	Should already know some sorting algorithms: E.g., Insertion sort, Selection sort, Quicksort, Mergesort, Heapsort	
Design & Analysis of Algorithms COMP 482 / ELEC 420	We'll concentrate on ideas not seen in previous courses:	
John Greiner	 Lower bounds on general-purpose sorting Quicksort probabilistic analysis Special-purpose linear-time sorting <u>To do:</u> [CLRS] 7-8 #3 	

How do Comparison Trees Relate to Sorting?

- Any sorting algorithm must be able to reorder any permutation.
- Sorting algorithm's behavior corresponds to some comparison tree.

Quicksort – Immutable

 $\begin{array}{l} \text{qsort}(A):\\ \text{if } |A| \leq 1\\ \text{return } A\\ \text{else}\\ \text{pivot} = \text{some element of } A\\ \text{L} = [x \text{ in } A : x < \text{pivot}]\\ \text{G} = [x \text{ in } A : x > \text{pivot}]\\ \text{return } \text{qsort}(L) + \text{pivot} + \text{qsort}(G) \end{array}$

Quicksort Worst Case

Quicksort Average Case Intuition

Average case is more like the best case than the worst case.

Two interesting cases for intuition:

- 1. Any sequence of partitions with the same ratios, such as 1/2::1/2 (the best case), 1/3::2/3, or even 1/100::99/100.
 - As have previously seen, the recursion tree depth is still logarithmic, which leads to the same bound.
 - Thus, the "good" cases don't have to be that good.

Quicksort Average Case Intuition

- Thus, can tolerate having some bad partitions.

12

Quicksort Average Case: Comparisons

of comparisons in partitions in n-element Quicksort

C(n)= ...

C

# of comps. in this partition?	n-1
# of comps. in two recursive calls?	C(i)+C(n-i-1)
Average this over all partition sizes.	$\frac{1}{n}\sum_{i=0}^{n-1} (C(i) + C(n-i-1))$
$C(n) = n - 1 + \frac{1}{n} \sum_{i=0}^{n-1} (C(i) + C(n - i - 1))$	
= O(n ln n)	

Quicksort Average Case: Comparisons				
summing, in	lyzing the time for each partition, and then stead directly analyze the total number of isons performed over the whole sort.			
Quicksort's behavi	or depends on only values' ranks, not values themselves.	;		
Z	= set of values in array input A			
Zi	= i th -ranked value in Z			
Z _{ij}	= set of values $\{z_i, \dots, z_j\}$			
		16		

Quicksort Average Case: Comparisons

Quicksort Average Case: Comparisons

What is this probability? Consider arbitrary i,j and corresponding Z_{ij}. Z_{ij} need not correspond to a partition executed during the sort. Claim: z_i and z_j are compared ↔ either is the first element in Z_{ij} to be chosen as a pivot. Proof: Which is first element in Z_{ij} to be chosen as pivot? If z_i, then that partition must start with at least all the elements in Z_{ij}. Then z_i compared with all the elements in that partition (except itself), including z_j. If z_i, similar argument. If something else, the resulting partition puts z_i and z_j into separate sets (without comparing them), so that no future Quicksort or partition call will consider both of them.

18

Quicksort Average Case: Comparisons

Quicksort Average Case: Total

csort(A,n):

 $\Theta(m+n) = \Theta(n)$ time, when m taken to be a constant.

Bucket Sort

Limit data to a continuous range: e.g., [0,6). Let m = size of range.						
	Input=	2.1 5.3 0.5 1.9 2.0 3.1 0.3				
Create n buckets, for equal- sized subranges	Buckets=	-0.86 <1.71				
For each • Calculate bucket =	2.1 → I	0.3 0.5 2.0 2.1 Bucket ↓ 2.1 · 7/6] = ↓ 2.45] = 2 25				

Bucket Sort Analysis

	Worst Case	Best Case	Average Case
ltems per Bucket	n	1	O(1)
Total Time	O(n²)	O(n)	O(n)

Radix Sort

Limit input to fixed-length numbers or words. Represent symbols in some base b. Each input has exactly d "digits".

Sort numbers d times, using 1 digit as key. Must sort from least-significant to most-significant digit. Must use any "stable" sort, keeping equal-keyed items in same order.

Radix Sort Algorithm

