Math Background: Review \& Beyond

1. Asymptotic notation
2. Math used in asymptotics
3. Recurrences

To do:
4. Probabilistic analysis [CLRS] 5 \#2

Not All Algorithms are Deterministic

- Review a little probability
- Extended example:
- Review probability
- Analysis technique
$\operatorname{Pr}\left\{\right.$ Event $_{1} \mid$ Event $\left._{2}\right\}=\frac{\operatorname{Pr}\left\{\text { Event }_{1} \cap \text { Event }_{2}\right\}}{\operatorname{Pr}\left\{\text { Event }_{2}\right\}}$

Random Variables

```
    What is the probability of getting exactly 1 "tail" when
            flipping two normal coins?
            Pr{X=x} = \Sigma{s\inS|X(s)=x}
X = #Tails, x=1
S = TwoNormalCoinsFlipped ={HH, HT, TH,TT}
Pr{#Tails=1}
= {{coins \inTwoNormalCoinsFlipped |#Tails(coins)=1}
= Pr{HT} + Pr{TH}
= 1/4 +1/4
= 1/2
```


Hiring Problem

Goal: Hire the most qualified person for a job.

```
Algorithm we'll use:
    1. Decide how many people (n) to interview.
    . Hire the first candidate.
    . For each interviewee, in turn
        a. Interview.
        b. Hire, if better than current employee.
Costs
    (n people interviewed }\times\mp@subsup{c}{i}{}\mathrm{ each) + (m people hired }\times\mp@subsup{c}{h}{}\mathrm{ each)
    =O(c
    By definition, n\geqm. Assume }\mp@subsup{\textrm{c}}{\textrm{i}}{<<<}\mp@subsup{\textrm{c}}{\textrm{h}}{}\mathrm{ .
2 Easy so far, but ?
    what is m?
```


Hiring Problem: Average-Case

What is m likely to be?

Wrong answer: m can be $1 \ldots n$, so use the mean $m=(n+1) / 2$.

Instead, average cost over all possible interviewee orders.
Number each interviewee 1...n.
Consider each permutation of the set $\{1, \ldots, \mathrm{n}\}$.

To compute this average, use probabilistic techniques to avoid listing every possible permutation.

On-Line vs. Off-Line Hiring Problem

Let's say the candidates come from an employment agency.

Algorithm's cost is greatly affected by the agency.

- Agency could send best applicants first.
- Typical of well-run agencies.
- Waste of money to interview later applicants.
- Agency could send worst applicants first.
- Maximizes their fees.

We can randomize order, to minimize chance of worst case.

- Protects against poor input distributions. (Accidental or malicious.)
- Can still produce worst case, but only with low probability.

Hiring Problem: Worst-Case

$\mathrm{m}=\mathrm{n}$

In other words,

- Hire every interviewee.
- Interviewees (unluckily) arranged in ascending order of quality.

$$
\text { Cost }=O\left(c_{i} n+c_{h} n\right)=O\left(c_{h} n\right)
$$

Averaging via Expected Values

Randomizing Order of an Array

```
Let n = # elements in A
For i=1 to n, swap A[i] with A[random(i..n)]
```

Simple algorithm, with an interesting proof that it computes a uniform random permutation.
The key - use a loop invariant:

Before $i^{\text {ith }}$ iteration, for any ($\mathrm{i}-1$)-permutation of elements from $1 \ldots \mathrm{n}$, $\mathrm{A}[1 \ldots \mathrm{i}-1]$ contains the permutation with probability $((\mathrm{n}-\mathrm{i}+1)!) /(\mathrm{n}!)$.

Randomizing Order of an Array

Proving loop invariant:

Before ith $^{\text {th }}$ iteration, for any (i-1) Before $\mathrm{i}^{\text {th }}$ iteration, for any (i-1)-
permutation of elements from $1 \ldots$. permutation of elements from $1 \ldots n$, with probability ((n-i+1)!)/(n!).

Base case, $\mathrm{i}=1$:
$\mathrm{A}[1 . .0]$ contains the 0 -permutation (no data) with probability (n!)/(n!)=1.
Holds trivially.

Randomizing Order of an Array

	Proving loop invariant:
Let $\mathrm{n}=$ \# elements in A For $\mathrm{i}=1$ to n , swap $\mathrm{A}[\mathrm{i}]$ with $\mathrm{A}[$ random(i...n)]	Before $i^{\text {th }}$ iteration, for any (i-1)permutation of elements from $1 \ldots$ n, $\mathrm{A}[1 \ldots \mathrm{i}-1]$ contains the permutation with probability ((n-i+1)!!)/n!).
Inductive case, show holds for $\mathrm{i}+1$: For an arbitrary i-permutation, the perm - Event ${ }_{1}$: its first $\mathrm{i}-1$ elements, an ($\mathrm{i}-1$)first i-1 iterations, and - Event 2_{2} : the $i^{\text {ith }}$ iteration chooses that	mutation is obtained \leftrightarrow permutation, were obtained in the i-permutation's ith $^{\text {th }}$ element.
$\begin{aligned} \operatorname{Pr}\left\{\text { Event }_{1} \cap \text { Event }_{2}\right\} & =\operatorname{Pr}\left\{\text { Event }_{1}\right\} \times \operatorname{Pr} \\ & =(n-i+1)!/ n!\times 1 /(\\ & =(n-i)!/ n! \\ & =(n-(i+1)+1)!/ n! \end{aligned}$	$\begin{aligned} & \left\{\text { EEvent }_{2} \mid \text { Event }_{1}\right\} \\ & (\mathrm{n}-\mathrm{i}+1) \\ & \\ & \quad \text { Algebra, cancelling term } \\ & \quad \text { Algebra } \end{aligned}$

On-Line Hiring Problem

Don't want to interview all candidates.
Instead, interview some until find one "good enough". More realistic.

Algorithm:

1. For each interviewee,

$$
\begin{array}{lr}
\begin{array}{ll}
\text { a. Interview } \\
\text { b. Hire and stop loop, itgood enough, }
\end{array} & \begin{aligned}
\text { Cost } & =\mathrm{O}\left(\mathrm{c}_{\mathrm{i}} \mathrm{n}+\mathrm{c}_{\mathrm{h}} \times 1\right) \\
& =\mathrm{O}\left(\mathrm{c}_{\mathrm{i}} \mathrm{n}\right)
\end{aligned}
\end{array}
$$

Clearly, might not hire the best candidate.
Might hire before we see the best one.
Might not hire the best one, hoping for someone better.

How to define to maximize likelihood of getting the best candidate?

Randomizing Order of an Array

Proving loop invariant:
Let $\mathrm{n}=\#$ elements in A
For $\mathrm{i}=1$ to n , swap $\mathrm{A}[\mathrm{i}]$ with $\mathrm{A}[$ random $(\mathrm{i} . . \mathrm{n})]$

Before $\mathrm{i}^{\text {in }}$ iteration, for any ($\mathrm{i}-1$) permutation of elements from $1 \ldots$ n $\mathrm{A}[1 \ldots \mathrm{j}-1]$ contains the permutation with probability ((n-i+1)!)/(n!).

Inductive case, show holds for $\mathrm{i}+1$
For an arbitrary i-permutation, the permutation is obtained \leftrightarrow

- Event ${ }_{1}$: its first $\mathrm{i}-1$ elements, an ($\mathrm{i}-1$)-permutation, were obtained in the first i -1 iterations, and
- Event ${ }_{2}$: the $i^{\text {th }}$ iteration chooses that i-permutation's $i^{\text {th }}$ element.
$\operatorname{Pr}\left\{\right.$ Event $_{1} \cap$ Event $\left._{2}\right\}=\operatorname{Pr}\left\{\right.$ Event $\left._{1}\right\} \times \operatorname{Pr}\left\{\right.$ Event $_{2} \mid$ Event $\left._{1}\right\}$ $=(n-i+1)!/ n!\times 1 /(n-i+1)$

Inductive hypothesis Each remaining element equally likely

Randomizing Order of an Array

Let $n=$ \# elements in A
For $\mathrm{i}=1$ to $\mathrm{n}, \operatorname{swap} \mathrm{A}[\mathrm{i}]$ with $\mathrm{A}[$ random(i...n)]

Proving loop invariant:
Before $i^{\text {th }}$ iteration, for any ($\mathrm{i}-1$)permutation of elements from $1 . . . n$, $\mathrm{A}[1 \ldots \mathrm{i}-1]$ contains the permutation with probability ((n-i+1)!)/(n!).

At termination ($\mathrm{i}=\mathrm{n}+1$)
Invariant \rightarrow any n-permutation of elements $1 \ldots$ occurs in $A[1 . . n]$ with probability $1 /(n!)$.
l.e., uniform random distribution.

On-Line Hiring Problem

One possible algorithm:

Interview k candidates, and hire the first one after that with a better score than previously found.

```
BestScore := -\infty
```

For $\mathrm{i}=1$ to k ,
BestScore $=\max ($ BestScore, Score(i))
For $i=k+1$ to n,
If Score(i) > BestScore,
Then Hire \#i \& Quit
Hire \#n

Strategy to find best k :

1. Fix k, \& compute the probability of getting best candidate.
2. Find k to maximize probability.

On-Line Hiring Problem

Define: $\begin{aligned} & =\text { succeed in finding best candidate } \\ \mathrm{S}_{\mathrm{i}} & =\text { succeed in finding best candidate \& best is \#i }\end{aligned}$

Since S_{i} 's disjoint,
$\operatorname{Pr}\{\mathrm{S}\}=\Sigma_{\mathrm{i}=1 \ldots \mathrm{n}} \operatorname{Pr}\left\{\mathrm{S}_{\mathrm{i}}\right\}$
Since we never hire from the first k, $\operatorname{Pr}\left\{\mathrm{S}_{1}\right\}=\ldots=\operatorname{Pr}\left\{\mathrm{S}_{\mathrm{k}}\right\}=0$ $\operatorname{Pr}\{S\}=\Sigma_{i=k+1 \ldots n} \operatorname{Pr}\left\{S_{i}\right\}$

Need to determine $\operatorname{Pr}\left\{S_{i}\right\}$ for $i \in k+1 \ldots . n$.
$\mathrm{S}_{\mathrm{i}}=$ candidate \#i is best \& candidates $\mathrm{k}+1 \ldots \mathrm{i}-1$ not chosen
$=$ candidate $\#$ is best $\&$ best among $1 \ldots \mathrm{i}-1$ is among $1 \ldots \mathrm{k}$ (not $\mathrm{k}+1 \ldots \mathrm{i}-1$)

19

On-Line Hiring Problem

```
Define: S = succeed in finding best candidate
    S
Pr{S}
Pr{S } =k/(n(i-1)) for i\ink+1\ldotsn
```



```
    = \Sigma i=k+1\ldotsn
    =k/n \Sigmai=k+1\ldotsn}1/(i-1
```



```
? What now? ?
    zk/n \int n
    =k/n(ln n- ln k)
```


On-Line Hiring Problem

$$
\operatorname{Pr}\{S\} \geq k / n(\ln n-\ln k) \quad \text { Find } k \text { to maximize } \operatorname{Pr}\{S\}
$$

Differentiate w.r.t. k , and set to zero:
$1 / \mathrm{n}(\ln \mathrm{n}-\ln \mathrm{k}-1)=0$
$\ln \mathrm{k}=\ln \mathrm{n}-1 \quad \quad$ Plug in:
$\ln k=\ln n / e$
$\mathrm{k}=\mathrm{n} / \mathrm{e}$
$\operatorname{Pr}\{S\} \geq(n / e) / n(\ln n-\ln (n / e))$
$=1 / e(\ln n-\ln n+\ln e)$
$=1 / \mathrm{e} \times 1$
$=1 / \mathrm{e}$
≈ 0.368
Algorithm has better than $1 / 3$ chance of getting best candidate.

