
CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2014

Lalla Mouatadid

Introduction to Complexity Theory: 3-Colouring is NP-complete

We next show that 3-colouring is NP-complete. What’s the colouring problem on graphs?

Given a graph G(V,E), the colouring problem asks for an assignment of k colours to the vertices c : V →
{1, 2, ..., k}. We say that a colouring is proper if adjacent vertices receives different colours: ∀(u, v) ∈ E :
c(u) 6= c(v).

The minimum colouring problem asks for the smallest k to properly colour G. The k-colouring prob-
lem asks whether G can be properly coloured using at most k colours.

We call the subset of vertices that receive the same colour a colour class. It is easy to see that every colour
class is an independent set (yeah?). Notice that we’ve encountered the colouring problem before! Recall in
Assignment 1, we wanted to send the minimum number of journalists to cover all the world cup games. Well
the subset of games a journalist got is a colour class! We were able to solve this optimization problem in
O(|V | log |V |) time, so how can we claim that the k-colouring decision problem is NP-complete?

It is the same reasoning for the Independent Set problem. One way to deal with NP-completeness is to
restrict the problem to subsets of the input (in this assignment, we restricted “arbitrary” graphs to interval
graphs). In this lecture we will show that the colouring problem on arbitrary graphs becomes NP-complete
even for k = 3 ! Crazy! No? Think about it: One easy to rule out a 3-colouring is to check if G has a clique
of size 4, like in the example below1:

How hard is it to check for a clique of size at least k = 4? We just showed that CLIQUE is NP-complete!
No luck! Even with small subgraphs (4 vertices :(). Without further ado, let’s prove our theorem:

Theorem 1. 3-COLOURING is NP-complete.

Where:

3-COLOURING: Given a graph G(V,E), return 1 if and only if there is a proper colouring of G using at
most 3 colours.

Proof. To show the problem is in NP, our verifier takes a graph G(V,E) and a colouring c, and checks in
O(n2) time whether c is a proper coloring by checking if the end points of every edge e ∈ E have different
colours.

1All the pictures are stolen from Google Images and UIUC’s algo course.

1

2

To show that 3-COLOURING is NP-hard, we give a polytime reduction from 3-SAT to 3-COLOURING.
That is, given an instance φ of 3-SAT, we will construct an instance of 3-COLOURING (i.e. a graph G(V,E))
where G is 3-colourable iff φ is satisfiable.

Let φ be a 3-SAT instance and C1, C2, ..., Cm be the clauses of φ defined over the variables {x1, x2, ..., xn}.
The graph G(V,E) that we will construct needs to capture two things: 1. somehow establish the truth
assignment for x1, x2, ..., xn via the colors of the vertices of G; and 2. somehow capture the satisfiability of
every clause Ci in φ.

To achieve these two goals, we will first create a triangle in G with three vertices {T, F,B} where T stands
for True, F for False and B for Base. Think of {T, F,B} as the set of colours we will use to colour (label)
the vertices of G. Since this triangle is part of G, we already need 3 colours to colour G. We next add two
vertices vi, vi for every literal xi and create a triangle B, vi, vi for every (vi, vi) pair, as shown below:

Notice that so far, this construction captures the truth assignment of the literals. Since if G is 3-colourable,
then either vi or vi gets the colour T , and we just interpret this as the truth assignment to vi. Now we just
need to add constraints (edges? extra vertices?) to G to capture the satisfiability of the clauses of φ. To do
so, we introduce the Clause Satisfiability Gadget, a.k.a the OR-gadget.

For a clause Ci = (a ∨ b ∨ c), we need to express the OR of its literals using our colours {T, F,B}. We
achieve this by creating a small gadget graph that we connect to the literals of the clause. The OR-gadget
is constructed as follows:

But what is it actually doing? You can think of this gadget graph as a circuit whose output is the node
labeled a ∨ b ∨ c. We basically want this node to be coloured T if Ci is satisfied and F otherwise. Notice

3

that this is a two step construction: The node labelled a ∨ b captures the output of (a ∨ b) and we repeat
the same operation for ((a ∨ b) ∨ c).

If you play around with some assignments to a, b, c, you will notice that the gadget satisfies the following
properties:

1. If a, b, c are all coloured F in a 3-colouring, then the output node of the OR-gadget has to be coloured
F . Thus capturing the unsatisfiability of the clause Ci = (a ∨ b ∨ c).

2. If one of a, b, c is coloured T , then there exists a valid 3-colouring of the OR-gadget where the output
node is coloured T . Thus again capturing the satisfiability of the clause.

We’re almost done our construction. Once we add the OR-gadget of every Ci in φ, we connect the output
node of every gadget to the Base vertex and to the False vertex of the initial triangle, as follows:

Done :) Now we prove that our initial 3-SAT instance φ is satisfiable if and only the graph G as constructed
above is 3-colourable.

Suppose φ is satisfiable and let (x∗1, x
∗
2, ..., x

∗
n) be the satisfying assignment. If x∗i is assigned True, we colour

vi with T and vi with F (recall they’re connected to the Base vertex, coloured B, so this is a valid colouring).
Since φ is satisfiable, every clause Ci = (a∨ b∨ c) must be satisfiable, i.e. at least of a, b, c is set to True. By
the second property of the OR-gadget, we know that the gadget corresponding to Ci can be 3-coloured so
that the output node is coloured T . And because the output node is adjacent to the False and Base vertices
of the initial triangle only, this is a proper 3-colouring.

Conversely, suppose G is 3-colourable. We construct an assignment of the literals of φ by setting xi to True
if vi is coloured T and vice versa. Now suppose this assignment is not a satisfying assignment to φ, then this
means there exists at least one clause Ci = (a ∨ b ∨ c) that was not satisfiable. That is, all of a, b, c were set
to False. But if this is the case, then the output node of corresponding OR-gadget of Ci must be coloured F
(by property (1)). But this output node is adjacent to the False vertex coloured F ; thus contradicting the
3-colourability of G!

To conclude, weve shown that 3-COLOURING is in NP and that it is NP-hard by giving a reduction from
3-SAT. Therefore 3-COLOURING is NP-complete.

