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Design & Analysis of Algorithms  

COMP 482 / ELEC 420 

 

 
John Greiner 

Math Background: Review & Beyond 

1. Asymptotic notation 

 

2. Math used in asymptotics 

 

3. Recurrences 

 

4. Probabilistic analysis 

2 

To do: 

[CLRS] 4 

#2 

Obtaining Recurrences 
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Key observation: Deterministic algorithms lead to recurrences. 

1. Determine appropriate metric for the size “n”. 

2. Examine how metric changes during recursion/iteration. 

T(n) = O(1)   n=1 

T(n) = 4T(n/2) + kn  n>1 

T’(n) = O(1)   n=1 

T’(n) = 3T’(n/2) + k’n n>1 

Obtained from straightforward reading of algorithms. 

Introductory multiplication examples: 

Solving for Closed Forms 
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How? 

In general, hard.  Solutions not always known. 

Will discuss techniques in a few minutes… 

T(n) = O(1)   n=1 

T(n) = 4T(n/2) + kn  n>1 

T’(n) = O(1)   n=1 

T’(n) = 3T’(n/2) + k’n n>1 

   2nΘnT     3log2nΘnT' 

Recurrences’ Base Case 
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T(n) = O(1)  n<b 

T(n) = …  nb 

For constant-sized problems, can 

bound algorithm by some constant. 

 

This constant is irrelevant for 

asymptote.  Often skip writing base 

case. 

Recurrences 
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T(n) = 4T(n/2) + kn  n>1 T’(n) = 3T’(n/2) + k’n n>1 

What if n is odd? ? ? 

T(n) = 3T(n/2) + T(n/2) + kn  n>1 

Above more accurate. 

The difference rarely matters, so usually ignore this detail. 

Next iteration, n is not integral.  Nonsense. 
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Two Common Forms of Recurrences 
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T(n) = a1T(n-1)+a2T(n-2)  + f(n) n>b 

T(n) = aT(n/b) + f(n)  nb Divide-and-conquer: 

Linear: 

Techniques for Solving Recurrences 

 

 

• Substitution 

• Recursion Tree 

 

• Master Method   – for divide & conquer 

 

• Summation   – for simple linear 

• Characteristic Equation  – for linear 
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Techniques: Substitution 

Guess a solution & check it. 
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More detail: 

1. Guess the form of the solution, using unknown constants. 

2. Use induction to find the constants & verify the solution. 

Completely dependent on making reasonable guesses. 

Substitution Example 1 
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More specifically: 

T(n)  cn3, for all large enough n. 

Guess:  T(n) = O(n3). 

T(n) = 4T(n/2) + n  n>1 
Simplified version of 

previous example. 

Substitution Example 1 
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Assume: T(k)  ck3 for k>n0, for k<n. 

Show: T(n)  cn3 for n>n0. 

Which 

means what 

exactly? 
? ? 

T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn3 for n>n0 

Prove by strong induction on n. 

Substitution Example 1 

Base case, n=n0+1: 
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T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn3 for n>n0 

Assume T(k)  ck3 for k>n0, for k<n.  Show T(n)  cn3 for n>n0. 

Awkward.  Fortunately, n0=0 works in these examples. 
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Substitution Example 1 

Base case, n=1: 

T(n) = 1  Definition. 

 

1  c  Choose large enough c for conclusion. 
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T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn3
 

Assume T(k)  ck3, for k<n.  Show T(n)  cn3. 

Substitution Example 1 

Inductive case, n>1: 

T(n) = 4T(n/2) + n  Definition. 

         4c(n/2)3 + n  Induction. 

        = c/2  n3 + n  Algebra. 
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Assume T(k)  ck3, for k<n.  Show T(n)  cn3. 

While this is O(n3), we’re not done. 

Need to show c/2  n3 + n  cn3. 

Fortunately, the constant factor is shrinking, not growing. 

T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn3
 

Substitution Example 1 

Inductive case, n>1: 

T(n)  c/2  n3 + n   From before. 

        = cn3 - (c/2  n3 - n)  Algebra. 

         cn3     For n>0, if c2. 
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T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn3
 

Assume T(k)  ck3, for k<n.  Show T(n)  cn3. 

Substitution Example 1 
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T(n) = 4T(n/2) + n  n>1 

Proved:  T(n)  2n3 for n>0 

 

 

Thus,  T(n) = O(n3). 

Substitution Example 2 
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T(n) = 4T(n/2) + n  n>1 

Guess:  T(n) = O(n2). 

Same recurrence, but now try tighter bound. 

More specifically: 

T(n)  cn2 for n>n0. 

Substitution Example 2 

T(n) = 4T(n/2) + n 

         4c(n/2)2 + n 

        = cn2 + n 
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T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn2 for n>n0 

Assume T(k)  ck2, for k<n.  Show T(n)  cn2. 

Follow same steps, and we get... 

Not  cn2 ! 

Problem is that the constant isn’t shrinking. 
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Substitution Example 2 
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T(n) = 4T(n/2) + n  n>1 

Guess: 

T(n)  cn2 - dn for n>0 

Assume T(k)  ck2 - dk, for k<n.  Show T(n)  cn2 - dn. 

Solution: Use a tighter guess & inductive hypothesis. 

 
Subtract a lower-order term – a common technique. 

Substitution Example 2 

Base case, n=1: 

T(n) = 1   Definition. 

 

1  c-d   Choosing c, d appropriately. 
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T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn2 - dn 

Assume T(k)  ck2 - dn, for k<n.  Show T(n)  cn2 - dn. 

Substitution Example 2 

Inductive case, n>1: 

T(n) = 4T(n/2) + n  Definition. 

        4(c(n/2)2 - d(n/2)) + n Induction. 

       = cn2 - 2dn + n  Algebra. 

       = cn2 - dn - (dn - n)  Algebra. 

        cn2 - dn   Choosing d1. 
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T(n) = 4T(n/2) + n  n>1 
Guess: 

T(n)  cn2 - dn 

Assume T(k)  ck2 - dn, for k<n.  Show T(n)  cn2 - dn. 

Substitution Example 2 
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T(n) = 4T(n/2) + n  n>1 

Proved:  T(n)  2n2 – 1n for n>0 

 

 

Thus,  T(n) = O(n2). 

Techniques: Recursion Tree 

Guessing correct answer can be difficult! 

Need a way to obtain appropriate guess. 

 

 

1. Unroll recurrence to obtain a summation. 

 

2. Solve or estimate summation. 

 

3. Use solution as a guess in substitution. 
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Math sometimes tricky. 

T(n) = 4T(n/2) + n  n>1 

Recursion Tree Example 1 
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n/2 n/2 n/2 n/2 2n 

n/4 4n n/4 n/4 n/4 n/4 n/4 n/4 n/4 … 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

1 1 … 4#levels 

How many levels? ? ? 

Cost at 

this level 
T(n) 

In this example, all terms on a level are the same. 

Common, but not always true. 

n n 

log2 n 

Now, turn picture 

into a summation… 
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Recursion Tree Example 1 
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T(n) = 4T(n/2) + n  n>1 

n 

Cost at 

this level 

n 

n/2 

T(n) 

n/2 n/2 n/2 2n 

n/4 4n n/4 n/4 n/4 n/4 n/4 n/4 n/4 … 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

1 1 … 4lg n 

T(n) = n + 2n + 4n + … + 2lg n – 1n + 4lg n 

       = n(1 + 2 + 4 + … + 2lg n – 1) + nlg 4 
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= Θ(n2) 

T(n) = T(n/3) + T(2n/3) + n  n>1 

Recursion Tree Example 2 
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Cost at 

this level 
T(n) 

n n 

n/3 2n/3 n 

How many levels? ? ? 

log3/2 n 

 

But, not all branches 

have same depth! 

Makes cost near the 

leaves hard to 

calculate. 

 

Estimate! 

…
 

…
 

…
 

…
 

n/9 2n/9 2n/9 4n/9 n 

…
 

Recursion Tree Example 2 

27 

T(n) = T(n/3) + T(2n/3) + n  n>1 

Cost at 

this level 
T(n) 

n n 

n/3 2n/3 n 

…
 

…
 

…
 

…
 

n/9 2n/9 2n/9 4n/9 n 

#levels = log3/2 n 

Overestimate. 

 Consider all branches to 

be of max depth. 

T(n)  n (log3/2 n - 1) + n 

T(n) = O(n log n) 

…
 

n 1 1 … 

Recursion Tree Example 2 
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T(n) = T(n/3) + T(2n/3) + n  n>1 

Cost at 

this level 
T(n) 

n n 

n/3 2n/3 n 

…
 

…
 

…
 

…
 

n/9 2n/9 2n/9 4n/9 n 

#levels = log3 n 

Underestimate. 

Count the complete 

levels, & ignore the rest. 

T(n)  n (log3 n – 1) 

T(n) = Ω(n log n) 

Thus, T(n) = Θ(n log n) 
…

 

Techniques: Master Method 

Cookbook solution for many recurrences of the form 

 

T(n) = a  T(n/b) + f(n) 
where 

a1, b>1, f(n) asymptotically positive 

 

 

 

First describe its cases, then outline proof. 
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Master Method Case 1 

30 

T(n) = a  T(n/b) + f(n)  

 

f(n) = O(nlogb a - ) for some >0    T(n) = Θ(nlogb a) 

T(n) = Θ(nlg 7) 

cn2 =? O(nlogb a - ) = O(nlog2 7 - )  O(n2.8 - ) 

Yes, for any   0.8. 

T(n) = 7T(n/2) + cn2  a=7, b=2 

E.g., Strassen matrix multiplication. 
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Master Method Case 2 
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T(n) = a  T(n/b) + f(n)  

 

f(n) = Θ(nlogb a)    T(n) = Θ(nlogb a lg n) 

T(n) = 2T(n/2) + cn  a=2, b=2 

E.g., mergesort. 

cn =? Θ(nlogb a) = Θ(nlog2 2) = Θ(n) 

Yes. 

T(n) = Θ(n lg n) 

Master Method Case 3 
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T(n) = a  T(n/b) + f(n)  

 

f(n) = Ω(nlogb a + ) for some >0        and 

af(n/b)  cf(n) for some c<1 and all large enough n 

  T(n) = Θ(f(n)) 

T(n) = 4T(n/2) + n3  a=4, b=2 

n3 =? Ω(nlogb a + ) = Ω(nlog2 4 + ) = Ω(n2 + ) 

Yes, for any   1. 

4(n/2)3 = ½n3 ? cn3 

Yes, for any c  ½. 

I.e., is the 

constant factor 

shrinking? 

T(n) = Θ(n3) 

Master Method Case 4 
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T(n) = a  T(n/b) + f(n)  

 

None of previous apply.  Master method doesn’t help. 

T(n) = 4T(n/2) + n2/lg n  a=4, b=2 

Case 1? 

n2/lg n =? O(nlogb a - ) = O(nlog2 4 - ) = O(n2 - ) = O(n2/n) 

 

No, since lg n is asymptotically < n. 

Thus, n2/lg n is asymptotically > n2/n. 

Master Method Case 4 

34 

T(n) = a  T(n/b) + f(n)  

 

None of previous apply.  Master method doesn’t help. 

T(n) = 4T(n/2) + n2/lg n  a=4, b=2 

Case 2? 

n2/lg n =? Θ(nlogb a) = Θ(nlog2 4) = Θ(n2) 

 

No. 

Master Method Case 4 
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T(n) = a  T(n/b) + f(n)  

 

None of previous apply.  Master method doesn’t help. 

T(n) = 4T(n/2) + n2/lg n  a=4, b=2 

Case 3? 

n2/lg n =? Ω(nlogb a + ) = Ω(nlog2 4 + ) = Ω(n2 + ) 

 

No, since 1/lg n is asymptotically < n. 

Master Method Proof Outline 
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… 

T(n) = a  T(n/b) + f(n) 

Cost at 

this level 
T(n) 

f(n) f(n) 

n/b n/b af(n/b) 

…
 

…
 

…
 

…
 

n/b2 n/b2 n/b2 n/b2 a2f(n/b2) 

…
 

1 1 a#levels 

How many levels? ? ? 
logb n 

Cases correspond to determining 

which term dominates & how to 

compute sum. 

 





blog n 1

i i

i 0

a f n / b

  T n

blog an



… 

… … … 
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Technique: Summation 

For linear recurrences with one recursive term. 
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T(n) = T(n-1) + f(n) 

T(n) = T(n-2) + f(n) 

? 

? 

Techniques: Characteristic Equation 

Applies to linear recurrences 

 

 

• Homogenous: 

an = c1an-1 + c2an-2 + … + ckan-k 

 

• Nonhomogenous: 

an = c1an-1 + c2an-2 + … + ckan-k + F(n) 
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