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Chapter 10 / P and NP

Recall the rook game from Example 10.3.5. In Exercise 4 we explicitly com-
pute the set of winning positions of Player I, and Exercise 5 considers a
variant of the game. We keep the restriction that in each move the piece
has to be moved, that it cannot be moved east or north, and that the player
who moves it to the lower-left square wins.

4S. Show formally that the set ROOK = {(n,m) | Player I can force a win
with the rook starting in (n,m)} equals {(n,m) | n + m}. Hint: Find a
winning strategy for player L.

5. Assume instead of a rook we use the king (who can move one square in
any direction). Determine the set KING = {(n,m) | Player I can force a
win with the king starting in (n,m)}. What is the winning strategy for
player I?

6. Show that, if we extend our notion of a linear program (see Example 10.3.6)
to also include equalities (a;1x1 + ai2X2 +...+ainXn = by), the problem
can still be solved in polynomial time.

7S. Complete the proof of Theorem 10.3.15 by showing what to do with a
clause ¥, v ¥» containing two literals.

8. Let CYCLE = {(G, k) | G contains a simple cycle of length at least k}. Show
that the Hamiltonian-cycle problem reduces to CYCLE.

10.4 NP-Complete Problems

Using the NP-completeness of SAT and 3SAT as a starting point, we show
that finding an independent set or a clique or coloring a graph are hard
tasks to solve. These are fundamental problems, which have been used in
the NP-completeness proofs of many other problems.

Independent Sets and Cliques

A set of vertices U is independent in a graph G = (V, E) if there is no edge
incident on two vertices of U. The size of a maximal independent set in G is
called the independence number of G and written x(G).

Example 10.4.1. Consider the graph in Figure 10.4.1. It contains an inde-
pendent set of size 3 consisting of nodes 1, 3, and 6. The set is independent,
since no two of the nodes are adjacent in the graph. To show that the inde-
pendence number of the graph is 3, we have to show that there is no inde-
pendent set of 4 vertices. If there were a set of four independent vertices, it
could contain at most one of the vertices 1 and 2; hence three vertices from
the set {3,4,5,6} need to be independent, which is not possible.
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1

5 6
Figure 10.4.1 A graph of independence number 3. a

The independent-set decision problem can be phrased as follows:

Independent Set

Instance: Graph G = (V,E), integer k < |V|.

Question: Is x(G) = k; that is, does G contain an independent set of size at
least k?

Theorem 10.4.2. The independent-set problem is NP-complete.

Proof. We leave it to Exercise 10.31 to show that the independent-set prob-
lem is in NP. By Theorem 10.3.10, we can show that the independent-set
problem is NP-complete by reducing the NP-complete problem 3SAT to it.

Suppose that we are given a Boolean formula ¢ in 3-CNF with clauses
C1,...,Cm. We build a graph G = (V,E) such that @ is satisfiable if and
only if G contains an independent set of size m, the number of clauses. For
each clause C; we draw a triangle (three vertices connected by three edges)
and label the vertices of each triangle with the literals in the corresponding
clause. We call two literals contradictory if they are the positive and negative
versions of the same variable. For example, X3 and x3 are contradictory, but
X3 and x; are not. To the triangles, we add edges between pairs of vertices if
they are labeled by contradictory literals. We claim that the resulting graph
G contains an independent set of size m if and only if @ is satisfiable.

For example, Figure 10.4.2 shows the graph G resulting from

@ = (Xx1VX2VX3)A(X2VX3 VX4)A(X1VX2VX4)A(X2VX3VX4)A (X1 VX3V Xy).

The graph G contains an independent set on five vertices as shown by
the circles in Figure 10.4.2: X from C, x3 from Cz, X from C3, X4 from Cy,
and x; from Cs. This corresponds to the truth assignment that makes x,
x», and x4 false and x3 true. That truth assignment satisfies ¢, since each
clause is satisfied.

To prove the claim that G contains an independent set of size m if and
only if @ is satisfiable, we first assume that G contains an independent set of
size m. Fix such an independent set U of m vertices. Then, U can contain at
most one vertex from each triangle, since there are edges between any two
vertices of the same triangle. Since there are only m triangles altogether,
U must contain exactly one vertex from each triangle. Consider the labels
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Figure 10.4.2 The graph G for @ = (x; VX2 Vx3) A (X2 VX3V X4) A (X1 VXV
X4) A (X2 VX3V X4)A(X1VX3VXx4). Each clause corresponds to a (flattened)
triangle. The five nodes within circles form a maximal independent set.

associated with the vertices in U. Since U is an independent set, no two of
these labels are contradictory. Therefore, if we assign the value “true” to the
literals associated with a vertex in U, we obtain a partial truth assignment to
the variables in @. This truth assignment satisfies @, since it makes at least
one literal in each clause true. The truth assignment still satisfies @ after we
assign arbitrary truth values to any remaining variables.

It remains to show that if @ is satisfiable, then G contains an indepen-
dent set of size at least m. Assume then that @ is satisfiable and fix a truth
assignment that satisfies g. With this truth assignment, at least one literal
in each clause of @ has to be made true by what it means to be satisfiable.
Choose one such literal from each clause and collect the corresponding ver-
tices in a set U. Then U contains m vertices, since we picked one vertex for
each clause (from each triangle). We claim that there cannot be any edge
between two vertices of U. Such an edge would connect to two contradictory
literals, which is not possible because we chose the vertices according to a
truth assignment and it is not possible for both a variable and its negation
to be true. Therefore, U is an independent set of size m. =

A property related to being an independent set is that of being a clique.
A set of vertices U is a clique in G = (V,E) if all edges between any two
vertices in U belong to E. The size of a maximal clique is called the clique
number of the graph and written w(G).
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Clique
Instance: Graph G = (V,E), integer k < V1.
Question: Is w(G) = k; that is, does G contain a clique of size at least k?

Cliques are areas of high connectivity in a graph. Depending on the con-
text, high connectivity can be desirable or undesirable. When we think of the
graph as a network, cliques are highly connected subgroups of the network,
very robust against server or network failures and, therefore, desirable. If,
on the other hand, the graph models conflicts and we have to find a coloring
of the graph, then large cliques are undesirable since they force us to use
many colors: Each vertex of a clique requires a different color (resource). In
either case, it is often important to know the size of a maximal clique in a
graph.

Solving the clique problem is as hard as solving the independent-set prob-
lem, since an independent setin G is a clique in G, the complement of G (for
the definition of G, see Section 2.5).

S

Theorem 10.4.3. The clique problem is NP-complete.

T

Proof. We leave it to Exercise 10.32 to show that the clique problem is in
NP. Because of Theorem 10.3.10, we can prove that the clique problem is
NP-complete by reducing any NP-complete problem to it. We show how to
reduce the NP-complete independent-set problem to the clique problem. The
reduction maps an instance G, k of the independent-set problem to the in-
stance G, k. To show that this function is indeed a reduction, assume that G
contains an independent set U on at least k vertices. Since U is an indepen-
. dent set in G, G does not contain any edges between any pair of vertices in
U. Then, by definition, G contains all edges between any two vertices of U;
| hence, U is a clique on k vertices in G (Figure 10.4.3).

1 2 1 2

(@) (b)

Figure 10.4.3 A graph G in(a) and its complement G in (b) with independent,
set {3,4,6} in G and the corresponding clique {3,4,6} in G.

T —

It remains to show that if G contains a clique on k vertices, then G has an
independent set of size k. Assume that G contains a clique U on k vertices.
Then G contains all edges between any two vertices of U. Again, by definition
of the complement of a graph, G does not contain any edges between any
two vertices of U and therefore U is an independent set of size at least k in
G. In summary, we have shown that G contains an independent set of size
at least k if and only if G contains a clique of size at least k, showing that the

——_—"——
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Graph Coloring

function that maps G, k to G, k is a reduction from the independent-set p!
lem to the clique problem. Therefore, the clique problem is NP-comple

In Theorem 10.2.16 we showed that graph k-colorability is in NP. In ¢
k = 2, we can actually solve the problem in polynomial time using bread

first search (see Exercise 10.1). The problem turns out to be NP-complete
any k > 3.

Theorem 10.4.4. Graph 3-colorability is NP-complete.

Proof. Since we already know that graph 3-colorability is in NP, it is sufficie
to show how to reduce 3SAT to 3-colorability. We translate the elements o
the 3SAT problem, variables and clauses, into components in the graph th
simulate the satisfiability behavior in the context of graph coloring. Suc
components are usually called gadgets, and this type of construction is called
a gadget construction. '

We are given a formula @ in 3-CNF with clauses C1,...,Cp. Our goal is to
construct a graph G that is 3-colorable if and only if @ is satisfiable. We build
G step by step. We start with a triangle on three vertices that we name b, t,
and f as shown in Figure 10.4.4. Since there are only three colors available,
b, t, and f have to be assigned those three different colors.

t f

b
Figure 10.4.4 The base triangle {b, 00

The colors of t and f correspond to true and false, while the third color,
the color of b, is used for encoding purposes. For each variable x in @, we

take two new vertices v, and vy to build another triangle with b at the base
(see Figure 10.4.5).

VUx Ux

b \
Figure 10.4.5 The triangle {v, vx, b}. The vertex b is the same vertex we
saw in Figure 10.4.4.

This triangle forces v, and vy to be colored with the colors of t and f,
and since the colors of v, and Ux have to be different (because of the edge



10.4 / NP-Complete Problems 471

between them), we can read a coloring as a truth assignment to x; namely,
if v, has the same color as t, we can call x true and false otherwise. In this
way, a 3-coloring of the graph induces a truth assignment to the variables,
and we therefore speak about a coloring satisfying @.

For each clause C; = £;1 Vv £ip v €3, we build a gadget that guarantees
that at least one literal in each clause is satisfied by the coloring. The gadget
is displayed in Figure 10.4.6. We call the six vertices in a row the baseline of
the gadget and the outer two vertices of the baseline its endpoints. The three
labeled vertices are the tops of the triangles. This completes the construction
of G.

2

Figure 10.4.6 The clause gadget for 3-colorings. The vertex t is the same
vertex we saw in Figure 10.4.4, and the vertices labeled ¥; ; are the vertices

we created for each variable.

Figure 10.4.7 shows G for the formula @ = (x1 VX2 VX3) A (X1 VX2V
X3) A(Xx1 VX2V X3).

We first argue that a 3-coloring of G translates to a satisfying assignment
of @. The vertices t, f, and b have to be colored with the three different
colors; so without loss of generality let us assume that t is red, f is green,
and b is blue. Now v, and vy have to be colored red and green, or green and
red, since there is an edge between them, and both are connected to the blue
b. From this information we construct a truth assignment as follows. If vy
is red, we let x be true, and false otherwise. Fix this truth assignment. We
show that this assignment satisfies ¢. Consider a clause C; = Lirvliaviis
and its corresponding gadget. Assume that £;, £i», and ¥;3 are all false
under the truth assignment we fixed. Then the tops of all three triangles in
the gadgets are green. This forces the vertices in the baseline of the gadget
to be alternately blue and red; since there are six vertices in the baseline, one
of the endpoints has to be red, which is not possible since it is connected to
t, which is colored red (see Figure 10.4.8).

Hence, one of the tops is colored red, meaning that the corresponding
literal is true in the truth assignment we fixed, and therefore clause C; is
satisfied. Since this argument is true for all clauses, all clauses are satisfied
and therefore @ is satisfied by the truth assignment, implying that @ is
satisfiable. \

In the other direction, we have to argue that if @ is satisfiable, then G
can be 3-colored. Fix a satisfying assignment of G. Color vertices t, f, and
b with colors red, green, and blue in that order. Red signifies true and green
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Figure 10.4.7 The graph G for the formula @ = (x; VX2 VX3) A (X1 VX2 V X3) A
(x1 VX2V x3). On top are the three triangles for x, x», x3; below are the three clause
gadgets, one for each clause. For example, the top of the middle triangle of the C;
gadget is vx, because the second clause contains the literal X,. Finally, the triangle
{b, f,t} surrounds the rest of the graph, the edge b to t on the left side and edges t to
f and f to b on the right side.

Figure 10.4.8 Color conflict in the clause gadget: If all tops are green, then
the colors in the baseline have to alternate between red and blue. Conse-
quently, one of the endpoints of the baseline is red, conflicting with the
red t.

signifies false. For each variable x in @, color vertex v, red and vy green, if
X is true, and v, green and vx red, if x is false. Finally, we have to show how
to color the gadgets. Since we chose a satisfying assignment, at least one
of the three top vertices of the triangles has to be red. Figure 10.4.9 shows
how to color the gadget in each of these cases. For example, if all of the tops
are red, we color the nodes of the baseline alternately with colors green and
blue.
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Figure 10.4.9 How to color the clause gadgets: when all tops are red (a),
when one of the outer tops is green (b), when both of the outer tops are
green (c), when one of the outer tops is red (d), when both of the outer tops
are red (e).

We have shown that G is 3-colorable if and only if @ is satisfiable. This
establishes that satisfiability reduces to graph 3-colorability, which, there-
fore, is NP-complete. B

The result can be strengthened to show that deciding whether a planar
graph is 3-colorable is NP-complete, although we know that all planar graphs
are 4-colorable by the four-color theorem. From the NP-completeness of the
planar case, it also follows that CROSSWORD is NP-complete, since we can
make the construction of Example 10.4.1 work for general planar graphs.
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