

Blum, Floyd, Pratt, Rivest, Tarjan (1973)

Select(A,n,i):	T(n)
Divide input into ⌈n/5⌉ groups of size 5.	O(n)
/* Partition on median-of-medians */ medians = array of each group's median. pivot = Select(medians, ⌈n/5⌉, ⌈n/10⌉) L,G = partition(A, pivot)	$\begin{array}{c} \text{All diffs} \\ \text{to find a} \\ \text{good split.} \\ \text{O(n)} \\ \text{O(n)} \end{array}$
/* Find i th element in L, pivot, or G */	O(1)
k = # of lesser elements + 1	O(1)
If i=k, return pivot	T(k-1)
If i <k, i)<="" k-1,="" return="" select(l,="" td=""><td>T(n-k) Only one</td></k,>	T(n-k) Only one
If i>k, return Select(G, n-k, i-k)	done.

 $\label{eq:prove} \begin{array}{l} \mbox{Using Substitution Method} \\ \mbox{Prove } \exists c, n_0 > 0, T(n) \leq cn, \forall n \geq n_0 \\ \\ \mbox{T}(n) \leq c \bigg\lceil \frac{n}{5} \bigg\rceil + c \bigg(\frac{7n}{10} + 2 \bigg) + kn \\ \\ \leq c \bigg(\frac{n}{5} + 1 \bigg) + c \bigg(\frac{7n}{10} + 2 \bigg) + kn & \mbox{Overestimate ceiling} \\ \\ \\ = \frac{9}{10} cn + 3c + kn & \mbox{Algebra} \\ \\ \leq cn & \mbox{when } 0 \leq \frac{1}{10} cn - 3c - kn \\ \\ \\ \\ \forall c, k, can find a n_0 such that this holds \forall n \geq n_0. \end{array}$

15

Why Groups of 5?

$$T(n) = T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 2\right) + O(n)$$