Design & Analysis of Algorithms ;
COMP 482 | ELEC 420

John Greiner

Obtaining Recurrences

Math Background: Review & Beyond

Introductory multiplication examples:

T(n) = O(1) n=1 ‘ ‘ T'(n) = O(1) n=1
T(n) = 4T(n/2) + kn n>1 || T'(n) = 3T'(n/2) + k'n n>1

Obtained from straightforward reading of algorithms.

Key observation: Deterministic algorithms lead to recurrences.
1. Determine appropriate metric for the size “n”.
2. Examine how metric changes during recursion/iteration.

Recurrences’ Base Case

For constant-sized problems, can
bound algorithm by some constant.

T(n) = O(1) n<b
T(n)=... n>b This constant is irrelevant for
asymptote. Often skip writing base
case.

To do:
3. Recurrences [CLRS] 4
#2
2
Solving for Closed Forms

T(n) = O(1) n=1 ‘ ‘ T'(n) = O(1) n=1
T(n) = 4T(n/2) + kn n>1 || T'(n) = 3T'(n/2) + k'n n>1

Tio)=ofr) ()=o)

How?

In general, hard. Solutions not always known.
Will discuss techniques in a few minutes...

Recurrences

T(n) = 4T(n/2) + kn n>1 | [T(n)=3T(n/2) + kn n>1 |

2 Whatifnis odd? ©

Next iteration, n is not integral. Nonsense.

(T(n) = 37(ni2]) + T2y + kn n>1 |

Above more accurate.
The difference rarely matters, so usually ignore this detail.

| =

Two Common Forms of Recurrences

Techniques for Solving Recurrences

Divide-and-conquer: {T(n) = axT(n/b) + f(n) nzb}

Linear: (T(n) = a,T(-D)+a,T(n-2) +f(n) n>b]

Techniques: Substitution

Substitution
Recursion Tree
Master Method — for divide & conquer

Summation
Characteristic Equation

— for simple linear
— for linear

Substitution Example 1

Guess a solution & check it.

More detail:
1. Guess the form of the solution, using unknown constants.
2. Use induction to find the constants & verify the solution.

Completely dependent on making reasonable guesses.

Substitution Example 1

{T(n) = 4T(n/2) +n n>1 } Simplified version of

previous example.

Guess: T(n) = O(nd).

More specifically:
T(n) < cn?, for all large enough n.

Substitution Example 1

Guess:

{T(n) =4T(n/2) +n n>1 } T(n) < cnd for vn>n,

Which
2 means what 7

Prove by strong induction on n.
exactly?

Assume: T(K) < ck® for vien,, for Vk<n.
Show: T(n) < cn3 for vn>n,.

Base case|

Guess:

(T(n) = 47(2) + n n>1 | s

Assume T(K) < ck®fo

@keng for Vk<n. Show

Awkward. Fortunately, n,=0 works in these examples.

[N

Substitution Example 1

Substitution Example 1

Guess:

[T(n) = 4T(n/2) + n n>1 | e

Assume T(Kk) < ck3, for Vk<n. Show T(n) < cn3.

Base case, n=1:
T(n)=1 Definition.

1<c Choose large enough c for conclusion.

Substitution Example 1

Guess:

(T(n) = 47(/2) + n n>1 | s

Assume T(k) < ck?, for Vk<n. Show T(n) < cn?3.

Inductive case, n>1:

T(n) =4T(n/2) +n Definition.
<4c S+n Induction.
= Algebra.

While this is O(n3), we're not done.
Need to show ¢/2 x n3 + n < cxnd.
Fortunately, the constant factor is shrinking, not growing.

Substitution Example 1

14

Guess:

(T(n) = 4T(n/2) + n n>1 | T

Assume T(k) < ck?, for vk<n. Show T(n) < cn3.

Inductive case, n>1:

T(n)<c/2xn3+n From before.
=cnd-(c/2xnd-n) Algebra.
<cnd For n>0, if c>2.

Substitution Example 2

(T(n) = 4T(n/2) + n n>1 |

Proved: T(n) < 2n3 for yn>0

Thus, T(n) = O(nd).

(T = 4T(n/2) +n 1 |

Guess: T(n) = O(n?).
Same recurrence, but now try tighter bound.

More specifically:
T(n) < cn? for vn>ng.

Substitution Example 2
[T =4T(v2) +n n>1 | T(n) S o o _—

Follow same steps, and we get...
Assume T(k) < ck?, for Yk<n. Show T(n) < cn?2.
T(n) =4T(n/2) +n
<4c(n/2)2+n

\ Not < cn2!

Problem is that the constant isn’t shrinking.

[w

Substitution Example 2

Substitution Example 2

(T(n) = 4T(n/2) + n n>1 |

Solution: Use a tighter guess & inductive hypothesis.
Subtract a lower-order term —a common technique.
Guess:
T(n) < cn? - dn for vn>0

Assume T(k) < ck? - dk, for Vk<n. Show T(n) <cn? - dn.

Substitution Example 2

Guess:

(T(n) = 47(2) + n n>1 | e

Assume T(k) < ck? - dn, for Yk<n. Show T(n) <cn? - dn.

Base case, n=1:

Guess:

{T(n) =4T(n/2) + n n>1 } T(n) <cn? - dn

Assume T(k) < ck? - dn, for Vk<n. Show T(n) <cn? - dn.

Inductive case, n>1:

T(n) =4T(n/2) + n Definition.
<4(c(n/2)2 - d(n/2)) +n Induction.
=cn?-2dn+n Algebra.
=cn?-dn-(dn-n) Algebra.
<cn2-dn Choosing d>1.

21

Techniques: Recursion Tree

T(n)=1 Definition.
1<cd Choosing c, d appropriately.
20
Substitution Example 2
(T(n) = 4T(W/2) +n n>1 |

Proved: T(n) <2n2 —1n for vn>0

Thus, T(n) = O(n?).

22

Recursion Tree Example 1

Guessing correct answer can be difficult!
Need a way to obtain appropriate guess.

Math sometimes tricky.

1. Unroll recurrence to obtain a sgwation.
2. Solve or estimate summation.

3. Use solution as a guess in substitution.

23

(T(n) = 47(2) + n n>1

7 How many levels? 7

Cost at log, n
this level

n

2n
Now, turn picture
g into a summation...

4#levels

In this example, all terms on a level are the same.
Common, but not always true.
24

|

Recursion Tree Example 1

Recursion Tree Example 2

Pl
[T(n) = T(n/3) + T(2n73) +n >N 5 iowmany levels? 7

— Ign-1
[T(n) = 4T(n/2) + n n>1 | - § 2.j+nz
i=0
[Zgn—l])
Cost at =n +n
() this level Cat
0 0 :n[z‘;”J+nz
N
ni2 ni2 n2 nl2 2n
AR AN —d n°? i
n/4 n/4 n/4 nl4 ... n/4 nl4 n/4 nia 4n 2
1 4\g.n =n| D) +n?
1 2
T(N)=n+2n+4n+ .. +2n-1n + 4lan =0(n?)
=n(l+2+4+ .. +29n-1)+nlo4
25
Recursion Tree Example 2
(T(n) = T(W/3) + T(2n/3) +n n>1 |
Cost at
T this level
n n
o T~ Overestimate.
n/3 2n/3 n Consider all branches to
N PN be of max depth.
n/9 2n/9 2n/9 4n/9 n
: 8 : : T(n) <n(logz, n-1) +n
1 1 n T(n) = O(n log n)

#levels = logg;, n

27

Techniques: Master Method

Cookbook solution for many recurrences of the form

T(n) = a x T(n/b) + f(n)
where

a>1, b>1, f(n) asymptotically positive

First describe its cases, then outline proof.

29

Cost at l0gs;, n
D this level
n n But, not all branches
o T~ have same depth!
n/3 2n/3 n
PN PN Makes cost near the
n/9 2n/9 2n/9 4n/9 n leaves hard to
8 ? 8 8 3 calculate.
Estimate!
26
Recursion Tree Example 2
[T(n) = T(n/3) + T(2/3) + n n>1 |
Cost at
T(m) this level
n n
o Underestimate.
n/3 2n/3 n Count the complete
PN N levels, & ignore the rest.
n/9 2n/9 2n/9 4n/9 n
B : B B T(n) 2 n (log; n — 1)
T(n) = Q(n log n)
#levels = log; n Thus, T(n) = ©(n log n)
28
Master Method Case 1

T(n) = a x T(n/b) + f(n)

f(n) = O(n'°9ba'£) forsomee>0 — T(n) = O(n'°9b a)

T(n) = 7T(n/2) + cn? a=7, b=2
E.g., Strassen matrix multiplication.

cn2 =? o(nlogba— s) = o(nlogz 7- z) ~ o(n2.8 - s)
Yes, for any € < 0.8.

T(n) = ©(n'97)

30

[on

Master Method Case 2

T(n) = a x T(n/b) + f(n)

f(n) = ©(nlo%2) — T(n) = O(n'°%2 |g n)

T(n) = 2T(n/2) + cn a=2, b=2
E.g., mergesort.

cn =? ©(n'o%a) = O(n'°922) = O(n)
Yes.

T(n) =0©(nlg n)

Master Method Case 4

31

Master Method Case 3

T(n) = a x T(n/b) + f(n)

None of previous apply. Master method doesn’t help.

T(n) = 4T(n/2) + n?/lg n a=4, b=2

Case 1?
n2/|g n=? O(nlngba- s) = O(nlog24- s) = o(n2 -2;) = O(n2/nz)

No, since Ig n is asymptotically < ne.
Thus, n?/lg n is asymptotically > n?/ne.

Master Method Case 4

33

T(n) = a x T(n/b) + f(n)

f(n) = Q(n'°9b asr E) for some >0 and

axf(n/b) < cxf(n) for some c<gnd®e enough n

— T(n) = O(f(n)

T(n) = 4T(n/2) + n3

l.e., is the

constant factor
a=4, b=2

shrinking?

n3 =? Q(nlogba+z) = Q(nlogzzl+z) = Q(n2+s)
Yes, forany ¢ < 1.

4(n/2)3 = ¥2xnd <? cnd
Yes, for any ¢ > %.

T(n) = ©(n%)

Master Method Case 4

32

T(n) = a x T(n/b) + f(n)

None of previous apply. Master method doesn’t help.

T(n) = 4T(n/2) + n2llg n a=4, b=2

Case 3?
n2/|g n=? Q(nlogba+£) = Q(nlog24+ 1:) = Q(n2+ 1:)

No, since 1/lg n is asymptotically < ne.

35

T(n) = a x T(n/b) + f(n)

None of previous apply. Master method doesn’t help.

T(n) = 4T(n/2) + n#/lg n

Case 2?
n?/lg n =7 ©(n'°%a) = @(nle%24) = O(n?)

No.

a=4, b=2

Master Method Proof Outline

34

(T() =axT(b) +f(n) |

7 How many levels? ’?

log, n
Cost at
() this level
f(n) f(n) T(n)=
log,n-1
n/b n/b axf(n/b) > af(n/b')
=
nb? ... nib? ... n/b{...\n/bz af(n/b?)
. . . . B +
al 1 gftevels nosa

Cases correspond to determining
which term dominates & how to
compute sum.

36

| oy

Technique: Summation

Techniques: Characteristic Equation

For linear recurrences with one recursive term.

T(n) = T(n-1) + f(n)) ?
T(n) = T(n-2) + f(n)) ?

37

Applies to linear recurrences
* Homogenous:
an = C].an—l + Czan—z +...+ Ckan—k

» Nonhomogenous:
an = C].an—l + Czan—z +...+ Ckan—k + F(n)

38

|

