
Comp487/587 - Turing Machines

1 Definition of a deterministic Turing machine

(Sections 1.2-1.4 in the book)
Formally a Deterministic Turing Machine is a tuple M =< Σ,Γ,Q, δ, q0, qA, qR > where:

– Σ is the (finite) input alphabet.
– Γ is the (finite) machine’s alphabet (Σ ∪ {., 6 b}) where . is a start symbol that appears only at the beginning

of the tape and 6 b is the blank symbol.
– Q is a finite of states.
– q0 a starting set.
– qA a final accepting state.
– qR a final rejecting state.
– δ : (Q\{qA, qR}) × Γ → Q × Γ × {R,L} is the transition function. In a non final state the machine reads a

symbol γ, and then replaces γ a with a (possibly) another symbol, moves the head Right or Left, and moves to
a (possibly different) state.

The Turing machine is working on a tape that starts with . and is infinite to the right. The machine starts
working on a tape with . and then the input.The . is just for convenience and M is not allowed to write on . or
to write . anywhere on the tape. The tape head is on the left most input letter.

2 Example: the problem Palindrome

Definition 1. Given an alphabet Σ, a palindrome is a word x ∈ Σ∗ that can be read exactly the same from left to
right and from right to left. As an example: 0110, 1001001 are palindromes, 01100 is not.

Definition 2. We define the problem PAL as follows:

– Input: a binary string x.
– Output: 1 if x is a palindrome and 0 otherwise.

We now give a Turing Machine M that solves PAL. M stops at an accepting state if the given input is a
palindrome, and stops at a reject state if the input is not a palindrome. For simplicity, M does not clean the tape
and write 1/0 if it accepts/rejects.

Intuitively M works as follows:

– If in state q0, M reads the blank symbol 6 b, M accepts.
– If in state q0, M reads a symbol i ∈ 0, 1 as the leftmost symbol, the machine remembers the i (by moving to a

state qfoundi), deletes the symbol and goes all the way to the left until finds 6 b, then goes a single step to the
right to the rightmost symbol.

– Then M switches to qmatchi and compares the rightmost symbol on the right. If it is not i, M rejects.
– Otherwise M deletes the last symbol, goes all the way to the left (in state qrev), until reads 6 b, goes one step

left to the leftmost symbol and repeats back to state q0.

Formally M is defined as follows. M =< Σ,Γ,Q, δ, q0, qA, qR > where:

– Q = {q0, qA, qR, qfound0, qmatch0, qfound1, qmatch1, qrev}
– Σ = {0, 1}.
– Γ = {0, 1, b, start}

We define δ as follows:



– δ(q0, 6 b) = (qA, 1, L).
– δ(q0, 0) = (qfound0, 6 b, R)
– δ(q0, 1) = (qfound1, 6 b, R)

– δ(qfound0, 1) = (qfound0, 1, R)
– δ(qfound0, 0) = (qfound0, 0, R)
– δ(qfound0, 6 b) = (qmatch0, 6 b, L)

– δ(qmatch0, 1) = (qR, 6 b, L)
– δ(qmatch0, 0) = (qrev, 6 b, L)
– δ(qmatch0, 6 b) = (qacc, 6 b, L)

– δ(qrev, 0) = (qrev, 0, L)
– δ(qrev, 1) = (qrev, 1, L)
– δ(qrev, 6 b) = (q0, 6 b, R)

– δ(qfound1, 1) = (qfound1, 1, R)
– δ(qfound1, 0) = (qfound1, 0, R)
– δ(qfound1, 6 b) = (qmatch1, 6 b, L)

– δ(qmatch1, 0) = (qR, 6 b, L)
– δ(qmatch1, 1) = (qrev, 6 b, L)
– δ(qmatch1, 6 b) = (qA, 6 b, L)

Note: You are welcome to visit https://turingmachinesimulator.com/ where you can build, debug, and learn
more about Turing machines. Note that definitions of TMs slightly deviate at different places; one however can
easily reach from one simulation to another without excessive extra computation time.

3 Configuration

A configuration is a snapshot of the status of the TM. It includes the (finite) content of the tape, the location of
the tape head, and the state the TM is at.

The initial configuration is where the TM is at state q0, the leftmost cell is the start symbol. The content of the
tape is then a finite number of cells (starting from the left) that contains input alphabet from Σ. the head is at the
second to the left most cell, that is the first symbol of the input.

By executing the transition function, the machine moves from one configuration to another. We denote by C ` C ′
the event that the configuration C ′ is reached from the configuration C by following the transition function δ a
single time, i.e. if there is a single rule in δ that leads from C to C ′.

Definition 3. A computation of a TM M is a (possibly infinite) sequence of configuration C0, C1, · · · such that:
(1) C0 is the initial configuration; (2) for every i ≤ 0 Ci ` Ci+1; (3) if the sequence is finite then the state in the
last configuration is either qA or qR.

Definition 4. The language of a Turing machine M is denoted by L(M) and is:
L(M) = {x ∈ Σ∗|the computation of M on the input x is finite and ends in qA}.

By defining configurations we can now formally define the running time of a TM on an input.

Definition 5. The running time of M on input x is the number of configurations in a computation of M on input
x. For an infinite computation we define the running time to be ∞.

Definition 6. Let t : N → N ∪∞ be some function. We say that M runs in time t(n) if for every n ∈ N and for
every input x of length n, the running time of M on x is at most t(n) steps.
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