
Because OOPs is way more fun!

You want to decouple the object logic

from the object (= decouple the data

structure from the algorithms to process

it)…

You now have two things…
• Host: The Object (data structure)

• Visitor: The Object Logic (algorithm)

MULTIPLE CONCRETE HOSTS

VISITOR

HOST

ONE VISIT METHOD PER

CONCRETE HOST:

-visitConcreteHost1(host)

-visitConcreteHost2(host)

-visitConcreteHost3(host)

-etc.

With just the Visitor Pattern, each concrete
Visitorm must contain a method (case)
corresponding to each concrete host.
• If you have three concrete objects, Truck, Car, and

Bus, all visitors must have (read: the top-level Visitor
interface has) a method corresponding to each
concrete host, i.e. truckCase(), carCase() and
busCase(). If you want to make the Visitor Move, you
need to implement all of these methods. Adding
another type of Visitor, perhaps Stop, would require
implementing N concrete Visitor methods (cases)
where N is the number of different types of objects to
process over (hosts).

The problem arises if you want to add
more hosts. In the standard pattern, the
number of host is considered invariant,
so it is unsurprising that adding more
hosts causes problems.

To add one more host requires the
addition of one more method (case) to
the abstract Visitor interface. This means
that one more concrete case must be
added to all existing visitors.

To circumvent the problem of invariant number of hosts, a
traditional work-around is to use an abstract top-level Visitor
class.
 This class implements all cases with no-op behavior.
 Concrete Visitors, override only the methods they need.
 Thus to add another host, is to add another no-op case to

the abstract Visitor superclass.
 No modification of existing concrete Visitors is required.
Limitations:
 Cannot add or subtract hosts dynamically.
 All visitors must have the same default behavior for any

cases they don’t explicitly override.

(from Nguyen and Wong, “Design Patterns for Self-balancing
Trees”, OOPSLA 2002)

Instead of multiple cases, one for each host, replace them all
with a single, parameterized case, “caseAt(index)”:

 Each host calls the case with a unique index value, i.e hosti
calls caseAt(i) on the visitor.
 Internally, a visitor can implement caseAt(index) any way
it wishes.

• One way is for the Visitor to hold a dictionary of lambdas, keyed to
the index value. The return value is simply the execution of the
lambda associated with the given index.

• If a lambda for a given index is not found, a default lambda is run,
giving consistent, well-mannered and predictable default behavior.

 Dynamic addition and subtraction of hosts.
• Adding or removing of hosts is simply a matter of adding or

removing lambdas associated with that host’s index value.
 Dynamic modification of behavior

• Changing the associated lambda for a host’s index will
immediately change that visitor’s behavior for that host.

 Variable default behavior
• Default behavior is definable at the concrete Visitor level by

setting individual default lambdas, so each visitor can have
different default behaviors.

 (C# only) The ability to define hosts by generic
types.

• With run-time generics, the host’s type information is usable as
an index value, e.g. Packet<T> can use T as an index value and
thus Visitors can be defined to handle a dynamically changing
number of T types.

With the EVP, we now have more options
for building, choosing, and swapping out
algorithms that operate on the Host.

The EVP design pattern is characterized
by 4 generic types:
• H = the superclass type for all concrete hosts

• I = the type of the index value being used

• P = the type of the vararg input parameter to the
execution (acceptance) of a visitor.

• R = the return type of a visitor execution.

Hopefully you now know the motivation

for the changes in the Visitor Pattern that

lead up to the Extended Visitor Pattern.

Now we just need one MoveVisitor for

any type of object.

 If these slides weren’t clear enough, just

let me know!

