
1

Design & Analysis of Algorithms

COMP 482 / ELEC 420

John Greiner

Sorting

Should already know some sorting algorithms:

E.g., Insertion sort, Selection sort, Quicksort, Mergesort, Heapsort

We’ll concentrate on ideas not seen in previous courses:

• Lower bounds on general-purpose sorting

• Quicksort probabilistic analysis

• Special-purpose linear-time sorting

2

To do:

[CLRS] 7-8

#3

Comparison Trees

3

Comparisons used to determine order of 3 distinct elements.

Leaves correspond to all possible permutations.

Y N

Y N

Y N

N

Y N

a<b?

b<c? b<c?

a<c? a<c? a<b<c c<b<a

b<c<a b<a<c c<a<b a<c<b

Y

Minimal Not Minimal

Y N

N

Y N

N

Y N

a<b?

a<c? b<c?

b<c? a<c? a<b<c

c<b<a

b<c<a

b<a<c c<a<b a<c<b

Y Y

b<c?

Y

c<a?

Y

How do Comparison Trees Relate to Sorting?

• Any sorting algorithm must be able to reorder any

permutation.

• Sorting algorithm’s behavior corresponds to some

comparison tree.

4

Lower Bounds on Sorting

5

? How many leaves in a comparison tree? ?

? How many levels? ?

So, any general sorting algorithm must make

Ω(n lg n) comparisons on at least some inputs.

Quicksort – Immutable

qsort(A):

 if |A| ≤ 1

 return A

 else

 pivot = some element of A

 L = [x in A : x<pivot]

 G = [x in A : x>pivot]

 return qsort(L) + pivot + qsort(G)

6

2

Quicksort – Mutable

Algorithm in [CLRS] 7.

Advantages:

– Constant factor less time.

– Constant factor less space.

Disadvantage:

– More difficult to understand.

7

Time depends on a good (lucky?) choice of pivot.

Quicksort Pivot Best Case

8

? Best case? ?

? What is resulting recurrence & bound? ?

T(n) = 2T(n/2) + Θ(n) = Θ(n lg n)

~Half ~Half

~Half ~Half ~Half ~Half

Time depends on a good (lucky?) choice of pivot.

Quicksort Pivot Worst Case

9

? Worst case? ?

? What is resulting recurrence & bound? ?

T(n) = T(n-1) + Θ(n) = Θ(n2)

0 All-but-1

0 All-but-1

Quicksort Worst Case

For deterministic pivot-choosing algorithms:

O(1): Can be unlucky  O(n2) quicksort worst case

O(n): Can find median (as we’ll see soon)  O(n log n) quicksort

We took shortcut by assuming the 0 & all-but-1 split is worst.

Intuitively obvious, but could prove this, e.g.,

T(n) = maxq=0..n-1 (T(q) + T(n-q-1)) + Θ(n)

 ...which can be solved to...

T(n) = Θ(n2)

10

Quicksort Average Case Intuition

Average case is more like the best case than the worst

case.

Two interesting cases for intuition:

11

1. Any sequence of partitions with the same ratios, such as 1/2::1/2 (the

best case), 1/3::2/3, or even 1/100::99/100.

• As have previously seen, the recursion tree depth is still logarithmic,

which leads to the same bound.

• Thus, the “good” cases don’t have to be that good.

Quicksort Average Case Intuition

2. Sequence of alternating worst case and best case partitions.

– Each pair of these partitions behaves like a best case partition, except with

higher overhead.

– Thus, can tolerate having some bad partitions.

12

0 All-but-1

~Half ~Half

3

Quicksort Average Case Overview

Already have Ω(n log n) bound.

Want to obtain O(n log n).
Can overestimate in analysis.

Always look for ways to simplify!

13

Quicksort Average Case: Partitioning

Observe: Partitioning dominates Quicksort’s work.

– Partitioning includes the comparisons – the interesting work.

– Every Quicksort call partitions – except the O(1)-time base cases.

– Partitioning more expensive than joining.

? How many partitions are done in the sort? ?

14

n-1 = O(n)

Observe: Comparisons dominate partitioning work.

– Each partition’s time  that partition’s #comparisons.

So, concentrate on time spent comparing.

Quicksort Average Case: Comparisons

15

    





1n

0i

1inCiC
n

1

of comps. in two recursive calls?

of comps. in this partition?

O(n ln n)

      





1n

0i

1inCiC
n

1
1nnC

1n

   1inCiC 

 nC …

of comparisons in partitions in n-element Quicksort

Average this over all partition sizes.

Quicksort Average Case: Comparisons

Rather than analyzing the time for each partition, and then

summing, instead directly analyze the total number of

comparisons performed over the whole sort.

Quicksort’s behavior depends on only values’ ranks, not values

themselves.

 Z = set of values in array input A

 zi = ith-ranked value in Z

 Zij = set of values {zi,…,zj}

16

Quicksort Average Case: Comparisons

Let Xij = I{zi is compared to zj}

Total comparisons

Each pivot is selected at most once, so each zi,zj pair is compared at most once.

17




 


1n

1i

n

1ij

ijXX

  







 



 

1n

1i

n

1ij

ijXEXE

 


 


1n

1i

n

1ij

ijXE by linearity of expectation




 


1n

1i

n

1ij

ji }z to compared is Pr{z by definition

Quicksort Average Case: Comparisons

What is this probability?

Consider arbitrary i,j and corresponding Zij.
Zij need not correspond to a partition executed during the sort.

Claim: zi and zj are compared  either is the first element in Zij
to be chosen as a pivot.

Proof: Which is first element in Zij to be chosen as pivot?
– If zi, then that partition must start with at least all the elements in Zij.

Then zi compared with all the elements in that partition (except itself),
including zj.

– If zj, similar argument.

– If something else, the resulting partition puts zi and zj into separate
sets (without comparing them), so that no future Quicksort or partition
call will consider both of them.

18

4

Quicksort Average Case: Comparisons

19

= 1/(j-i+1) + 1/(j-i+1)

= 2/(j-i+1)

Pr{zi is compared to zj}

Now, compute the probability:

= Pr{zi or zj is first pivot chosen from Zij} just explained

= Pr{zi is first pivot chosen from Zij} +

 Pr{zj is first pivot chosen from Zij}

mutually exclusive

possibilities

Quicksort Average Case: Total

20

  


  


1n

1i

n

1ij 1ij

2
XE











1n

1i

1in

2k k

2
Simplify with a change of variable, k=j-i+1.




 


1n

1i

n

1k k

2
Simplify and overestimate by adding terms.

 





1n

1i

n logO

n) log O(n

Plug this back into the sum:

Quicksort Input Distribution

21

? Are all inputs equally likely in practice? ?

Linear-Time Sorting

22

In limited circumstances, can avoid comparison-

based sorting, & thus do better than previous lower

bound!

Must rely on some restriction on inputs.

Counting Sort

23

2 5 0 1 2 3 0 Input=

0 0 1 2 2 3 5

2 1 2 1 0 1 Count= Count instances of each possible element:

Output= Produce Count[i] instances of each i:

Limited usefulness, but the simplest example of a

non-comparison-based sorting algorithm.

Limit data to a small discrete range: e.g., 0,…,5.
Let m = size of range.

Counting Sort

csort(A,n):

 /* Count number of instances of each possible element. */

 Count[0…m-1] = 0

 For index = 0 to n-1

 Count[A[index]] += 1

 /* Produce Count[i] copies of each i. */

 index = 0

 For i = 0 to m-1

 For copies = 0 to Count[A[i]]

 A[index] = i

 index += 1

24

Θ(m)

Θ(m+n)

Θ(m+n) = Θ(n) time, when m taken to be a constant.

Θ(n)

5

Bucket Sort

25

Limit data to a continuous range: e.g., [0,6).
Let m = size of range.

Input= 0.3 3.1 2.0 1.9 0.5 5.3 2.1

Create n buckets, for equal-

sized subranges

<
0

.8
6

<
1

.7
1

<
2

.5
7

<
3

.4
3

<
4

.2
9

<
5

.1
4

<
6

.0
0

Buckets=

For each

• Calculate bucket = d  n/m

• Insert to bucket’s list.

2.1 5.3 0.5 1.9

2.1 2.0

1.9

2.1

3.1 0.3

0.5

2.1 Bucket 2.1  7/6 = 2.45 = 2

Bucket Sort Analysis

Worst Case Best Case Average Case

Items per

Bucket

Total Time

26

n

O(n2)

1

O(n)

O(1)

O(n)

Radix Sort

 Limit input to fixed-length numbers or words.

Represent symbols in some base b.

Each input has exactly d “digits”.

Sort numbers d times, using 1 digit as key.

Must sort from least-significant to most-significant digit.

Must use any “stable” sort, keeping equal-keyed items in

same order.

27

Radix Sort Example

28

a b a b a c c a a a c b b a b c c a b b a a a c

Input data:

Radix Sort Example

29

a b a b a c c a a a c b b a b c c a b b a a a c

a b c

Place into appropriate pile.

Pass 1: Looking at rightmost position.

Radix Sort Example

30

a b a b a c

c a a

a c b

b a b

c c a

b b a

a a c

a b c

Join piles.

Pass 1: Looking at rightmost position.

6

Radix Sort Example

31

a b a b a c c a a a c b b a b c c a b b a a a c

a b c

Pass 2: Looking at next position.

Place into appropriate pile.

Radix Sort Example

32

a b a

b a c

c a a

a c b b a b

c c a

b b a

a a c

a b c

Join piles.

Pass 2: Looking at next position.

Radix Sort Example

33

a b c

b a c c a a b a b a a c a b a b b a a c b c c a

Pass 3: Looking at last position.

Place into appropriate pile.

Radix Sort Example

34

a b c

b a c

c a a b a b a a c

a b a

b b a a c b

c c a

Pass 3: Looking at last position.

Join piles.

Radix Sort Example

35

b a c c a a b a b a a c a b a b b a a c b c c a

Result is sorted.

Radix Sort Algorithm

rsort(A,n):

 For j = 0 to d-1

 /* Stable sort A, using digit position j as the key. */

 For i = 0 to n-1

 Add A[i] to end of list ((A[i]>>j) mod b)

 A = Join lists 0…b-1

Θ(dn) time, where d is taken to be a constant.

36

