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Design & Analysis of Algorithms  

COMP 482 / ELEC 420 

 

 
John Greiner 

Sorting 

Should already know some sorting algorithms: 

E.g., Insertion sort, Selection sort, Quicksort, Mergesort, Heapsort 

 

 

 

We’ll concentrate on ideas not seen in previous courses: 

 

• Lower bounds on general-purpose sorting 

• Quicksort probabilistic analysis 

• Special-purpose linear-time sorting 
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To do: 

[CLRS] 7-8 

#3 

Comparison Trees 
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Comparisons used to determine order of 3 distinct elements. 

Leaves correspond to all possible permutations. 
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How do Comparison Trees Relate to Sorting? 

 

 

• Any sorting algorithm must be able to reorder any 

permutation. 

 

• Sorting algorithm’s behavior corresponds to some 

comparison tree. 
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Lower Bounds on Sorting 
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?   How many leaves in a comparison tree?   ? 

?   How many levels?   ? 

So, any general sorting algorithm must make 

Ω(n lg n) comparisons on at least some inputs. 

Quicksort – Immutable 

 

qsort(A): 

 if |A| ≤ 1 

  return A 

 else 

  pivot = some element of A 

  L = [x in A : x<pivot] 

  G = [x in A : x>pivot] 

  return qsort(L) + pivot + qsort(G) 
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Quicksort – Mutable 

Algorithm in [CLRS] 7. 

 

Advantages: 

– Constant factor less time. 

– Constant factor less space. 

Disadvantage: 

– More difficult to understand. 

7 

Time depends on a good (lucky?) choice of pivot. 

Quicksort Pivot Best Case 
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?   Best case?   ? 

?   What is resulting recurrence & bound?   ? 

T(n) = 2T(n/2) + Θ(n) = Θ(n lg n) 

~Half ~Half 

~Half ~Half ~Half ~Half 

Time depends on a good (lucky?) choice of pivot. 

Quicksort Pivot Worst Case 
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?   Worst case?   ? 

?   What is resulting recurrence & bound?   ? 

T(n) = T(n-1) + Θ(n) = Θ(n2) 

0 All-but-1 

0 All-but-1 

Quicksort Worst Case 

For deterministic pivot-choosing algorithms: 

O(1): Can be unlucky    O(n2) quicksort worst case 

 

O(n): Can find median (as we’ll see soon)    O(n log n) quicksort 

 

 

We took shortcut by assuming the 0 & all-but-1 split is worst. 

Intuitively obvious, but could prove this, e.g., 

 

T(n) = maxq=0..n-1 (T(q) + T(n-q-1)) + Θ(n) 

  ...which can be solved to... 

T(n) = Θ(n2) 
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Quicksort Average Case Intuition 

Average case is more like the best case than the worst 

case. 

 

 

Two interesting cases for intuition: 
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1. Any sequence of partitions with the same ratios, such as 1/2::1/2 (the 

best case), 1/3::2/3, or even 1/100::99/100. 

• As have previously seen, the recursion tree depth is still logarithmic, 

which leads to the same bound. 

• Thus, the “good” cases don’t have to be that good. 

Quicksort Average Case Intuition 

2. Sequence of alternating worst case and best case partitions. 

– Each pair of these partitions behaves like a best case partition, except with 

higher overhead. 

 

 

 

 

 

 

 

 

 

 

 

– Thus, can tolerate having some bad partitions. 
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0 All-but-1 

~Half ~Half 
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Quicksort Average Case Overview 

 

 

Already have Ω(n log n) bound. 

 

 

Want to obtain O(n log n). 
Can overestimate in analysis. 

Always look for ways to simplify! 
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Quicksort Average Case: Partitioning 

Observe: Partitioning dominates Quicksort’s work. 

– Partitioning includes the comparisons – the interesting work. 

– Every Quicksort call partitions – except the O(1)-time base cases. 

– Partitioning more expensive than joining. 

 

?   How many partitions are done in the sort?  ? 
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n-1 = O(n) 

Observe: Comparisons dominate partitioning work. 

– Each partition’s time  that partition’s #comparisons. 

 

So, concentrate on time spent comparing. 

Quicksort Average Case: Comparisons 
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Average this over all partition sizes. 

Quicksort Average Case: Comparisons 

Rather than analyzing the time for each partition, and then 

summing, instead directly analyze the total number of 

comparisons performed over the whole sort. 

 

 

 

Quicksort’s behavior depends on only values’ ranks, not values 

themselves. 

 

   Z = set of values in array input A 

   zi = ith-ranked value in Z 

   Zij = set of values {zi,…,zj} 
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Quicksort Average Case: Comparisons 

Let Xij = I{zi is compared to zj} 

 

Total comparisons  
 

Each pivot is selected at most once, so each zi,zj pair is compared at most once. 
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Quicksort Average Case: Comparisons 

What is this probability? 
 

Consider arbitrary i,j and corresponding Zij. 
Zij need not correspond to a partition executed during the sort. 

 

Claim: zi and zj are compared  either is the first element in Zij 
to be chosen as a pivot. 

Proof: Which is first element in Zij to be chosen as pivot? 
– If zi, then that partition must start with at least all the elements in Zij. 

Then zi compared with all the elements in that partition (except itself), 
including zj. 

– If zj, similar argument. 

– If something else, the resulting partition puts zi and zj into separate 
sets (without comparing them), so that no future Quicksort or partition 
call will consider both of them. 
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Quicksort Average Case: Comparisons 
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= 1/(j-i+1) + 1/(j-i+1) 

= 2/(j-i+1) 

Pr{zi is compared to zj} 

Now, compute the probability: 

= Pr{zi or zj is first pivot chosen from Zij} just explained 

= Pr{zi is first pivot chosen from Zij} + 

   Pr{zj is first pivot chosen from Zij} 

mutually exclusive 

possibilities 

Quicksort Average Case: Total 
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Plug this back into the sum: 

Quicksort Input Distribution 
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?   Are all inputs equally likely in practice?   ? 

Linear-Time Sorting 

22 

In limited circumstances, can avoid comparison-

based sorting, & thus do better than previous lower 

bound! 

Must rely on some restriction on inputs. 

Counting Sort 
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2 5 0 1 2 3 0 Input= 

0 0 1 2 2 3 5 

2 1 2 1 0 1 Count= Count instances of each possible element: 

Output= Produce Count[i] instances of each i: 

Limited usefulness, but the simplest example of a 

non-comparison-based sorting algorithm. 

Limit data to a small discrete range: e.g., 0,…,5. 
Let m = size of range. 

Counting Sort 

csort(A,n): 

 /* Count number of instances of each possible element. */ 

 Count[0…m-1] = 0 

 For index = 0 to n-1 

  Count[A[index]] += 1 

 

 /* Produce Count[i] copies of each i. */ 

 index = 0 

 For i = 0 to m-1 

  For copies = 0 to Count[A[i]] 

   A[index] = i 

   index += 1 
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Θ(m) 

Θ(m+n) 

Θ(m+n) = Θ(n) time, when m taken to be a constant. 

Θ(n) 
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Bucket Sort 
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Limit data to a continuous range: e.g., [0,6). 
Let m = size of range. 

Input= 0.3 3.1 2.0 1.9 0.5 5.3 2.1 

Create n buckets, for equal-

sized subranges 
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Buckets= 

For each 

• Calculate bucket = d  n/m 

• Insert to bucket’s list. 

2.1 5.3 0.5 1.9 

2.1 2.0 

1.9 

2.1 

3.1 0.3 

0.5 

2.1 Bucket 2.1  7/6 = 2.45 = 2 

Bucket Sort Analysis 

Worst Case Best Case Average Case 

Items per 

Bucket 

Total Time 
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n 

O(n2) 

1 

O(n) 

O(1) 

O(n) 

Radix Sort 

 Limit input to fixed-length numbers or words. 

Represent symbols in some base b. 

Each input has exactly d  “digits”. 

 

 

Sort numbers d times, using 1 digit as key. 

Must sort from least-significant to most-significant digit. 

Must use any “stable” sort, keeping equal-keyed items in 

same order. 

27 

Radix Sort Example 
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a b a b a c c a a a c b b a b c c a b b a a a c 

Input data: 

Radix Sort Example 
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a b a b a c c a a a c b b a b c c a b b a a a c 

a b c 

Place into appropriate pile. 

Pass 1: Looking at rightmost position. 

Radix Sort Example 
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a b a b a c 

c a a 

a c b 

b a b 

c c a 

b b a 

a a c 

a b c 

Join piles. 

Pass 1: Looking at rightmost position. 
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Radix Sort Example 
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a b a b a c c a a a c b b a b c c a b b a a a c 

a b c 

Pass 2: Looking at next position. 

Place into appropriate pile. 

Radix Sort Example 
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a b a 

b a c 

c a a 

a c b b a b 

c c a 

b b a 

a a c 

a b c 

Join piles. 

Pass 2: Looking at next position. 

Radix Sort Example 
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a b c 

b a c c a a b a b a a c a b a b b a a c b c c a 

Pass 3: Looking at last position. 

Place into appropriate pile. 

Radix Sort Example 
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a b c 

b a c 

c a a b a b a a c 

a b a 

b b a a c b 

c c a 

Pass 3: Looking at last position. 

Join piles. 

Radix Sort Example 
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b a c c a a b a b a a c a b a b b a a c b c c a 

Result is sorted. 

Radix Sort Algorithm 

rsort(A,n): 

 For j = 0 to d-1 

  /* Stable sort A, using digit position j as the key. */ 

  For i = 0 to n-1 

   Add A[i] to end of list ((A[i]>>j) mod b) 

 

  A = Join lists 0…b-1 

 

 

Θ(dn) time, where d is taken to be a constant. 

36 


