't help.	
$T(n) = 4T(n/2) + n^2/lg n$ a=4, b=2	
Case 1? $n^{2}/\log n = {}^{?} O(n^{\log_{b} a - \varepsilon}) = O(n^{\log_{2} 4 - \varepsilon}) = O(n^{2 - \varepsilon}) = O(n^{2}/n^{\varepsilon})$	
No, since Ig n is asymptotically < n ^{ϵ} . Thus, n ² /Ig n is asymptotically > n ² /n ^{ϵ} .	33

Master Method Case 4

$T(n) = a \times T(n/b) + f(n)$	
$1(1) = \alpha \times 1(1) \cup 1(1)$	
None of previous apply. Master method doesn't help.	
$T(n) = 4T(n/2) + n^2/lg n$ a=4, b=2	
Case 2?	
$n^{2}/\lg n = {}^{?} \Theta(n^{\log_{b} a}) = \Theta(n^{\log_{2} 4}) = \Theta(n^{2})$	
No.	
	34

Master Method Case 4

$$T(n) = a \times T(n/b) + f(n)$$
None of previous apply. Master method doesn't help.

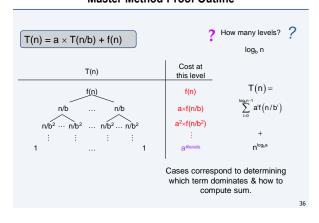
$$T(n) = 4T(n/2) + n^2/lg n \qquad a=4, b=2$$
Case 3?

$$n^2/lg n =^{?} \Omega(n^{\log_b a + \epsilon}) = \Omega(n^{\log_2 4 + \epsilon}) = \Omega(n^2 + \epsilon)$$
No, since 1/lg n is asymptotically < n^ε.

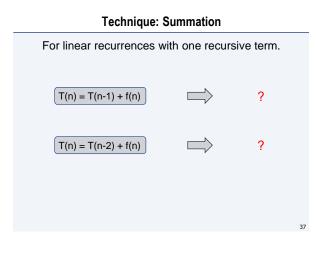
35

r

Ν



Master Method Proof Outline



Techniques: Characteristic Equation

Applies to linear recurrences • Homogenous: $a_n = c_1a_{n-1} + c_2a_{n-2} + \dots + c_ka_{n-k}$ • Nonhomogenous: $a_n = c_1a_{n-1} + c_2a_{n-2} + \dots + c_ka_{n-k} + F(n)$