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Design & Analysis of Algorithms  

COMP 482 / ELEC 420 

 

 
John Greiner 

Flow networks 

What if weights in a graph are maximum capacities of some 

flow of material? 

 

• Pipe network to transport fluid/gas (e.g., water, oil, natural 

gas, CO2) 

– Edges – pipes 

– Vertices – junctions of pipes 

• Data communication network  

– Edges – network connections of different capacity 

– Vertices – routers (do not produce or consume data just move it) 

• Also used in resource planning, economics, ecosystem 

network analysis 
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To do: 
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Flow Network Definitions 

Directed graph G=(V,E) 
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Each vertex is on 

some path from s to t. 

One source and one sink. 

Each edge has 

capacity c(u,v)  0. 
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Flow Definitions 

How much is currently flowing – f : V  V   
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   



Vv

vu,fVu,f

Must satisfy 3 properties: 

• Capacity constraint: 

   u,v  V: f(u,v)  c(u,v) 

• Skew symmetry: 

   u,v  V: f(u,v) = –f(v,u) 

• Flow conservation: 

   u  V–{s,t}: f(u,V) = f(V,u) = 0 

                          What goes in must go out. 

Total value of flow f: 

|f| = f(s,V) = f(V,t) 

   



Vv

uv,fuV,f
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Example flows 

Valid or invalid?  Why? 
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Maximize the flow 
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Maximum flow: Algorithm idea 

• If we have some flow, … 

 

 

 

 

 

 

• …and can find an augmenting path  

can add a constant amount of flow along path: 

 a>0,  (u,v)p, f(u,v) + a  c(u,v) 

 

• Then just do it, to get a better flow! 
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Ford-Fulkerson method 
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Ford-Fulkerson(G,s,t)  

1  initialize flow f to 0 everywhere 

2  while there is an augmenting path p do 

3     augment flow f along p 

4  return f 

• How do we find/choose an augmenting path? 

• How much additional flow can we send through that 

path? 

• Does the algorithm always find the maximum flow? 
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Augmenting 

Augmenting path – any path in the residual network: 

– Residual network: Gf=(V,Ef) 

     Ef = {(u,v)  V  V : cf(u,v) > 0} 

– Residual capacities: cf(u,v) = c(u,v) – f(u,v) 

 

– Residual capacity of path p: 
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 Observe – Edges in Ef are either edges in E or their reversals: |Ef|  2|E|. 

Residual ? 
? 

 
 

 vu,cminpc f
pu,v

f




Residual capacity 

of path (s,c,d,t)? 
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Ford-Fulkerson method, with details 
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Ford-Fulkerson(G,s,t)  

1  for each edge (u,v)G.E do  

2     f(u,v) = f(v,u) = 0  

3  while  path p from s to t in residual network Gf do 

4     cf = min{cf(u,v): (u,v)p}  

5     for each edge (u,v) in p do 

6         f(u,v) = f(u,v) + cf 

7         f(v,u) = -f(u,v) 

8  return f 

Algorithms based on this method differ in how they choose p. 
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Does it always find a maximum flow?  

 

Cut  – a partition of V into S,T such that sS, tT 

 

 

 

 

 

 

 

 

Minimum cut – a cut with minimum capacity 
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   
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|f| = f(S,T) 
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Does it always find a maximum flow? 

Max-flow min-cut theorem: 

 

The following are equivalent statements: 

1. f is a maximum flow in G. 

2. The residual network Gf contains no augmenting paths. 

3. |f| = c(S,T), for some cut (S,T) of G. 

12 

We will prove three parts: 

  

From this we have 2.1., which means that the Ford-

Fulkerson method always correctly finds a maximum flow. 

1. 

2. 3. 
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What is the worst-case running time? 

• Augmentation = ? 

• How many augmentations? 

– Let’s assume integer flows. 

– Each increases the value of the flow by some integer. 

– O(|f*|), where f* is the max-flow. 

• Total worst-case = O(E|f*|). 

 

 

 

 

 

– How an augmenting path is chosen is very important!    
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Edmonds-Karp Algorithm 

Use shortest augmenting path (in #edges). 

 

 

Run algorithm on our example: 
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Edmonds-Karp algorithm analysis: 1 

Augmentation = O(E)  – Breadth-first search 

 

 

Will prove: #augmentations = O(VE). 

Let d(v) be distance from s to v in residual network.   

Will prove: Every |E| iterations, d(t) increases by 1. 

d(t) can increase at most |V| times  O(VE) iterations 

 

Total = O(VE2) 
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Edmonds-Karp algorithm analysis: 2 

Will prove: Every |E| iterations, d(t) increases by 1. 

 

Consider the residual network in levels according to d(v): 

 

 

 

 

 

 

 

 

 

As long as d(t) doesn't change, the paths found will only use forward edges. 
• Each iteration saturates & removes at least 1 forward edge, and adds only 

backward edges (so no distance ever drops). 

• After removing |E| - d(t) +1 forward edges, t will be disconnected from s. 

So, within |E| iterations, either 
• t is disconnected, & algorithm terminates, or 

• A non-forward edge used, & d(t) increased. 
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Antiparallel edges 

Allow: 

 

 

 

 

Flows cancel. 

 

Residual (multi)graph can 

have parallel edges. 

 

Disallow: 
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What if we have multiple sources or sinks? 
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Maximum Flow: Another Algorithm Idea 

Greedily fill outgoing edges to capacity.  Later edges’ 

capacity constraints can lead us to reduce those flows.   
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Push-Relabel Example – Goldberg & Tarjan (1986) 
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Relabel a 
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Push Preflow from a to b & c 
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Relabel b 
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Relabel c 
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Relabel c 
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Relabel a & Push Preflow from a to c 
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Relabel & Push c, Relabel & Push a, Relabel & Push c 
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Relabel a & Push Preflow from a to s 
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Relabel c & Push Preflow from c to s 
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Relabel d & Push Preflow from d to t 
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Push Preflow from b to t 
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Relabel d & Push Preflow from d to c 
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Push Preflow from c to s 
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Correctness Overview 
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Is this a flow? 

Is it maximum? – What is the residual graph? 
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Correctness Depends on Height Invariant 

 

 

Invariant:  Residual edges go down in height by at 

most one. 

 

 But, height(s) – height(t) = |V|, longer than any s-t 

path. 
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Running Time Overview 

Max height = 2 𝑉 − 1. 

 

Overall algorithm is 𝑂 𝑉2𝐸 . 

– Requires amortized analysis. 

– See text & homework. 

 

Choosing operation order wisely, can reduce to 𝑂 𝑉3 . 

40 
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Two Other Approaches 

Blocking flows: 

– Each s-t path in blocking flow contains a saturated edge. 

– Dinitz/Dinic (1970) 

O(VE log V) 

– Goldberg & Rao (1997) 

O(min(V2/3,E1/2) E log(V2/E) log (max(u,v)E c(u,v))) 

 

Combinatorial game: 

– Cheriyan, Hagerup (1989) 

O(VE + V2 log2 V) expected 

– King, Rao, & Tarjan (1994) 

O(VE logE/(V log V) V) 
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An Application of Max-Flow 

Maximum bipartite matching problem 

 
Matching in a graph is a subset M of edges such that each vertex has at 

most one edge of M incident on it. It puts vertices in pairs. 

42 

E.g.? 

A maximum 
Bipartite: V = L+R 

               E  L×R 

E.g., dating agency 
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Maximum Bipartite Matching 

• How can we reformulate as a max-flow problem? 

 

• What is the running time, using Edmonds-Karp?  

43 

V = L+R 

E  L×R 


