Order Statistics: Select $\mathrm{i}^{\text {th }}$-ranked item

Least:	$i=1$	To do:
Greatest:	$i=n$	[CLRS] 9

\#3

Design \& Analysis of Algorithms COMP 482 / ELEC 420

John Greiner

Simple Algorithms

Could sort first: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$, but can do better: $\mathrm{O}(\mathrm{n})$.

What are algorithms for $\mathrm{i}=1,2,3$?

How do these generalize?

Lower median $\quad \mathrm{i}=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor \quad \mathrm{i}=\left\lceil\frac{\mathrm{n}}{2}\right\rceil$ Upper median

Assume collection is unordered, otherwise trivial.

Modify Quicksort

First, to get average-case $O(n)$.

Then, to get worst-case $O(n)$.
With a very unobvious detail!

Analysis

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}\left(\left[\frac{\mathrm{n}}{5}\right\rceil\right)+\mathrm{T}(\underbrace{\max (\mathrm{k}-1, \mathrm{n}-\mathrm{k})}_{\text {How to simplify? }})+\mathrm{O}(\mathrm{n})
$$

One group of 5 elements.

Elements Not Needed

$1^{\text {st }}$ Way to Count

$1^{\text {st }}$ Way to Count

$2^{\text {nd }}$ Way to Count

Equivalently, must recur on all elements not inside one of these boxes. How many?

At most $n-\left(3\left(\left\lceil\left[\frac{n}{5}\right\rceil / 2\right\rceil-1\right)+1\right) \leq \frac{7 n}{10}+2$

13
$T(n)=T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+2\right)+O(n)$

14

Using Substitution Method

Prove $\exists \mathrm{c}, \mathrm{n}_{0}>0, \mathrm{~T}(\mathrm{n}) \leq \mathrm{cn}, \forall \mathrm{n} \geq \mathrm{n}_{0}$

$$
\begin{aligned}
T(\mathrm{n}) & \leq \mathrm{c}\left\lceil\frac{\mathrm{n}}{5}\right\rceil+\mathrm{c}\left(\frac{7 \mathrm{n}}{10}+2\right)+\mathrm{kn} \\
& \leq \mathrm{c}\left(\frac{\mathrm{n}}{5}+1\right)+\mathrm{c}\left(\frac{7 \mathrm{n}}{10}+2\right)+\mathrm{kn} \quad \text { Overestimate ceiling } \\
& =\frac{9}{10} \mathrm{cn}+3 \mathrm{c}+\mathrm{kn} \quad \text { Algebra } \\
& \leq \mathrm{cn} \quad \text { when } 0 \leq \frac{1}{10} \mathrm{cn}-3 \mathrm{c}-\mathrm{kn} \\
& \forall \mathrm{c}, \mathrm{k}, \text { can find } a \mathrm{n}_{0} \text { such that this holds } \forall \mathrm{n} \geq \mathrm{n}_{0} .
\end{aligned}
$$

Why Groups of 5 ?
$T(n)=T\left(\left\lceil\frac{n}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+2\right)+O(n)$

