
Comp487/587 - Boolean Formulas

1 Logic and SAT

1.1 What is a Boolean Formula

– Logic is a way through which we can analyze and reason about simple or complicated events.
– In particular, we are interested in Boolean logic in which we simplify the events to be either 0 or 1, true or false.

This strong simplification allows us to actually reason about the events, things that we cannot do with more
complicated logics.

– One of the formal way to do this is to take atomic events, or propositions, that can each be true or false. From
these we can construct a more complicated formula through operations like “and” or “or”.

1.2 Syntax of Boolean Formulas

Symbolically, a Boolean formula is a finite string which is constructed from:

– Variables: From a set Vars of variable symbols, e.g. x1, x2 · · ·
– Boolean operators: ¬ (negation), ∨ (disjunction, or), ∧ (conjunction, and), → (implication), ↔ (equivalence)
– Parenthesis: (, ).

The definition of Boolean formulas is given recursively, as follows:

Definition 1. The set of Boolean formulas Form is the smallest set satisfying the following two properties:

– Every variable is a Boolean formula. That is, Vars ⊆ Form.
– If ψ1, ψ2 are in Form, then so are (¬ψ1), (ψ1 ∨ ψ2), (ψ1 ∧ ψ2), (ψ1 → ψ2), and (ψ1 ↔ ψ2).

Boolean formulas of the second type are called compound formulas, and the ψ1 and ψ2 are called the immediate
subformulas.

Example 1. ϕ = ((x1 ∧ (¬x2))→ ((¬x3) ∧ x2)) is a Boolean formula.

Sometimes we denote ϕ as ϕ(x1, x2, x3) to notate the (free/unquantified) variables in it. We will talk later on
quantified variables.

1.3 Semantics of Boolean Formulas

A truth assignment is an assignment of either 1 (true) or 0 (false) to each variable. We will often use T to denote
1 and F to denote 0. Formally, a truth assignment is a function τ : Vars→ {0, 1}. Notice that there are 2n possible
truth assignments over n variables.

We can use a particular truth assignment τ to evaluate a Boolean formula to be either true or false. In this
way, a Boolean formula represents a function from the set of all possible truth assignments {τ : Vars → {0, 1}} to
the set {0, 1}. We give the computation of this function recursively, along the lines of the definition above:

– If ϕ is a variable, to determine the value of ϕ we can look directly at the truth assignment. That is, to determine
ϕ(τ) we consider ϕ as a variable and use it to lookup into τ . Thus ϕ(τ) = τ(ϕ).

– If ϕ is a compound formula (with immediate subformulas ψ1 and ψ2), then:
• If ϕ = (¬ψ1) then ϕ(τ) = 1 iff ψ1(τ) = 0.
• If ϕ = (ψ1 ∨ ψ2) then ϕ(τ) = 1 iff ψ1(τ) = 1 or ψ2(τ) = 1.
• If ϕ = (ψ1 ∧ ψ2) then ϕ(τ) = 1 iff ψ1(τ) = 1 and ψ2(τ) = 1.
• If ϕ = (ψ1 → ψ2) then ϕ(τ) = 1 iff ψ1(τ) = 0 or ψ2(τ) = 1.
• If ϕ = (ψ1 ↔ ψ2) then ϕ(τ) = 1 iff either (ψ1(τ) = 1 and ψ2(τ) = 1) or (ψ1(τ) = 0 and ψ2(τ) = 0).



Example 2. Let ϕ = ((x1 ∧ (¬x2)) → ((¬x3) ∧ x2)). Let τ = {x1 7→ 1, x2 7→ 0, x3 7→ 1} i.e. the truth assignment
which sets x1 and x3 to true and x2 to false. Then ϕ(τ) = 0.

In many cases is it easy to ditch the parenthesis (unless we really need them). If we do, we give precedence to
¬ over other the Boolean operators. Obviously ((x1 ∧ x2)∧ x3) is the same as (x1 ∧ (x2 ∧ x3)) (and similarly for ∨)
so we just write (x1 ∧ x2 ∧ x3).

You can think of a Boolean formula as a way to compactly represent a set of truth assignments, namely the set
of truth assignments τ that make the formula true. We will often find two formulas that are composed of different
symbols but represent the same set of truth assignments; this motivates the following definition:

Definition 2. Two Boolean formulas are called equivalent if they have the same value under every possible truth
assignment. That is, we say ϕ and ψ are equivalent (denoted ϕ ≡ ψ) if for all τ : Vars → {0, 1} we have that
ϕ(τ) = ψ(τ).

Example 3. ϕ1 = ((x1 → x2) ∧ x1) is equivalent to ϕ2 = (x1 ∧ x2).

1.4 Truth tables

Another way to see the evaluation of the Boolean formula is by truth tables. A truth table is a table in which we
see the evaluation of a formula under all possible truth assignments.

Example 4. The truth table for ϕ = ((x1 ∧ (¬x2))→ ((¬x3) ∧ x2)) is:

x1 x2 x3 ϕ
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Notice that the size of the truth table is exponential in the number of variables. When we want to reason about
larger Boolean formulas a truth table will quickly become cumbersome.

1.5 Binary Decision Tree

Another way to describe a Boolean formula is by a Binary Decision Tree. This is a binary tree in which every layer
represents a fresh variable and every node has two children: Left (to set the variable to 0) and Right (to set the
variable to 1). Then each path in the tree represents a possible assignment for the variables; the corresponding
evaluation of the formula is the leaf at the end of the path.

Example 5. The truth table given above for ϕ = ((x1 ∧ (¬x2))→ ((¬x3) ∧ x2)) becomes:

x1

x2

x3

1 1

x3

1 1

x2

x3

0 0

x3

1 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

Note that this description of a Boolean formula is also exponential in the number of variables.

2



1.6 Satisfiability, Unsatisfiability, and Validity

Definition 3. Let ϕ be a Boolean formula.

– ϕ is called satisfiable if it is true under at least one truth assignment of the variables, i.e., if ϕ(τ) = 1 for some
truth assignment τ . We say that the assignment τ satisfies the formula.

– ϕ is called unsatisfiable if ϕ is false under every truth assignment, i.e., if ϕ(τ) = 0 for all truth assignments τ .

– ϕ is called valid if it is true under every truth assignment, i.e., if ϕ(τ) = 1 for all truth assignments τ .

Example 6. Let ϕ = (x1 ∨ x2). Then {x1 7→ 1, x2 7→ 0} satisfies ϕ but {x1 7→ 0, x2 7→ 0} does not satisfy ϕ. Thus ϕ
is satisfiable but not valid.

Example 7. ϕ = (x ∨ ¬x) is valid.

1.7 CNF, k-CNF

We will shortly be interested in determining the complexity of checking satisfiability of a Boolean formula. It turns
out that we do not always have to consider every possible Boolean formula. Instead, it is sufficient to consider only
a certain subset of Boolean formulas. A common subset is known as CNF.

Definition 4. – A literal is either a variable (x) or the negation of a variable (¬x).

– A [CNF -]clause is the disjunction (or) of literals.

– A Boolean formula is in Conjunctive Normal Form (CNF ) if it is the conjunction of disjunctions of literals.

That is, ϕ is in CNF if

ϕ =
∧

(
∨
`i) = (`1 ∨ `2 ∨ · · · ∨ `a1) ∧ (`a1+1 ∨ `a1+2 ∨ · · · ∨ `a2) ∧ · · · ∧ (`ab−1+1 ∨ `ab−1+2 ∨ · · · ∨ `ab

)

where each `i is a literal (either a variable or the negation of a variable). For a truth assignment to satisfy a CNF
formula it must satisfy at least one literal from every clause. Note that the concatenation of two CNF formulas is
still a CNF formula.

Example 8. (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3 ∨ x5 ∨ x4) ∧ (x4 ∨ ¬x2) is in CNF.

It is often interesting to consider only CNF formulas with the same number of literals, k, in each clause. This defines
a subset of CNF formulas known as k-CNF formulas:

Definition 5. Let k ≥ 2 be an integer. A formula φ is in k-CNF if it is in CNF and there are exactly k literals in
each clause.

Example 9. (x1 ∨ ¬x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x4) ∧ (x4 ∨ ¬x2 ∨ x1) is in 3-CNF.

1.8 SAT, k-SAT

Checking the satisfiability of Boolean formulas is a famous important problem. It turns out that checking the
satisfiability of general Boolean formulas is equivalent to checking the satisfiability of Boolean formulas in CNF,
because of the following theorem:

Theorem 1. There is a polynomial time algorithm that, given a Boolean formula ϕ, will construct a CNF formula
which is satisfiable iff ϕ is satisfiable.

Proof. The proof of this theorem will be given as a Homework Exercise

3



The formula constructed in the theorem above may introduce a linear fraction of new variables. It is also possible
to construct a CNF formula equivalent (not just equi-satisfiable) to a given Boolean formula without introducing
new variables, but the new formula may be exponentially larger in the worst-case.

We can define two decision problems, SAT and k-SAT, that check the satisfiability of a formula in either CNF
or k-CNF:

SAT:
Input: a Boolean formula ϕ in CNF
Output: Yes if ϕ is satisfiable, No otherwise.

k-SAT:
Input: a Boolean formula ϕ in k-CNF
Output: Yes if ϕ is satisfiable, No otherwise.

We will see later that these two decision problems are closely related. In fact, both SAT and k-SAT (for k ≥ 3) are
NP-complete.

2 Exercises

2.1 Problem 1

Which of the following is a Boolean formula?

1. (x1¬x2 ∧ x3)→ (¬(x2)

2. (x2)

3. (x1 ∨ x2) ∧ ¬((x2 ↔ (¬x3)))

2.2 Problem 2

Prove the De-Morgan laws. That is, for every pair of Boolean formulas ψ1, ψ2 we have:

1. (¬(ψ1 ∨ ψ2)) ≡ (¬ψ1 ∧ ¬ψ2)

2. (¬(ψ1 ∧ ψ2)) ≡ (¬ψ1 ∨ ¬ψ2)

3. ¬(¬ψ1) ≡ ψ1

2.3 Problem 3

Prove the distributive and associative properties. That is, for every pair of Boolean formulas ψ1, ψ2, ψ3 we have:

1. (ψ1 ∨ ψ2) ∨ ψ3 = ψ1 ∨ (ψ2 ∨ ψ3)

2. (ψ1 ∧ ψ2) ∧ ψ3 = ψ1 ∧ (ψ2 ∧ ψ3)

3. (ψ1 ∨ ψ2) ∧ ψ3 = (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3)

4. (ψ1 ∧ ψ2) ∨ ψ3 = (ψ1 ∨ ψ3) ∧ (ψ2 ∨ ψ3)

5. Is it also true that (ψ1 ∧ ψ2) ∨ ψ3 = ψ1 ∧ (ψ2 ∨ ψ3) ?

2.4 Problem 4

Prove all of the following. Let ϕ be a Boolean formula:

1. ϕ is valid iff ¬(ϕ) is not satisfiable.

2. ϕ is no valid iff ¬(ϕ) is satisfiable.

3. ϕ is satisfiable iff ¬(ϕ) is not valid.

4



2.5 Problem 5

Let ϕ = (x1 ∧ x2)→ ((x2 ∨ ¬x3) ∧ (x1 ∧ x3 ∧ ¬x2)).

1. Draw the truth table and Binary Decision Tree of ϕ.
2. Is ϕ satisfiable/valid/not-satisfiable? If satisfiable, which assignments satisfy ϕ?
3. Let ψ ≡ (x1 ∧ ¬x2 ∧ x3) Prove or refute that ϕ and ψ are equivalent.

2.6 Problem 6

We learned about formulas in CNF. A formula is in Disjunctive Normal Form (DNF ) if if it is the disjunction of
conjunctions of literals. For example, (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3 ∧ x5 ∧ x4) ∨ (x4 ∧ ¬x2) is a formula in DNF.
Prove the following:

1. ϕ is a DNF formula iff ¬ϕ is a CNF formula.
2. L = {ϕ | ϕ is a DNF formula} is in PTIME.

5


