
 10/19/2011

 1

Design & Analysis of Algorithms

COMP 482 / ELEC 420

John Greiner

Flow networks

What if weights in a graph are maximum capacities of some

flow of material?

• Pipe network to transport fluid/gas (e.g., water, oil, natural

gas, CO2)

– Edges – pipes

– Vertices – junctions of pipes

• Data communication network

– Edges – network connections of different capacity

– Vertices – routers (do not produce or consume data just move it)

• Also used in resource planning, economics, ecosystem

network analysis

2

To do:

[CLRS] 26

#7

 10/19/2011

 2

Flow Network Definitions

Directed graph G=(V,E)

3

Each vertex is on

some path from s to t.

One source and one sink.

Each edge has

capacity c(u,v)  0.

13

11

5

4

15

10

14

19

3

9 s

a b

c d

t e

5

Flow Definitions

How much is currently flowing – f : V  V  

4

   



Vv

vu,fVu,f

Must satisfy 3 properties:

• Capacity constraint:

 u,v  V: f(u,v)  c(u,v)

• Skew symmetry:

 u,v  V: f(u,v) = –f(v,u)

• Flow conservation:

 u  V–{s,t}: f(u,V) = f(V,u) = 0

 What goes in must go out.

Total value of flow f:

|f| = f(s,V) = f(V,t)

   



Vv

uv,fuV,f
2/13

3/11

1/5

1/4

3/15

0/10

2/14

3/19

2/3

0/9 s

a b

c d

t e

1/5

 10/19/2011

 3

Example flows

Valid or invalid? Why?

5

0/13

0/11

0/5

0/4

0/15

0/10

0/14

0/19

0/3

0/9 s

a b

c d

t e

0/5

2/13

5/11

0/5

0/4

2/15

2/10

4/14

1/19

5/3

0/9 s

a b

c d

t e

0/5

1/13

1/11

1/5

1/4

1/15

1/10

1/14

1/19

1/3

1/9 s

a b

c d

t e

1/5

Maximize the flow

6

13

11

5

4

15

10

14

19

3

9 s

a b

c d

t e

5

 10/19/2011

 4

Maximum flow: Algorithm idea

• If we have some flow, …

• …and can find an augmenting path

can add a constant amount of flow along path:

 a>0,  (u,v)p, f(u,v) + a  c(u,v)

• Then just do it, to get a better flow!

7

2/13

3/11

1/5

1/4

3/15

1/10

1/14

2/19

2/3

0/9 s

a b

c d

t e

1/5

s t
p

Ford-Fulkerson method

8

Ford-Fulkerson(G,s,t)

1 initialize flow f to 0 everywhere

2 while there is an augmenting path p do

3 augment flow f along p

4 return f

• How do we find/choose an augmenting path?

• How much additional flow can we send through that

path?

• Does the algorithm always find the maximum flow?

 10/19/2011

 5

Augmenting

Augmenting path – any path in the residual network:

– Residual network: Gf=(V,Ef)

 Ef = {(u,v)  V  V : cf(u,v) > 0}

– Residual capacities: cf(u,v) = c(u,v) – f(u,v)

– Residual capacity of path p:

9

 Observe – Edges in Ef are either edges in E or their reversals: |Ef|  2|E|.

Residual ?
?

 
 

 vu,cminpc f
pu,v

f




Residual capacity

of path (s,c,d,t)?

2/13

3/11

1/5

1/4

3/15

1/10

1/14

2/19

2/3

0/9 s

a b

c d

t e

1/5

Ford-Fulkerson method, with details

10

Ford-Fulkerson(G,s,t)

1 for each edge (u,v)G.E do

2 f(u,v) = f(v,u) = 0

3 while  path p from s to t in residual network Gf do

4 cf = min{cf(u,v): (u,v)p}

5 for each edge (u,v) in p do

6 f(u,v) = f(u,v) + cf

7 f(v,u) = -f(u,v)

8 return f

Algorithms based on this method differ in how they choose p.

 10/19/2011

 6

Does it always find a maximum flow?

Cut – a partition of V into S,T such that sS, tT

Minimum cut – a cut with minimum capacity

11

   



TS,vu

vu,fTS,f

   



TS,vu

vu,cTS,c

|f| = f(S,T)

S T 2/13

3/11

1/5

1/4

3/15

1/10

1/14

2/19

2/3

0/9 s

a b

c d

t e

1/5

Does it always find a maximum flow?

Max-flow min-cut theorem:

The following are equivalent statements:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. |f| = c(S,T), for some cut (S,T) of G.

12

We will prove three parts:

From this we have 2.1., which means that the Ford-

Fulkerson method always correctly finds a maximum flow.

1.

2. 3.

 10/19/2011

 7

What is the worst-case running time?

• Augmentation = ?

• How many augmentations?

– Let’s assume integer flows.

– Each increases the value of the flow by some integer.

– O(|f*|), where f* is the max-flow.

• Total worst-case = O(E|f*|).

– How an augmenting path is chosen is very important!

13

O(E)

1

100

100

100

100

t s

b

a

Edmonds-Karp Algorithm

Use shortest augmenting path (in #edges).

Run algorithm on our example:

14

13

11

5

4

15

10

14

19

3

9 s

a b

c d

t e

5

 10/19/2011

 8

Edmonds-Karp algorithm analysis: 1

Augmentation = O(E) – Breadth-first search

Will prove: #augmentations = O(VE).

Let d(v) be distance from s to v in residual network.

Will prove: Every |E| iterations, d(t) increases by 1.

d(t) can increase at most |V| times  O(VE) iterations

Total = O(VE2)

15

Edmonds-Karp algorithm analysis: 2

Will prove: Every |E| iterations, d(t) increases by 1.

Consider the residual network in levels according to d(v):

As long as d(t) doesn't change, the paths found will only use forward edges.
• Each iteration saturates & removes at least 1 forward edge, and adds only

backward edges (so no distance ever drops).

• After removing |E| - d(t) +1 forward edges, t will be disconnected from s.

So, within |E| iterations, either
• t is disconnected, & algorithm terminates, or

• A non-forward edge used, & d(t) increased.

16

0 1 2 3
11

8

4
3

12

9

13

17

1

9 s

a b

c d

t e

4 3

1
3

2

1 1

2

2

1

1

2/13

3/11

1/5

1/4

3/15

1/10

1/14

2/19

2/3

0/9 s

a b

c d

t e

1/5

 10/19/2011

 9

Antiparallel edges

Allow:

Flows cancel.

Residual (multi)graph can

have parallel edges.

Disallow:

17

5 9 9

5

5

What if we have multiple sources or sinks?

18

t1 s1

t2

13

11

5 4
10

s2

s3

11
7

4

6

8

s



t








t1 s1

t2

13

11

5 4
10

s2

s3

11
7

4

6

8

 10/19/2011

 10

Maximum Flow: Another Algorithm Idea

Greedily fill outgoing edges to capacity. Later edges’

capacity constraints can lead us to reduce those flows.

19

13

11

5 4

15

10

14

19

3

9 s

a b

c d

t

Push-Relabel Example – Goldberg & Tarjan (1986)

20

0/13 0/11

0/5

0/4

14/14

0/10

15/15

0/19

0/3

0/9

s

t a b c d

 10/19/2011

 11

Relabel a

21

0/13 0/11

0/5

0/4

0/15

0/10

0/14

0/19

0/3

0/9

s

t

a

b c d

Push Preflow from a to b & c

22

13/13 0/11

0/5

2/4

14/14

0/10

15/15

0/19

0/3

0/9

s

t

a

b c d

 10/19/2011

 12

Relabel b

23

13/13

0/11

0/5

2/4

14/14

0/10

15/15

0/19

0/3

0/9

s

t

a b

c d

Push Preflow from b

24

13/13

0/11

0/5

2/4

14/14

0/10

15/15

13/19

0/3

0/9

s

t

a b

c d

 10/19/2011

 13

Relabel c

25

13/13

0/11

0/5

2/4

14/14

0/10

15/15

13/19

0/3 0/9

s

t

a b c

d

Push Preflow from c to d

26

11/11

0/5

14/14

0/10

15/15

13/19

0/3 0/9

s

t

a b c

d

13/13

2/4

 10/19/2011

 14

Relabel c

27

13/13 11/11
0/5

2/4

14/14

0/10

15/15

13/19

0/3
0/9

s

t

a b

c

d

Push Preflow from c to a

28

11/11
0/5

14/14

0/10

15/15

13/19

0/3
0/9

s

t

a b

c

d

13/13

0/4

 10/19/2011

 15

Relabel a & Push Preflow from a to c

29

11/11
0/5

14/14

0/10

15/15

13/19

0/3
0/9

s

t

a

b

c

d

13/13

2/4

Relabel & Push c, Relabel & Push a, Relabel & Push c

30

11/11

0/5

14/14

0/10

15/15

13/19

0/3
0/9

s

t

a

b

c

d

13/13

0/4

6

5

1

0

 10/19/2011

 16

Relabel a & Push Preflow from a to s

31

11/11

0/5

14/14

0/10

13/15

13/19

0/3
0/9

s

t

a

b

c

d

13/13

0/4

6

7

1

0

Relabel c & Push Preflow from c to s

32

11/11

0/5

11/14

0/10

13/15

13/19

0/3
0/9

s

t

a

b

c

d

13/13

0/4

6

7

1

0

 10/19/2011

 17

Relabel d & Push Preflow from d to t

33

11/11

0/5

11/14

0/10

13/15

13/19

3/3 0/9

s

t

a

b

c

d

13/13

0/4

6

7

1

0

Relabel d & Push Preflow from d to b

34

5/5

11/14

13/15

3/3 0/9

s

t

a

b

c

d

0/4

6

7

1

0

11/11 0/10 13/13

2

13/19

 10/19/2011

 18

Push Preflow from b to t

35

5/5

11/14

13/15

3/3 0/9

s

t

a

b

c

d

0/4

6

7

1

0

11/11 0/10 13/13

2

18/19

Relabel d & Push Preflow from d to c

36

5/5
11/14

13/15

3/3 0/9

s

t

a

b

c

d

0/4

6

7

1

0

8/11

0/10 13/13

8

18/19

 10/19/2011

 19

Push Preflow from c to s

37

5/5
8/14

13/15

3/3 0/9

s

t

a

b

c

d

0/4

6

7

1

0

8/11

0/10 13/13

8

18/19

Correctness Overview

38

5/5
8/14

13/15

3/3 0/9 s

t

a

b

c

d

0/4

6

7

1

0

8/11

0/10 13/13

8

18/19

Is this a flow?

Is it maximum? – What is the residual graph?

 10/19/2011

 20

Correctness Depends on Height Invariant

Invariant: Residual edges go down in height by at

most one.

 But, height(s) – height(t) = |V|, longer than any s-t

path.

39

Running Time Overview

Max height = 2 𝑉 − 1.

Overall algorithm is 𝑂 𝑉2𝐸 .

– Requires amortized analysis.

– See text & homework.

Choosing operation order wisely, can reduce to 𝑂 𝑉3 .

40

 10/19/2011

 21

Two Other Approaches

Blocking flows:

– Each s-t path in blocking flow contains a saturated edge.

– Dinitz/Dinic (1970)

O(VE log V)

– Goldberg & Rao (1997)

O(min(V2/3,E1/2) E log(V2/E) log (max(u,v)E c(u,v)))

Combinatorial game:

– Cheriyan, Hagerup (1989)

O(VE + V2 log2 V) expected

– King, Rao, & Tarjan (1994)

O(VE logE/(V log V) V)

41

An Application of Max-Flow

Maximum bipartite matching problem

Matching in a graph is a subset M of edges such that each vertex has at

most one edge of M incident on it. It puts vertices in pairs.

42

E.g.?

A maximum
Bipartite: V = L+R

 E  L×R

E.g., dating agency

 10/19/2011

 22

Maximum Bipartite Matching

• How can we reformulate as a max-flow problem?

• What is the running time, using Edmonds-Karp?

43

V = L+R

E  L×R

