
A Scanner and Parser for DEMO

Programming Assignment 1

Comp 506, Spring 2020

Project Due Date: March 13, 2020 @ 11:59 PM

1 Introduction

This project will give you experience building a scanner and parser for a programming
language called Demo. You will use the flex scanner generator and the bison parser
generator that are distributed as part of most Linux systems — these are standard tools in
widespread use throughout the world. The educational goal for the project is to provide you
with (1) experience manipulating regular expressions and context-free grammars, and (2)
direct experience with activities in three time frames: design time, build time, and compile
time.

From a practical perspective, you will need to build a flex-based scanner for the mi-
crosyntax, or lexical elements, of Demo. Once you have a scanner, you will need to build
a bison-based parser that uses the output of the scanner to recognize, or parse, Demo
programs. Your second programming assignment will build on your own code for this as-
signment.

All documents for this lab are available from the course web site, as are various referenceADVICE ⇒
materials for flex and bison. Before you begin coding, you should read both the Demo
language definition and this document in their entirety.

2 Project Summary

Your task is to:

1. use the standard, open-source flex scanner generator to build a scanner for Demo;

2. use the standard, open-source bison parser generator to build a parser for Demo, as
tokenized by your flex scanner.
We will test the correctness of your scanner and parser by running them on a collection
of input Demoprograms, some of which are provided.

In this project, the output of your parser is either (1) a message stating that the input was
parsed and found to be correct, or (2) a set of one or more error messages detailing the
syntax errors that your parser discovered and the line numbers where the errors were found.

Your work product for this project is a working scanner / parser for Demo, written in
the c programming language. In the second project, you will extend your scanner / parser
to generate iloc code for the input Demo program. You should take care in this project to
create a code base on which you can build the later project.

3 Receommended Approach

1. Find and read all the documents that are relevant to the project. That should include,
at a minimum, this document, the Demo language specification, materials on flex and
bison.



2. Make sure that your clear account has access to a working c compiler and copies of
flex and bison. The default versions on clear appear to be:

gcc version 4.8.5 use gcc --version to verify

clang version 3.4.2 use clang --version to verify

flex version 2.5.37 use flex -V to verify

bison version 3.0.4 use bison -V to verify

You should be able to log into clear with your Rice NetID. If you cannot, or you
cannot see these tools once you are on clear, contact the it help desk for assistance
by sending an email to help@rice.edu.

3. Create a flex input specification for Demo, based on the Demo language specification.
Write a small test program that repeatedly invokes your scanner, until it returns an
end-of-file indication. Have the test program print out each lexeme and run the test
program over the Demo test programs. In the flex manual, an example which creates
such a program for a small Pascal-like language is given at the end of Section 4. It
does leave out one important detail: along with the main() routine, you need to define
a routine yywrap() which simply returns 1. This indicates that you are inputting one
.l file to flex.

4. Create a bison input specification for Demo, based on the Demo language specifica-
tion. You will need to transform the grammar, which includes rewriting it in bison

input format and eliminating ambiguity. Use bison as a tool for eliminating conflicts
from your grammar, it issues excellent diagnostics when reportng conflicts.

5. Build the interface between your scanner and your parser. In the declaration section of
a bison input file, token type names are declared and serve as terminal symbols in the
grammar. From this bison generates tokens.h. You need to add #include tokens.h

in the definitions section of the .l file for the Demo scanner.

6. Extend your working parser by improving its error detection and error message capa-
bilities. Insert the error token into your grammar in places that will allow the parser
to recover and continue—that is, to recognize more than one error in an input file.

In class we will discuss how to make effective use of the error token and the bison

macro yyclearin. In some cases, you may want to add rules that match a specific
error so that you can generate a more precise error message. The test programs named
error*.demo in c̃omp506/students/demo/lab1/errors are a start. The reference parser
has some error detection and reporting built into it.

7. We have created a driver that parses command line arguments and invokes your parser.
See the README file on clear at comp506/students/driver for more detail.

4 Submitting Your Work

Name your .l file DEMOgram.l and your .y file DEMOgram.y. Submit these files to Canvas
via the Assignment Lab 1.

DEMO 2 Spring 2020



5 Grading Criterion

Your parser will be run on a number of test Demo programs, both with and without errors.
Your initial score will be based on the percentage of tests that are correctly handled by your
parser. Handling all tests correctly would mean an initial score of 100. From there up to 5
points will be added or subtracted based on the quality of your parser’s error handling. (If
your parser does not detect an exising error, you will not be penalized twice.)

6 Advice

It is next to impossible to debug your parser by entering grammar rules for the whole language
and then starting to test it. Instead, you should adopt an incremental approach. Enter the
rules for a few grammar productions at a time and test them. When you are convinced that
they work, add some more productions and repeat the testing process.

From a practical perspective, it makes sense to begin with the productions for the ex-
pression grammar. Once your parser is handling expressions correctly, add assignment, then
statement lists. You can then expand to the control flow and I/O statements, declarations,
and, eventually, the entire langauge.

Get your parser working properly for correct input programs first. From there, develop
error-handling capability for handling multiple errors in a single parse. Extend this capability
as much as you have time for.

DEMO 3 Spring 2020


