
Engineering a Compiler
Manuscript for the Third Edition (EaC3e)

Keith D. Cooper
Linda Torczon

Rice University

Houston, Texas

Limited Copies Distributed
Reproduction requires explicit written permission

Copyright 2017, Morgan-Kaufmann Publishers and the authors
All rights reserved

2.4 From Regular Expression to Scanner 53

2.4.4 DFA to Minimal DFA: Hopcroft’s Algorithm
As the final step in the RE→DFA construction, we can employ an algo-
rithm to minimize the number of states in the DFA. The DFA that
emerges from the subset construction can have a large set of states.
While the size of the DFA does not affect is asymptotic complexity,
it does determine the recognizer’s footprint in memory. On modern
computers, the speed of memory accesses often governs the speed of
computation. A smaller recognizer may fit better into the processor’s
lowest level of cache memory, producing faster average accesses.

To minimize the number of states in a DFA, (D,
∑
, δ, d0, DA), we

need a technique to detect when two states are equivalent—that is,
they produce the same behavior on any input string. The particular
algorithm covered in this section constructs a minimal DFA from an
arbitrary DFA by grouping together sets of equivalent states. The algo-
rithm finds the largest possible sets of behaviorally-equivalent states;
each set becomes a state in the minimal DFA.

The algorithm constructs a set partition, P= { p1, p2, p3, . . . , pm }, Set partition: A partition of
S is a collection of disjoint,
nonempty subsets of S
whose union is exactly S.

of the DFA states. The partition constructed by the minimization algo-
rithm groups together DFA states that have equivalent behavior. More
formally, it constructs a partition with the smallest number of sets,
subject to the following two rules:

(1) ∀ c ∈
∑
, if d i, d j ∈ ps; d i

c
→dx; d j

c
→dy; and dx ∈ pt;, then dy ∈ pt.

(2) If d i, d j ∈ pi and d i ∈DA, then d j ∈DA

The first rule states that two states in the same setmust, for every char-
acter c ∈

∑
, transition to states that are, themselves, grouped together

in a set in the partition. The second rule states that any single set con-
tains either accepting states or nonaccepting states, but not both.

These two properties not only constrain the final partition, P, but
they also lead to a construction for P. The algorithm, often called
Hopcroft’s algorithm, starts with the coarsest partition on behavior, P0 dividesD into accepting

and non-accepting states, a
fundamental difference in
behavior specified by rule 2.

P0 = {DA, {D –DA } }. It then iteratively “refines” the partition until both
properties hold true for each set in P. To refine the partition, the algo-
rithm splits sets based on the transitions out of DFA states in the set.

Figure 2.8 shows how the algorithm uses transitions to split sets in
the partition. In Figure 2.8.a, all three DFA states in set p1 have transi-
tions to DFA states in p2 on the input character a. Specifically, di

a
→dx,

dj
a
→dy , and dk

a
→dz . Since di, dj , dk ∈ p1, and dx, dy , dz ∈ p2, sets p1

and p2 conform to rule 1. Thus, p1 and p2 are behaviorally equivalent,
and the algorithmwould not split them.

In contrast, Figure 2.8.b shows a situationwhere the input a induces
a split in set p1. As before, di

a
→dx, dj

a
→dy , and dk

a
→dz , but dx ∈ p2

while dy , dz ∈ p3. This situation violates rule 1, so the algorithmwould

54 CHAPTER 2 Scanners

dz

dy

dx

✎

✍

☞

✌p2

dk
a

dj
a

di
a

✎

✍

☞

✌p1

dk

dj

di

✎

✍

☞

✌p1

dz

dy

✎

✍

☞

✌p3

dx

✎

✍

☞

✌p2

a

a

a

dk

dj

✎

✍

☞

✌p5

di

✎

✍

☞

✌p4

dz

dy

✎

✍

☞

✌p3

dx

✎

✍

☞

✌p2

a

a

a

(a) a does not split p1 (b) a splits p1 (c) Sets from (b) after the split

FIGURE 2.8 Splitting a Set around a

split p1 into two sets, p4 = {di } and p5 = { dj , dk }, as shown in Fig-
ure 2.8.c.

The algorithm in Figure 2.9 uses these two rules and the notion of
splitting sets to construct a partition that maps into the minimal DFA.
At each stage, the algorithm holds the current approximation in Parti-
tion. It constructs the next approximation into NextP, which allows it to
update NextPwithout interfering in the current iteration.

As its first approximation, the algorithm constructs the coarsest
partition consistent with rule 2, {DA, {D –DA }}. This choice has two
consequences. First, since each set in the final partition is constructed
by splitting a set in an earlier approximation, it ensures that no set
in the final partition will contain both accepting and nonaccepting
states. Second, by choosing the largest sets consistent with rule 2, itStarting with the largest

possible sets and splitting
them is an optimistic
approach to building the
sets; see, for example,
Section 9.3.6 or [348].

imposes the minimum constraints on the splitting process which, in
turn, can lead to larger sets in the final partition. (Larger sets means
fewer states in the corresponding DFA.)

The algorithm operates from a worklist of states, starting with the
initial partition {DA, {D –DA }}. It repeatedly picks a set s from the
worklist and uses that set to refine the partition in NextP by splitting
sets based on their transitions into s.

To identify states that must split because of a transition into set s
on some character c, the algorithm inverts the transition function. It
computes the set of DFA states that can reach a state in set s on a tran-
sition labelled c and assigns that set to Image. It then systematically
examines each set q∈ P to see if Image divides q. If Image divides q into
non-empty sets q1 and q2, it removes q from both Partition and NextP
and then adds both q1 and q2 to NextP.

All that remains, in processing q with respect to c, is to update
the worklist. If q is on the worklist, then the algorithm replaces q with

2.4 From Regular Expression to Scanner 55

Partition ← { DA , { D – DA } } ;

NextP ← { DA , { D – DA } } ;

Worklist ← { DA , { D – DA } } ;

while(Worklist ̸= ∅)

select a set s from Worklist and remove it

for each character c ∈
∑

Image ← { x | δ(x,c) ∈ s }

for each set q ∈ Partition

q1 ← q ∩ Image
q2 ← q – q1

if q1 ̸= ∅ and q2 ̸= ∅ then // split q around s and c

remove q from Partition
remove q from NextP
NextP← NextP ∪ q1 ∪ q2

if q ∈ Worklist then // and update the Worklist
remove q from Worklist
WorkList← WorkList ∪ q1 ∪ q2

else if | q1 | ≤ | q2 |
then WorkList← Worklist ∪ q1

else WorkList← WorkList ∪ q2

if s = q // need another s
then break

Partition← copy of NextP // set up for the next iteration

FIGURE 2.9 DFA Minimization Algorithm

both q1 and q2. The rationale is simple: qwas on the worklist for some
potential effect; that effect might be from some character other than c,
so all of the DFA states in q need to be represented on the worklist.

If, on the other hand, q is not on the worklist, then the only effect
that splitting q can have on other sets is to split them. Assume that
some set r has transitions on letter e into q. Dividing qmight create the
need to split r into sets that transition to q1 and q2. In this case, either
of q1 or q2 will induce the split, so the algorithm can choose between
them. Using the smaller set will lead to faster execution; for example,
computing Image takes time proportional to the size of the set.

To construct the new DFA from the final partition P, we can create a
single state to represent each set pi ∈ P and add the appropriate transi-
tions between these new representative states. For the state represent-
ing pm, we add a transition to the state representing pn on character c
if some dj ∈ pm has a transition on c to some dk ∈pn. The construction

56 CHAPTER 2 Scanners

ensures that, if dj
c
→ dk, where dj ∈ pm and dk ∈ pn, then every state

in pm has a similar transition on c to a state in pn. If this condition
did not hold, the algorithmwould have split pm around the transitions
on c. The resulting DFA is minimal; the proof is beyond our scope.

Examples

As a first example, consider the DFA in Figure 2.10a. It recognizes the
language fee | fie. Figure 2.10.b shows the progress of theminimization
algorithm on this DFA.

The first line shows the initial configuration of the algorithm, with
Partition, NextP, and Worklist all set to contain {DA, {D –DA} }, which
is {{s3, s5}, {s0, s1, s2, s4} }. The algorithm enters the while loop and
selects a first set for s ; it chooses p0. Next, it iterates over the char-
acters in the alphabet, in order, f, e, i. With f, p0 does not split either
p0 or p1. With e, p0 splits p1 into two sets: p2: {s0, s1} and p3: {s2, s4}.
The algorithm removes p1 from Partition and NextP. It adds p2 and p3 to
NextP. Then, it updates the worklist, removing p1 and adding p2 and
p3, before advancing to the final character, i.

The final iteration of the character loop generates no further splits.
The only set it considers for splitting is q=p0 because the algorithm
removed p1 from Partitionwhen it was split. Note that the new sets were
added toNextP rather than to Partition. After processing s= p0, c= i, and
q=p0, the code updates Partition from NextP and proceeds into the sec-
ond iteration of the while loop.

The second iteration proceeds in a similar fashion, until it consid-It makes no sense to split
the other sets based on a set
that no longer exists.

ersq=p2, c= f, and q=p2. This combination splits p2. Sincep2 is both
the set being split, q, and the set that induces the split, s, the algorithm
breaks out of the rest of the second iteration.

The third, fourth, and fifth iterationof thewhile loop systematicallyWhen we draw theminimal
DFA, we combine the edges
for e and i and label the
edge with both letters. The
algorithmmight be viewed
as creating separate edges
for e and i that have the
same behavior.

go through the worklist and the alphabet. They discover no further
splits, so the algorithm halts when the worklist is empty after the fifth
iteration of the outer loop. The resulting DFA is shown in Figure 2.10.c.
It has four states.

As a second example, consider the DFA for a (b | c)∗ produced by
Thompson’s construction and the subset construction, shown in Fig-
ure 2.11a. The first step of the minimization algorithm constructs an
initial approximation to the partition as { {s1, s2, s3}, {s0} }. The algo-
rithm selects p0 as q and tries to split p0 based on each of a, b, and c.
While p1 has a transition into p0 on a, it causes no split. (First, every
DFA state in p1 has the same transition on a. Second, the algorithm
cannot split a singleton state.) For b and c, all of the transitions into p0
originate inside p0 and neither b nor c split p0.

When it considers splitting on p1, the algorithm discovers that
there are no transitions into p1—that is Image is empty. Thus, p1

2.4 FromRegular Expression to Scanner 57

s0
f

s1

e

i

s2
e

s3

s4
e

s5

(a) DFA for “fee | fie

Step Partition Worklist s c q Action

– { p0: {s3, s5}, p1: {s0, s1, s2, s4} } { p0, p1 } — — — —

1 { p0: {s3, s5}, p1: {s0, s1, s2, s4} } { p1 } p0 f all none

{ p1 } p0 e p1 split p1

{ p2, p3 } p0 i p0 none

2 { p0: {s3, s5}, p2: {s0, s1},p3: {s2, s4} } { p3 } p2 f p0 none

{ p3 } p2 e p2 split p2

3 { p0: {s3, s5}, p3: {s2, s4} p4: {s0},p5: {s1} } { p4, p5 } p3 f all none

{ p4, p5 } p3 e all none

{ p4, p5 } p3 i all none

4 { p0: {s3, s5}, p3: {s2, s4} p4: {s0},p5: {s1} } { p5 } p4 f all none

{ p5 } p4 e all none

{ p5 } p4 i all none

5 { p0: {s3, s5}, p3: {s2, s4} p4: {s0},p5: {s1} } { } p5 f all none

{ } p5 e all none

{ } p5 i all none

final { p0: {s3, s5}, p3: {s2, s4} p4: {s0},p5: {s1} } { } algorithm halts

(b) Critical Steps in Minimizing the DFA

d0
f

d1
e,i

d2
e

d3

(c) The Minimal DFA

FIGURE 2.10 Applying the DFA Minimization Algorithm

58 CHAPTER 2 Scanners

s0
a

s1

b

c

s2 b

c b

s3 c

s0
a

s1

b

c

s2 b

c b

s3 c

☛

✡

✟

✠p1

✎

✍

☞

✌p0

(a) Original DFA (b) Initial Partition

FIGURE 2.11 DFA for a (b | c∗)

inducesno splits on any of a, b, or c, and the two set partition is the final
partition. The final DFA has two states, as shown in the margin.Recall

d0
a

d1

b,c

that this is the DFA that we suggested a human would derive. After
minimization, the automatic techniques produce the same result.

Hopcroft’s DFA minimization algorithm is another example of a
fixed-point computation. Partition is finite; at most it can contain |D|
elements. The while loop splits sets in Partition, but never combines
them. Thus, Partition grows monotonically. The loop halts when some
iteration performs no splits. The worst-case behavior occurs when
each state in the DFA has distinct behavior; in that case, the while loop
halts when Partition consists of a singleton set for each d i in D. This
worst case arises when the input DFA is already aminimal DFA.

