Comp487/587-Exercise 4

- This exercise is due at the beginning of class.
- Questions labeled with (COMP 587) are required only for students in COMP 587. All other questions are required both for students in COMP 487 and students in COMP 587.
- Collaboration is allowed and encouraged, but every student must write the solutions in his/her own words. Indicate clearly the name(s) of people you collaborated with.
- Note on the submission the total number of hours spent on this assignment.

Problem 1: PSPACE and Log-Space Reductions (25 points)

Part 1 [10 points]: Prove that the following language is PSPACE-complete:

$$
\text { AcceptTM}=\left\{\left(\lceil M\rceil, x, 1^{n}\right) \mid M \text { is a DTM that accpets } x \text { in space } n\right\}
$$

Part 2 [15 points]: Prove that $\leq_{l o g}$ is transitive. That is, for every triple of languages A, B, C, if $A \leq \log B$ and $B \leq \log C$ then $A \leq \log C$.

Problem 2: Using the Proof of Savitch's Theorem (25 Points)

A directed graph $G=(V, E)$ is called a layer graph if there is a partition of V into k disjoint sets $V_{1}, \cdots V_{k}$ such that all the edges are from one layer to the next. (i.e $E \subseteq \bigcup_{1 \leq i<k}\left(V_{i} \times V_{i+1}\right)$). Prove that the following language is in $D S P A C E\left(\log ^{2}(n)\right)$:

EvenCon $=\left\{\left(G=\left(V_{1}, V_{2}, \cdots, V_{k}, E\right), s, t\right) \mid\right.$ there are an even number of distinct paths from s to t in G, $s \in V_{1}, t \in V_{k}$, and G is a layer graph under the partition $\left.V_{1}, \cdots, V_{k}\right\}$
(Note that two paths are distinct if they do not contain exactly the same vertices in the same order).

Problem 3: 2SAT (25 points)

Part 1 [10 points]: Prove that $\overline{2 S A T} \in N L$.

Part 2 [10 points]: Prove that $\overline{2 S A T}$ is $N L$-hard.

- Hint: Show a reduction from st-Con that takes as input a graph with n vertices and m edges and constructs a formula with n variables and $m+2$ clauses.

Part 3 [5 points]: Prove that $2 S A T$ is NL-complete.

Problem 4: Linear-Exponential Time (25 points)

Consider $\operatorname{LinEXP}=\bigcup_{c \in \mathbb{N}} D T I M E\left(2^{c n}\right)$ and $\operatorname{LinNEXP}=\bigcup_{c \in \mathbb{N}} N T I M E\left(2^{c n}\right)$. Given a language L, we define $L_{p a d}=\left\{\left(x, 1^{2^{|x|}}\right) \mid x \in L\right\}$ (i.e., the language where we pad every word $x \in L$ with $2^{|x|} 1$'s).

Part 1 [10 points]: Prove that if $L \in \operatorname{LinNEXP}$ then $L_{p a d} \in N P$.

Part 2 [10 points]: Prove that if $L_{p a d} \in P$ then $L \in \operatorname{LinEXP}$.

Part 3 [5 points]: Prove that if $P=N P$ then $\operatorname{LinEXP}=\operatorname{LinNEXP}$.

(COMP 587) Problem 5: Bipartite Perfect Matching (20 points)

We say that $G=(V, E)$ has a perfect matching if there is a set of edges $E^{\prime} \subseteq E$ such that every vertex $v \in V$ has is contained in exactly one edge from E^{\prime}. Consider the following language:

$$
\text { BipPer } f \text { Match }=\{G \mid G \text { is an undirected bipartite graph with a perfect matching }\}
$$

Prove that st-Con $\leq_{\log }$ BipPerfMatch.

