
DEMO
A Language for Practice Implementation

Comp 506, Spring 2020

1 Purpose

This document describes the Demo programming language. Demo was invented for in-
structional purposes; it has no real use aside from programming assignments in compiler-
construction courses, such as COMP 506. In different years, we expect to use Demo in
different ways; thus, this document is separate from the handout that describes your specific
assignment, and the document contains information that may seem irrelevant to your current
assignment. It is, however, the ultimate definition of Demo for your current assignment.

2 The DEMO Language

Demo is a simple, Algol-like language. It is not intended as a replacement for any known
programming language. In fact, by design it has few of the features that programmers find
useful in writing large programs. It is intended to be simple enough to implement in a
single semester, but powerful enough to illustrate many of the common features of Algol-
like languages. It avoids many complications; each of its features was added to illustrate a
specific problem that arises in the design and implementation of a compiler.

Demo supports two data types: integer and character. Each of these types can be
aggregated into vectors and arrays. You can assume that the underlying hardware supports
integers with 32 bit, twos-complement arithmetic, and that four characters fit into a word.
The type system is trivial; coercions from integer to character and back are not allowed.

Demo supports a number of simple control structures: a compound statement, while
and for loops, and an if-then-else construct. Limited input and output primitives are
provided. At the moment, procedure calls are not defined in the language, although they
are likely to be added in the future. Thus, a Demo program is written as a single function.

2.1 Syntax

The following the context-free grammar describes the syntax of Demo. It is written in a
modified Backus-Naur Form [?, p. 87]. Nonterminal symbols are typeset in slanted roman
text, while TERMINAL symbols are underlined and typeset in CAPITAL LETTERS.

Procedure → PROCEDURE NAME

{ Decls Stmts }

Decls → Decls Decl ;

| Decl ;

Decl → Type SpecList

Type → INT

| CHAR

SpecList → SpecList , Spec

| Spec

Spec → NAME

| NAME [Bounds]

Bounds → Bounds , Bound

| Bound

Bound → NUMBER : NUMBER

Stmts → Stmts Stmt

| Stmt

Stmt → Reference = Expr ;

| { Stmts }

| WHILE (Bool) { Stmts }
| FOR NAME = Expr TO

Expr BY Expr { Stmts }

| IF (Bool) THEN Stmt

| IF (Bool) THEN Stmt

ELSE Stmt

| READ Reference ;

| WRITE Expr ;

Bool → NOT OrTerm

| OrTerm

OrTerm → OrTerm OR AndTerm

| AndTerm

AndTerm → AndTerm AND RelExpr

| RelExpr

RelExpr → RelExpr LT Expr

| RelExpr LE Expr

| RelExpr EQ Expr

| RelExpr NE Expr

| RelExpr GE Expr

| RelExpr GT Expr

| Expr

Expr → Expr + Term

| Expr – Term

| Term

Term → Term * Factor

| Term / Factor

| Factor

Factor → (Expr)

| Reference

| NUMBER

| CHARCONST

Reference → NAME

| NAME [Exprs]

Exprs → Expr , Exprs

| Expr

This grammar is ambiguous. You will need to transform the grammar to make it suitable for
the parsing technique that you use. You should consult reference materials for an explanation
of how to transform a grammar for either ll(1) or lr(1) parser generators [?, Ch. 3].

2.2 Microsyntax

The following table specifies the spelling of the TERMINAL SYMBOLS in Demo, except for
NAME, NUMBER, and CHARCONST.

DEMO 2 Spring 2020

Terminal Spelling

AND and

BY by

CHAR char

ELSE else

FOR for

IF if

INT int

NOT not

OR or

PROCEDURE procedure

READ read

THEN then

TO to

WHILE while

WRITE write

Reserved Words

Terminal Spelling

+ +

– -

* *

/ /

LT <

LE <=

EQ ==

NE !=

GT >

GE >=

Operators

Terminal Spelling

: :

; ;

, ,

= =

{ {
} }
[[

]]

((

))

Punctuation

Additional Notes

1. NAME is specified by the regular expression Letter (Letter |Digit)∗, where Letter is any
uppercase or lowercase English letter, from a to z and Digit is a digit between 0 and 9.
In lex or flex, we could write the rule for NAME as [A-Za-z][A-Za-z0-9]∗

2. NUMBER is specified as the positive closure of Digit. In lex of flex notation, we could
write NUMBER as [0-9]+, or [0-9][0-9]∗.

3. CHARCONST contains a single character, surrounded by single quotes. Any valid ascii
character can appear between the quotes. Examples might be ’a’, ’b’, ’6’, and ’?’. Since
neither the forward single quote, ‘, nor the backward single quote, ’, have any other
use in Demo, the scanner should treat them as interchangeable.

4. In Demo blanks are significant. Thus, “andor” is a valid NAME, while “and or” contains
the terminals AND and OR. Reserved words, as shown in the table, cannot be used for
any other purpose.

5. The characters “//” denote the start of a comment that runs until the end of the current
input line.

6. Note that Demo inherits the unfortunate spelling of the boolean equality operator (EQ)
from c. EQ is spelled “==”.

2.3 The Meaning of a DEMO Program

Program Structure A Demo program consists of a header, followed by a set of declarations,
followed by a set of executable statements. The header consists of the PROCEDURE keyword,
followed by a procedure name. The declarations and executable statements are enclosed in
curly braces (’{’ and ’}’). All statements, whether declaration or executable, end with a
semicolon (’;’).

DEMO 3 Spring 2020

In the current incarnation of Demo, a program consists of a single procedure. Demo has
no provision for either multiple procedures or procedure calls.1

Declarations Demo supports two data types: integer and character. Integers occupy a single
word in the iloc virtual machine, while characters occupy 1

4
of a word. Either integers

or characters can be aggregated into arrays. Thus, an NAME may represent (1) an integer
variable, (2) an integer array, (3) a character variable2, or (4) a character array.

NAME s must be declared in a Decl statement. A given NAME can only occur in one Decl
statement. For example, an integer array A, with dimensions of [1,10] and [2,8] would be
declared as

int A[1:10,2:8];

Demo is case sensitive; that is, a and A are distinct NAME s. Given the declaration shown
above, A cannot appear in another declaration, while a would be legal.

Example
int a, b[1:10], c[1:10,1:100];

char d, e[1:10], f[1:10,1:100];

declares three integer variables, a, b, and c, as well as three character variables, d, e, and f.
a and d are scalar values. b and e are both vectors with ten elements, starting at index 1.
c and f are both two-dimensional arrays, with the given bounds.

Storage Assignment
Because the current version of Demo only supports a single procedure, a Demo compiler
has unusual freedom in storage layout. All variables have the same lifetime as the current
procedure—they are local variables in the sense that term is used in Algol-like languages.

• Scalar variables can be assigned either a location in data memory or in a virtual register.

• Aggregates (e.g., vectors and multi-dimensional arrays) must be assigned locations in
data memory.

The Iloc virtual machine has separate data and program memory. It requires that integer
references be word-aligned, but places no other restrictions on the use of data memory.

Executable Statements Demo supports an assignment statement, a compound construct, three
control structures, and two statements for handling input and output (I/O).

1As experience grows with comp 506, we may add provisions for multiple procedures and procedure calls.
2A character variable holds exactly one character

DEMO 4 Spring 2020

Assignment
The assignment statement requires that its left-hand side and its right-hand side evaluate to
the same type. Demo does not support coercions, so a character LHS requires a character
RHS and an integer LHS requires an integer LHS. Similarly, the RHSmust evaluate to a single
value; if the LHS refers to an aggregate (vector or array), it must evaluate to a single element
of that aggregate.

Compound Statement
The compound statement consists of a list of statements surrounded by curly braces, { and }.
From the perspective of any surrounding control-flow construct, a compound statement is
treated as a single statement; that is, if any statement in the compound statement executes,
they all execute in an order equivalent to the order given in the source program.

The grammar allows compound statements to be nested, as in

{ a = 0; { b = 0; { c = 0; } } { d = 0; } e = 1; }

None of the blanks in this example compound statement are required. The blanks are,
however, legal and were added to improve readability.

Demo does not allow an empty statement or statement list. Thus, any of

x = 1; ; // second semicolon is anempty statement

{ } // empty statement list

{ ; } // empty statement in a list

should produce a syntax error.

Control Structures
Demo supports three control-flow constructs: a for loop, a while loop, and an if-then-else
construct.

Boolean Values The while loop and the if-then-else require Boolean expressions, a
Bool in the grammar. In Demo, a Boolean expression is evaluated as an integer expression,
with the value zero representing false and any non-zero value representing true.

For Loop The for loop is a standard iterative loop, with fairly typical semantics. The
loop header reads as:

for iv = ex1 to ex2 by ex3

The loop’s index variable, iv takes on a series of values from ex1 to ex2 in increments of ex3.
The index variable must be an integer, and all of ex1, ex2, and ex3 must evaluate to integer
values. If ex1 > ex2, the statement list under loop’s control does not execute.

While Loop The while loop provides a simple mechanism for iteration. It executes the
statement list under its control until the controlling expression evaluates to false (see the
earlier discussion of Boolean values). The order of execution of a while loop is always:

(1) evaluate the controlling expression;

(2) if the result is true, then execute the controlled statement and go back to step (1).

DEMO 5 Spring 2020

If-Then-Else The if-then-else construct allows conditional control of a statement. An
if-then-else first evaluates the controlling expression to a Boolean value (see the earlier
discussion of Boolean values). If the result is true, the code executes the statement under
the then clause. If the result is false and the then clause has a matching else clause, the
statement under the else clause executes.

The grammar for the if-then-else construct is ambiguous. It embodies the classic exam-
ple of an ambiguous grammar. You should rewrite that portion of the grammar to resolve
the “dangling else” ambiguity so that each else clause is matched with the most recent
unmatched then clause.

Input/Output Demo provides two simple I/O statements:

Read The read statement reads a single data item from the system’s standard input
stream (stdin in C terminology). The type of the value read is determined by the type of
the Reference. Each value read from stdin must be separated from surrounding values by
either blanks or a newline.

Write The write statement writes a single data item to the system’s standard output
stream (stdout in C terminology). The type of the value written is determined by the type
of the Expr. Each value printed with a write statement appears on its own line; that is, the
value is printed, followed by a newline.

Expression Evaluation Demo expressions compute simple values of type integer or character.
Since Demo currently has no character operators, the only meaningful character expres-
sion is a single literal character, a CHARCONST. No coercions are allowed, so only integer
subexpressions can occur in an integer expression.

In Demo, all operators are left associative. The precedence of operators is specified by
the following table, where larger numbers mean a higher priority.

Operator Precedence

() 6

*, / 5

+, - 4

<, <=, ==, >, >=, != 3

not 2

and, or 1

The relational operators, <, <=, ==, >, >=, and != can only be applied to operands of the
same type. Thus, both ’a’ <= ’b’ and 13 > 2 are legal, while ’a’ != 1 is not. The latter
example exhibits a type mismatch—an error.

The other operators, +, -, *, /, not, and, or can only be applied to operands of type
integer. The use of integer values to represent Boolean values creates some unusual behavior.
For example, (a == b) or (c < d) is equivalent to (a == b) + (c < d), although the
parentheses are required in the expression that uses + and are unneeded in the expression
that uses or.

DEMO 6 Spring 2020

3 Example Program
// Example program in DEMO

// A simple bubblesort

// (Assumes data initialized by simulator)

procedure bsort {

int DATA[0:10000];

int i, upper, flag, temp;

read upper; // # elements to sort

if (upper > 10000) then {
upper = 0; // a primitive quit

write 1; // a primitive message

}

for i = 0 to upper - 1 by 1 {
read DATA[i];

}

flag = 1;

while(flag == 1) {
flag = 0;

for i = 0 to upper - 2 by 1 {
if (DATA[i] > DATA[i+1]) then {

flag = 1;

temp = DATA[i];

DATA[i] = DATA[i+1];

DATA[i+1] = temp;

}
}

}

for i = 0 to upper - 1 by 1 {
write DATA[i];

}

}

DEMO 7 Spring 2020

