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Design & Analysis of Algorithms  

COMP 482 / ELEC 420 

 

 
John Greiner 

Math Background: Review & Beyond 

1. Asymptotic notation 

 

2. Math used in asymptotics 

 

3. Recurrences 

 

4. Probabilistic analysis 
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To do: 

[CLRS] 5 

#2 

Not All Algorithms are Deterministic 

 

 

• Review a little probability 

 

• Extended example: 

– Review probability 

– Analysis technique 
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Conditional Probability 
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Random Variables 

What is the probability of getting exactly 1 “tail” when 
flipping two normal coins? 

 

Pr{X=x} = {s  S | X(s)=x} Pr{s} 
 

X = #Tails, x=1 

S = TwoNormalCoinsFlipped = {HH, HT, TH, TT} 

 

Pr{#Tails=1} 

= {coins  TwoNormalCoinsFlipped | #Tails(coins)=1} Pr{coins} 

= Pr{HT} + Pr{TH} 

= ¼ + ¼ 

= ½ 
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Random Variables 

Random variables X,Y “independent” 

 

Pr{X=x  Y=y} = Pr{X=x}  Pr{Y=y} 

 

 

 

Expected values of random variables: 

– E[X] = x (x  Pr{X=x}) 

 

– E[X+Y] = E[X]+E[Y]  linearity of expectation 

– E[aX] = aE[X] 

– E[XY] = E[X]E[Y]  if X,Y independent 
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Hiring Problem 

Goal: Hire the most qualified person for a job. 
 

Algorithm we’ll use: 

1. Decide how many people (n) to interview. 

2. Hire the first candidate. 

3. For each interviewee, in turn 

a. Interview. 

b. Hire, if better than current employee. 

 

Costs 

(n people interviewed  ci each) + (m people hired  ch each) 

= O(ci n + ch m) 

 

By definition, n  m.  Assume ci  ch. 
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Easy so far, but 

what is m? ? ? 

Hiring Problem: Worst-Case 

m=n 

 

In other words, 

– Hire every interviewee. 

– Interviewees (unluckily) arranged in ascending order of 

quality. 

 

 

Cost = O(ci n + ch n) = O(ch n) 
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Hiring Problem: Average-Case 

What is m likely to be? 

 

Wrong answer: m can be 1…n, so use the mean m=(n+1)/2. 

 

 

Instead, average cost over all possible interviewee orders. 

Number each interviewee 1…n. 

Consider each permutation of the set {1,…,n}. 

 

To compute this average, use probabilistic techniques to avoid 

listing every possible permutation. 
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Averaging via Expected Values 
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E[Hired?i] = 1Pr{#i hired} + 0Pr{#i not hired} 

   = Pr{#i hired} 

   = 1/i  Each has equal chance to be 

   the best of first i. 

E[TotalHired] = E[i=1..n Hired?i] 

          = i=1..n E[Hired?i] 

Expected algorithm cost 

= O(ci n + ch log n) 

random variable 

indicator random 

variable 

Define: TotalHired = i=1…n Hired?i 

 

 Hired?i = Pr{interviewee #i hired} 

                         = 1 if #i hired, 0 if #i not hired 

          = i=1..n 1/i 

          = ln n + O(1) 

On-Line vs. Off-Line Hiring Problem 

Let’s say the candidates come from an employment agency. 

 

Algorithm’s cost is greatly affected by the agency. 

– Agency could send best applicants first. 

• Typical of well-run agencies. 

• Waste of money to interview later applicants. 

– Agency could send worst applicants first. 

• Maximizes their fees. 

 

We can randomize order, to minimize chance of worst case. 

– Protects against poor input distributions.  (Accidental or malicious.) 

– Can still produce worst case, but only with low probability. 
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Randomizing Order of an Array 
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The key – use a loop invariant: 

 

Before ith iteration, for any (i-1)-permutation of elements from 1…n, 

A[1…i-1] contains the permutation with probability ((n-i+1)!)/(n!). 

Let n = # elements in A 

For i = 1 to n, swap A[i] with A[random(i…n)] 

Simple algorithm, with an interesting proof that it computes a 

uniform random permutation. 
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Randomizing Order of an Array 

Base case, i=1: 

A[1..0] contains the 0-permutation (no data) with probability (n!)/(n!)=1. 

Holds trivially. 
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Let n = # elements in A 

For i=1 to n, swap A[i] with A[random(i…n)] 

Proving loop invariant: 

Before ith iteration, for any (i-1)-

permutation of elements from 1…n, 

A[1…i-1] contains the permutation 

with probability ((n-i+1)!)/(n!). 

Randomizing Order of an Array 

Inductive case, show holds for i+1: 

For an arbitrary i-permutation, the permutation is obtained  

– Event1: its first i-1 elements, an (i-1)-permutation, were obtained in the 

first i-1 iterations, and 

– Event2: the ith iteration chooses that i-permutation’s ith element. 
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Let n = # elements in A 

For i=1 to n, swap A[i] with A[random(i…n)] 

Proving loop invariant: 

Before ith iteration, for any (i-1)-

permutation of elements from 1…n, 

A[1…i-1] contains the permutation 

with probability ((n-i+1)!)/(n!). 

Pr{Event1  Event2} = Pr{Event1}  Pr{Event2 | Event1} 

= (n-i+1)!/n!  1/(n-i+1) 

Inductive hypothesis Each remaining element equally likely 

Randomizing Order of an Array 

Inductive case, show holds for i+1: 

For an arbitrary i-permutation, the permutation is obtained  

– Event1: its first i-1 elements, an (i-1)-permutation, were obtained in the 

first i-1 iterations, and 

– Event2: the ith iteration chooses that i-permutation’s ith element. 
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Let n = # elements in A 

For i=1 to n, swap A[i] with A[random(i…n)] 

Proving loop invariant: 

Before ith iteration, for any (i-1)-

permutation of elements from 1…n, 

A[1…i-1] contains the permutation 

with probability ((n-i+1)!)/(n!). 

Pr{Event1  Event2} = Pr{Event1}  Pr{Event2 | Event1} 

= (n-(i+1)+1)!/n!  Algebra 

= (n-i)!/n!  Algebra, cancelling term 

= (n-i+1)!/n!  1/(n-i+1) 

Randomizing Order of an Array 

At termination (i=n+1) 

Invariant  any n-permutation of elements 1…n occurs in A[1..n] with 

probability 1/(n!). 

 

I.e., uniform random distribution. 
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Let n = # elements in A 

For i=1 to n, swap A[i] with A[random(i…n)] 

Proving loop invariant: 

Before ith iteration, for any (i-1)-

permutation of elements from 1…n, 

A[1…i-1] contains the permutation 

with probability ((n-i+1)!)/(n!). 

On-Line Hiring Problem 

Don’t want to interview all candidates. 

Instead, interview some until find one “good enough”.  More realistic. 

 

Algorithm: 

1. For each interviewee, 

a. Interview 

b. Hire and stop loop, if good enough. 
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Clearly, might not hire the best candidate. 

Might hire before we see the best one. 

Might not hire the best one, hoping for someone better. 

 

How to define to maximize likelihood of getting the best candidate? 

Cost = O(ci n + ch  1) 

         = O(ci n) 

On-Line Hiring Problem 

One possible algorithm: 

 

Interview k candidates, and hire the first one after that with a 

better score than previously found. 
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BestScore := - 

For i=1 to k, 

        BestScore = max(BestScore, Score(i)) 

For i=k+1 to n, 

        If Score(i) > BestScore, 

        Then Hire #i & Quit 

Hire #n 

Strategy to find best k: 

1. Fix k, & compute the probability 

of getting best candidate. 

2. Find k to maximize probability. 
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On-Line Hiring Problem 

Define: S = succeed in finding best candidate 

  Si = succeed in finding best candidate  &  best is #i 
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Since we never hire from the first k, 

 Pr{S1} = … = Pr{Sk} = 0 

 Pr{S} = i=k+1…n Pr{Si} 

Since Si’s disjoint, 

 Pr{S} = i=1...n Pr{Si} 

Need to determine Pr{Si} for ik+1…n. 

Si = candidate #i is best  &  candidates k+1…i-1 not chosen 

   = candidate #i is best  &  best among 1…i-1 is among 1…k (not k+1…i-1) 

= 1/n  k/(i-1) 

= k/(n(i-1)) 
Independent 

Pr{Si} = ? 

On-Line Hiring Problem 

Define: S = succeed in finding best candidate 

  Si = succeed in finding best candidate  &  best is #i 
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Pr{Si} = 0  for i1…k 

Pr{Si} = k/(n(i-1)) for ik+1…n 

 

Pr{S} = i=k+1…n Pr{Si} 

= i=k+1…n k/(n(i-1)) 

= k/n i=k+1…n 1/(i-1) 

= k/n j=k…n-1 1/j  Renaming: j=i+1 

?   What now?   ? 

= k/n (ln n - ln k) 

 
n

k
k n  1 x dx Alternative: use harmonic sum. 

On-Line Hiring Problem 

Pr{S}  k/n (ln n - ln k)  Find k to maximize Pr{S}. 

21 

Algorithm has better than 1/3 

chance of getting best candidate. 

Plug in: 

Pr{S}  (n/e)/n (ln n - ln (n/e)) 

         =  1/e (ln n - ln n + ln e) 

         =  1/e  1 

         =  1/e 

          0.368 

Differentiate w.r.t. k, and set to zero: 

1/n (ln n - ln k - 1) = 0 

ln k = ln n - 1 

ln k = ln n/e 

k = n/e 


