
1

Design & Analysis of Algorithms

COMP 482 / ELEC 420

John Greiner

Python Dictionaries

Same idea as Java/C++ hash map, C# dictionary, Perl hash, …

How is this “magic” implemented?

2

d = {“snow” : 7, “apple” : 3, “white” : 20}

d[“white”] = 30

d[“prince”] = 16

d[“apple”]

Combination of Ideas

• Hash table & hash function

• Dynamic table & amortization

3

To do:

[CLRS] 11,17

#4

Hash Tables & Hash Functions

4

“snow” hash 3

“apple” hash 7

“prince” hash 3

“white” hash 2

d = {“snow” : 7, “apple” : 3, “white” : 20}

d[“white”] = 29

d[“prince”] = 16

d[“apple”]

0

9

“white”:29

“apple”:3

“snow”:7, “prince”:16

1

3

2

4

5

6

7

8

Chains:

Access Time Depends on Chain Length

? What property do we want of our hash function? ?

? How long is each chain? ?

? How much time per access? ?

5

Creating a Good Hash Function is Difficult

Generally, just use those in libraries.

key.__hash__() % table_size

6

class string:

 def __hash__(self):

 if not self:

 return 0 # empty

 value = ord(self[0]) << 7

 for char in self:

 value = c_mul(1000003, value) ^ ord(char)

 value = value ^ len(self)

 if value == -1: # reserved error code

 value = -2

 return value

2

Dynamic Table Motivation

Typically, don’t know how much data we’ll have.

– Want underlying hash table to grow, so average chain size

is bounded.

– Want to retain constant-time indexing.

Focus on the latter goal first.

– We’ll have to do a little extra to combine hash tables &

dynamic tables.

7

Adding Data when Dynamic Table is Full

Must be contiguous for constant-time indexing.

8

data

data

data

data

data

data

data

data

data

data

data

data

Adding Data when Dynamic Table is Full

What’s wrong with just using space at end of array?

9

data

data

data

data

data

data

data

data

data

data

data

data

other data

other data

That memory might

already be in use.

Adding Data when Dynamic Table is Full

So, grab needed space elsewhere & copy everything.

10

data

data

data

data

data

data

data

data

data

data

data

data

copy

Double the space.

Cost of a Series of Operations

Initially: Table size = 5, table empty

11

Cost of a Series of Operations

Add 5 data items, cost = 5

12

1

2

3

4

5

3

Cost of a Series of Operations

Add 5 more data items, cost = 10

13

1

2

3

4

5

copy

1

2

3

4

5

6

7

8

9

10

Cost of a Series of Operations

Add 5 more data items, cost = 15

14

copy

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

Cost of a Series of Operations

Add 5 more data items, cost = 5

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

Total costs:

Copying = 15

Adding = 20

Total = 35

Cost of Copying is Proportional to Adding

16

Each copy costs

2 × #adds since previous copy.

copy

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

Use expensive ops

sufficiently infrequently.

Buy Add 1

Get Copy 2 free!

Amortized Cost

Dynamic tables: O(1) amortized time to add data

17

Cost of series of n operations = m

Each operation has amortized cost = m/n

Dynamic Hash Tables

18

d = {“snow” : 7, “apple” : 3, “white” : 20}

d[“white”] = 29

d[“prince”] = 16

d[“apple”]

“snow” hash 3

“apple” hash 7

“prince” hash 3

“white” hash 2

“white”:29

“apple”:3

“snow”:7, “prince”:16

Must rehash all data.

Hash table “full enough”.

Load factor = #items/size

“snow” hash 3

“apple” hash 2

“prince” hash 1

“white” hash 2

“apple”:3,“white”:29

“snow”:7

“prince”:16

4

Hash Table & Dynamic Table Odds & Ends

Hash table size: prime or power-of-2?

Chaining vs. open addressing

Dynamic table expansion factor

Dynamic table contraction

Python’s dictionary/hash table implementation

19

Hash tables: Dynamic tables:

Python

dict. & set

…

Python list

…

Memory heaps

for GC

When want static

memory size.

Multipop

20

3 ops:

Push(S,x) Pop(S) Multi-pop(S,k)

Worst-case

cost:
O(1) O(1)

O(min(|S|,k)

= O(n)

Amortized cost: ?

Incrementing Binary Counter

21

Counter Bits changed

in increment

0 1

1 2

10 1

11 3

100 1

101 2

110 1

111 4

1000 1

1001 2

1010 1

1011 3

1100 1

1101 2

1110 1

1111 5

Bit

position

times bit

changes

0 16

1 8

2 4

3 2

≤
𝑛

2𝑖

lg 𝑛

𝑖=0

= 𝑂 ?

Another way to sum the costs?

Amortized Analysis Approaches

22

Aggregate:

1. For all sequences of m ops, find maximum sum of actual

costs.
Potentially difficult to know actual costs or bound well.

2. Result is sum/m.

Sufficient for many commonly-used examples.

Amortized Analysis Approaches

23

Accounting:

1. Compute actual costs ci of each kind of op.

2. Define accounting costs ĉi of each kind of op, such that

can assign credits ĉi-ci consistently to data elts.
Can “overpay” on some ops, and use credits to “underpay” on other ops later.

Poor definitions lead to loose bounds.

3. O(max acct. cost.)

Amortized Analysis Approaches

24

Potential:

1. Define potential function Φ(D), such that Φ(Di)≥ Φ(D0).
Essentially assigns “credits” to data structure, rather than operations.

Poor definition leads to loose bounds.

2. Calculate accounting costs ĉi=ci+ΔΦ of each kind of op.

3. O(max acct. cost.)

Complicated approach necessary for more complicated data

structures.

http://www.laurentluce.com/posts/python-dictionary-implementation/

