
COMP 512, Spring 2015

Programming Project: An ILOC Optimizer 1

1 Introduction

This document describes the programming assignment for comp 512 at Rice University in
the Spring Semester of 2015. For the project, each student will build an optimizer that
attempts to improve the running time of a set of test codes across a set of test inputs. Test
codes and test inputs will be provided as early in the project as feasible.

All test codes will be presented in a subset of the ILOC intermediate form. The specific
subset is described in § 6.1 of the ILOC Simulator document, available on the Projects page
of the comp 512 web site. Your optimizer will need to:

⇒ Scan and parse the ILOC code

⇒ Build an internal representation for the ILOC code

⇒ Apply up to four optimizations of your choice to the ILOC code

⇒ Print the transformed ILOC code in a form that can be read and executed by the ILOC

simulator

To measure the effectiveness of your optimziations, you will use the ILOC simulator to
measure the number of cycles that it takes for both the original and the transformed code
to execute on the provided input data files. (You may, of course, create your own input data
files as well.0

You will report your decisions and experiences in an oral presentation, expected to last no
more than fifteen minutes, during the last week of classes. Your report should include: the
specific optimizations you chose to implement, the order in which you executed them, and
the number of cycles that the simulator reported for the original and transformed programs.
In addition, you should comment on the lessons that you learned in the course of the project.

2 Rules

As in any programming assignment in a for-credit course, there are a number of rules that
you must obey. The intent of these rules is to create a fair competition among the labs and
to remove ambiguity. As the semester proceeds, we will likely add to these rules.2

1. You are expected to do your own implementation work. You are encouraged to discuss
the project with your classmates, your advisors, the professor, and any other person
whom you believe may have insight. However, the implementation must be your work.

1
ILOC is a compiler intermediate representation described in Appendix A of the book, Engineering a Com-
piler [1]. The specific ILOC subset used in this project is described in the documentation for the ILOC

simulator, which is available on the course web site: http://www.clear.rice.edu/comp512

2Since this semester is the first run of this particular exercise, it is almost certain that unanticipated issues
will arise. We will update this document and post notices to Piazza on any changes to the rules.



2. Your optimizer must run on the clear system. You can develop and debug it on any
system available to you. It should, however, run correctly on clear.

3. You may use any programming language available on the clear system to implement
your lab, except perl. You should work in a programming language in which you are
comfortable. The runtime speed of your optimizer is not a consideration in grading; it
should, however, not be embarassingly slow.

An optimizer that takes more than a couple of minutes to process any of the examples
would be considered embarassingly slow. If your optimizer is embarassingly slow,
expect to explain why it is slow in your oral report.

4. The primary goal of your optimizer is to reduce the number of cycles that the simulator
reports when the input codes are executed. That is, labs will be compared based on
the execution speed of the optimized code that they produce.

3 Software

The ILOC simulator is available in ˜comp512/Project/Sim on the clear systems. The
directory should include both source and executable versions. The simulator documentation
is available on the web page, as well as in the project subdirectory with the code. Section 2
of the simulator document explains the available command-line options, including the -d

option that allows you to specify a test input.
The test codes and test inputs will be available in c̃omp512/Project/TestCodes on

clear. The first code, bsortsmall.i is already posted. Two test inputs, bsortsmall1.d
and bsortsmall2.d, are posted in the same directory. More test codes and test inputs will
be available in the coming weeks.

4 Deadlines

Reports will be made in class during the last week of classes.

5 Questions

Post questions to the class discussion board on Piazza.

References

[1] Keith Cooper and Linda Torczon. Engineering A Compiler. Elsevier Morgan-Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2011.

COMP 512, Spring 2015 2


