Comp487/587-Boolean Formulas

1 Logic and SAT

1.1 What is a Boolean Formula

- Logic is a way through which we can analyze and reason about simple or complicated events.
- In particular, we are interested in Boolean logic in which we simplify the events to be either 0 or 1 , true or false. This strong simplification allows us to actually reason about the events, things that we cannot do with more complicated logics.
- One of the formal way to do this is to take atomic events, or propositions, that can each be true or false. From these we can construct a more complicated formula through operations like "and" or "or".

1.2 Syntax of Boolean Formulas

Symbolically, a Boolean formula is a finite string which is constructed from:

- Variables: From a set Vars of variable symbols, e.g. $x_{1}, x_{2} \ldots$
- Boolean operators: \neg (negation), \vee (disjunction, or), \wedge (conjunction, and) \rightarrow (implication), \leftrightarrow (equivalence)
- Parenthesis: (,).

The definition of Boolean formulas is given recursively, as follows:
Definition 1. The set of Boolean formulas Form is the smallest set satisfying the following two properties:

- Every variable is a Boolean formula. That is, Vars \subseteq Form.
- If ψ_{1}, ψ_{2} are in Form, then so are $\left(\neg \psi_{1}\right),\left(\psi_{1} \vee \psi_{2}\right),\left(\psi_{1} \wedge \psi_{2}\right),\left(\psi_{1} \rightarrow \psi_{2}\right)$, and $\left(\psi_{1} \leftrightarrow \psi_{2}\right)$.

Boolean formulas of the second type are called compound formulas, and the ψ_{1} and ψ_{2} are called the immediate subformulas.

Example 1. $\varphi=\left(\left(x_{1} \wedge\left(\neg x_{2}\right)\right) \rightarrow\left(\left(\neg x_{3}\right) \wedge x_{2}\right)\right)$ is a Boolean formula.
Sometimes we denote φ as $\varphi\left(x_{1}, x_{2}, x_{3}\right)$ to notate the (free/unquantified) variables in it. We will talk later on quantified variables.

1.3 Semantics of Boolean Formulas

A truth assignment is an assignment of either 1 (true) or 0 (false) to each variable. We will often use T to denote 1 and F to denote 0 . Formally, a truth assignment is a function τ : Vars $\rightarrow\{0,1\}$. Notice that there are 2^{n} possible truth assignments over n variables.

We can use a particular truth assignment τ to evaluate a Boolean formula to be either true or false. In this way, a Boolean formula represents a function from the set of all possible truth assignments $\{\tau:$ Vars $\rightarrow\{0,1\}\}$ to the set $\{0,1\}$. We give the computation of this function recursively, along the lines of the definition above:

- If φ is a variable, to determine the value of φ we can look directly at the truth assignment. That is, to determine $\varphi(\tau)$ we consider φ as a variable and use it to lookup into τ. Thus $\varphi(\tau)=\tau(\varphi)$.
- If φ is a compound formula (with immediate subformulas ψ_{1} and ψ_{2}), then:
- If $\varphi=\left(\neg \psi_{1}\right)$ then $\varphi(\tau)=1$ iff $\psi_{1}(\tau)=0$.
- If $\varphi=\left(\psi_{1} \vee \psi_{2}\right)$ then $\varphi(\tau)=1$ iff $\psi_{1}(\tau)=1$ or $\psi_{2}(\tau)=1$.
- If $\varphi=\left(\psi_{1} \wedge \psi_{2}\right)$ then $\varphi(\tau)=1$ iff $\psi_{1}(\tau)=1$ and $\psi_{2}(\tau)=1$.
- If $\varphi=\left(\psi_{1} \rightarrow \psi_{2}\right)$ then $\varphi(\tau)=1$ iff $\psi_{1}(\tau)=0$ or $\psi_{2}(\tau)=1$.
- If $\varphi=\left(\psi_{1} \leftrightarrow \psi_{2}\right)$ then $\varphi(\tau)=1$ iff either $\left(\psi_{1}(\tau)=1\right.$ and $\left.\psi_{2}(\tau)=1\right)$ or $\left(\psi_{1}(\tau)=0\right.$ and $\left.\psi_{2}(\tau)=0\right)$.

Example 2. Let $\varphi=\left(\left(x_{1} \wedge\left(\neg x_{2}\right)\right) \rightarrow\left(\left(\neg x_{3}\right) \wedge x_{2}\right)\right)$. Let $\tau=\left\{x_{1} \mapsto 1, x_{2} \mapsto 0, x_{3} \mapsto 1\right\}$ i.e. the truth assignment which sets x_{1} and x_{3} to true and x_{2} to false. Then $\varphi(\tau)=0$.

In many cases is it easy to ditch the parenthesis (unless we really need them). If we do, we give precedence to \neg over other the Boolean operators. Obviously $\left(\left(x_{1} \wedge x_{2}\right) \wedge x_{3}\right)$ is the same as $\left(x_{1} \wedge\left(x_{2} \wedge x_{3}\right)\right)$ (and similarly for \vee) so we just write ($x_{1} \wedge x_{2} \wedge x_{3}$).

You can think of a Boolean formula as a way to compactly represent a set of truth assignments, namely the set of truth assignments τ that make the formula true. We will often find two formulas that are composed of different symbols but represent the same set of truth assignments; this motivates the following definition:
Definition 2. Two Boolean formulas are called equivalent if they have the same value under every possible truth assignment. That is, we say φ and ψ are equivalent (denoted $\varphi \equiv \psi$) if for all $\tau: \operatorname{Vars} \rightarrow\{0,1\}$ we have that $\varphi(\tau)=\psi(\tau)$.
Example 3. $\varphi_{1}=\left(\left(x_{1} \rightarrow x_{2}\right) \wedge x_{1}\right)$ is equivalent to $\varphi_{2}=\left(x_{1} \wedge x_{2}\right)$.

1.4 Truth tables

Another way to see the evaluation of the Boolean formula is by truth tables. A truth table is a table in which we see the evaluation of a formula under all possible truth assignments.
Example 4. The truth table for $\varphi=\left(\left(x_{1} \wedge\left(\neg x_{2}\right)\right) \rightarrow\left(\left(\neg x_{3}\right) \wedge x_{2}\right)\right)$ is:

$$
\begin{array}{|c|c|c|c|}
\hline x_{1} & x_{2} & x_{3} & \varphi \\
\hline 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

Notice that the size of the truth table is exponential in the number of variables. When we want to reason about larger Boolean formulas a truth table will quickly become cumbersome.

1.5 Binary Decision Tree

Another way to describe a Boolean formula is by a Binary Decision Tree. This is a binary tree in which every layer represents a fresh variable and every node has two children: Left (to set the variable to 0) and Right (to set the variable to 1). Then each path in the tree represents a possible assignment for the variables; the corresponding evaluation of the formula is the leaf at the end of the path.

Example 5. The truth table given above for $\varphi=\left(\left(x_{1} \wedge\left(\neg x_{2}\right)\right) \rightarrow\left(\left(\neg x_{3}\right) \wedge x_{2}\right)\right)$ becomes:

Note that this description of a Boolean formula is also exponential in the number of variables.

1.6 Satisfiability, Unsatisfiability, and Validity

Definition 3. Let φ be a Boolean formula.
$-\varphi$ is called satisfiable if it is true under at least one truth assignment of the variables, i.e., if $\varphi(\tau)=1$ for some truth assignment τ. We say that the assignment τ satisfies the formula.
$-\varphi$ is called unsatisfiable if φ is false under every truth assignment, i.e., if $\varphi(\tau)=0$ for all truth assignments τ.
$-\varphi$ is called valid if it is true under every truth assignment, i.e., if $\varphi(\tau)=1$ for all truth assignments τ.
Example 6. Let $\varphi=\left(x_{1} \vee x_{2}\right)$. Then $\left\{x_{1} \mapsto 1, x_{2} \mapsto 0\right\}$ satisfies φ but $\left\{x_{1} \mapsto 0, x_{2} \mapsto 0\right\}$ does not satisfy φ. Thus φ is satisfiable but not valid.

Example 7. $\varphi=(x \vee \neg x)$ is valid.

1.7 CNF, k-CNF

We will shortly be interested in determining the complexity of checking satisfiability of a Boolean formula. It turns out that we do not always have to consider every possible Boolean formula. Instead, it is sufficient to consider only a certain subset of Boolean formulas. A common subset is known as CNF.

Definition 4. - A literal is either a variable (x) or the negation of a variable $(\neg x)$.

- A [CNF-]clause is the disjunction (or) of literals.
- A Boolean formula is in Conjunctive Normal Form ($C N F$) if it is the conjunction of disjunctions of literals.

That is, φ is in CNF if

$$
\varphi=\bigwedge\left(\bigvee \ell_{i}\right)=\left(\ell_{1} \vee \ell_{2} \vee \cdots \vee \ell_{a_{1}}\right) \wedge\left(\ell_{a_{1}+1} \vee \ell_{a_{1}+2} \vee \cdots \vee \ell_{a_{2}}\right) \wedge \cdots \wedge\left(\ell_{a_{b-1}+1} \vee \ell_{a_{b-1}+2} \vee \cdots \vee \ell_{a_{b}}\right)
$$

where each ℓ_{i} is a literal (either a variable or the negation of a variable). For a truth assignment to satisfy a CNF formula it must satisfy at least one literal from every clause. Note that the concatenation of two CNF formulas is still a CNF formula.

Example 8. $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{4} \vee \neg x_{2}\right)$ is in CNF.
It is often interesting to consider only CNF formulas with the same number of literals, k, in each clause. This defines a subset of CNF formulas known as k-CNF formulas:

Definition 5. Let $k \geq 2$ be an integer. A formula ϕ is in k-CNF if it is in CNF and there are exactly k literals in each clause.

Example 9. $\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{3} \vee x_{5} \vee x_{4}\right) \wedge\left(x_{4} \vee \neg x_{2} \vee x_{1}\right)$ is in 3-CNF.

1.8 SAT, k-SAT

Checking the satisfiability of Boolean formulas is a famous important problem. It turns out that checking the satisfiability of general Boolean formulas is equivalent to checking the satisfiability of Boolean formulas in CNF, because of the following theorem:

Theorem 1. There is a polynomial time algorithm that, given a Boolean formula φ, will construct a CNF formula which is satisfiable iff φ is satisfiable.

Proof. The proof of this theorem will be given as a Homework Exercise

The formula constructed in the theorem above may introduce a linear fraction of new variables. It is also possible to construct a CNF formula equivalent (not just equi-satisfiable) to a given Boolean formula without introducing new variables, but the new formula may be exponentially larger in the worst-case.

We can define two decision problems, SAT and k-SAT, that check the satisfiability of a formula in either CNF or k-CNF:

SAT:
Input: a Boolean formula φ in CNF
Output: Yes if φ is satisfiable, No otherwise.
k-SAT:
Input: a Boolean formula φ in k-CNF
Output: Yes if φ is satisfiable, No otherwise.
We will see later that these two decision problems are closely related. In fact, both SAT and k-SAT (for $k \geq 3$) are NP-complete.

2 Exercises

2.1 Problem 1

Which of the following is a Boolean formula?

1. $\left(x_{1} \neg x_{2} \wedge x_{3}\right) \rightarrow\left(\neg\left(x_{2}\right)\right.$
2. $\left(x_{2}\right)$
3. $\left(x_{1} \vee x_{2}\right) \wedge \neg\left(\left(x_{2} \leftrightarrow\left(\neg x_{3}\right)\right)\right)$

2.2 Problem 2

Prove the De-Morgan laws. That is, for every pair of Boolean formulas ψ_{1}, ψ_{2} we have:

1. $\left(\neg\left(\psi_{1} \vee \psi_{2}\right)\right) \equiv\left(\neg \psi_{1} \wedge \neg \psi 2\right)$
2. $\left(\neg\left(\psi_{1} \wedge \psi_{2}\right)\right) \equiv\left(\neg \psi_{1} \vee \neg \psi 2\right)$
3. $\neg\left(\neg \psi_{1}\right) \equiv \psi_{1}$

2.3 Problem 3

Prove the distributive and associative properties. That is, for every pair of Boolean formulas $\psi_{1}, \psi_{2}, \psi_{3}$ we have:

1. $\left(\psi_{1} \vee \psi_{2}\right) \vee \psi_{3}=\psi_{1} \vee\left(\psi_{2} \vee \psi_{3}\right)$
2. $\left(\psi_{1} \wedge \psi_{2}\right) \wedge \psi_{3}=\psi_{1} \wedge\left(\psi_{2} \wedge \psi_{3}\right)$
3. $\left(\psi_{1} \vee \psi_{2}\right) \wedge \psi_{3}=\left(\psi_{1} \wedge \psi_{3}\right) \vee\left(\psi_{2} \wedge \psi_{3}\right)$
4. $\left(\psi_{1} \wedge \psi_{2}\right) \vee \psi_{3}=\left(\psi_{1} \vee \psi_{3}\right) \wedge\left(\psi_{2} \vee \psi_{3}\right)$
5. Is it also true that $\left(\psi_{1} \wedge \psi_{2}\right) \vee \psi_{3}=\psi_{1} \wedge\left(\psi_{2} \vee \psi_{3}\right)$?

2.4 Problem 4

Prove all of the following. Let φ be a Boolean formula:

1. φ is valid iff $\neg(\varphi)$ is not satisfiable.
2. φ is no valid iff $\neg(\varphi)$ is satisfiable.
3. φ is satisfiable iff $\neg(\varphi)$ is not valid.

2.5 Problem 5

Let $\varphi=\left(x_{1} \wedge x_{2}\right) \rightarrow\left(\left(x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \wedge x_{3} \wedge \neg x_{2}\right)\right)$.

1. Draw the truth table and Binary Decision Tree of φ.
2. Is φ satisfiable/valid/not-satisfiable? If satisfiable, which assignments satisfy φ ?
3. Let $\psi \equiv\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right)$ Prove or refute that φ and ψ are equivalent.

2.6 Problem 6

We learned about formulas in CNF. A formula is in Disjunctive Normal Form ($D N F$) if if it is the disjunction of conjunctions of literals. For example, $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{5} \wedge x_{4}\right) \vee\left(x_{4} \wedge \neg x_{2}\right)$ is a formula in DNF. Prove the following:

1. φ is a DNF formula iff $\neg \varphi$ is a CNF formula.
2. $L=\{\varphi \mid \varphi$ is a DNF formula $\}$ is in PTIME.
