
The ILOC Simulator

User Documentation

Spring 2015 Semester

The ILOC instruction set is taken from the book, Engineering A Compiler, published by the Morgan-

Kaufmann imprint of Elsevier [1]. The simulator itself was written over a period of many years by Tim

Harvey, Todd Waterman, Keith Cooper, and, perhaps, others. The intent was to provide a useful tool for

programming exercises in Rice’s compiler courses. The author’s intent was always that this software be

distributable without cost for educational use.

1 Introduction and Roadmap

The ILOC simulator implements a subset of the ILOC operations described in Appendix A
of Engineering a Compiler, Second Edition [1]. The simulator takes as input a file of ILOC

operations. It simulates the execution of those operations. It reports on the results of that
execution.

The simulator was designed as a target for the programming exercises in compiler courses
at Rice, specifically the local register allocator and local instruction scheduler labs in the
introductory course, Comp 412, and the optimizer lab in the scalar optimization course,
Comp 512. The simulator has internal configuration parameters that change the number
and type of operations allowed in a given cycle, that change the latencies of opertions, and
that change the set of allowed ILOC operations. These parameters allow one code base
to generate the simulator for multiple programming assignments, with minimal source-level
changes.

Roadmap This document describes the operation of the simulator. Section 2 describes
the various command-line options that can control the simulator’s behavior. Section 3 de-
scribes the ILOC virtual machine, the operations that it supports, and their formats and
effects. Section 4 provides a brief discussion of the three mechanisms for initializing data
memory in the ILOC virtual machine. Section 5 describes the execution tracing facility and
the information that it provides. Finally, Section 6 describes the ILOC virtual machine con-
figurations supported for different programming assignments, including machine parameters
and operation latencies.

COMP 512, Spring 2015 2

2 Command-Line Syntax

Command-line flags and arguments control the simulator’s behavior. The command-line
syntax for sim is as follows:

sim [options] [filename]

where the options are drawn from:

-h Prints a list of all the command-line options,

-d Specifies a data initialization file (see § 4).

-m NUM Sets the number of bytes of available data memory to NUM.

-r NUM Sets the number of available registers to NUM.

-s NUM Sets the simulator’s stall mode based on the value of NUM

Mode 0 has no interlocks.
Mode 1 interlocks on branches.
Mode 2 interlocks on branches & memory.
Mode 3 interlocks on branches, memory, & registers.

The default stall mode is 3.

-t Turns on execution tracing, which prints a record of each
operation. Trace output is explained in § 5.

-i NUM0 NUM1 ... NUMn Treats NUM1 through NUMn as integer data items and ini-
tializes data memory by writing them into consecutive
words of memory, starting at the address NUM0.

-c NUM0 NUM1 ... NUMn Operates in the same manner as -i, except that it treats
NUM1 through NUMn as bytes.

If filename is specified on the command line, the simulator expects that filename is a valid
ILOC source file. It will read the file and execute the code, starting at the first operation in
the code. If filename is not specified, the simulator reads from the standard input stream,
stdin on Unix-like systems.

The -m and -r options must occur before any -i or -c option. Either -i and -c will
cause the simulator to allocate its data structures so that it can initialize them. Once the
data structures have been allocated, the -m and -r options have no effect.

The -h, -d, -m, -r, -s, and -t options should occur only once on the command line.
Both the -i and -c options can occur multiple times, to initialize different address ranges
in memory.

The operation and use of the -d option is explained in § 4.

COMP 512, Spring 2015 3

3 The ILOC Virtual Machine

The simulator implements a simle virtual machine that supports supports a subset of ILOC [1,
App. A]. Some properties of the virtual machine are fixed. For example, it features separate
address spaces for code and data; a running program cannot read or write code memory.
Some properties of the virtual machine are configurable from the command line. For exam-
ple, the size of data memory, the number of registers, and the set of interlocks enforced on
operations are all governed by command-line flags. Finally, some properties are determined
when the simulator is, itself, compiled. For example, restrictions on the number of operations
that execute per cycle (roughly speaking, the number of funcitonal units that it emulates)
and operation latencies are easily configurable.

The ILOC operations supported in the simulator fall into four basic categories: computa-
tional operations, data movement operations, control-flow operations, and output operations.
Tables 1, 2, and 3. describe each group of operations.

An ILOC instruction is either a single operation, or a group of operations enclosed in
square brackets and separted by semicolons, as in [op1 ; op2]. An instruction label in ILOC

consists of an alphabetic character followed by zero or more alphanumeric characters. Any
ILOC instruction may be labeled; the label precedes the instruction and is followed by a

Opcode Format Meaning

nop nop no change to registers or memory
used as a placeholder or to cause a delay

add add r0, r1 ⇒ r2 r2 ← r0 + r1
addI addI r0, c1 ⇒ r2 r2 ← r0 + c1

sub sub r0, r1 ⇒ r2 r2 ← r0 − r1
subI subi r0, c1 ⇒ r2 r2 ← r0 − c1

mult mult r0, r1 ⇒ r2 r2 ← r0 × r1
multI multI r0, c1 ⇒ r2 r2 ← r0 × c1

div div r0, r1 ⇒ r2 r2 ← r0 ÷ r1
divI divI r0, c1 ⇒ r2 r2 ← r0 ÷ c1

lshift lshift r0, r1 ⇒ r2 r2 ← r0 ≪ r1
lshiftI lshiftI r0, c1 ⇒ r2 r2 ← r0 ≪ c1

rshift rshift r0, r1 ⇒ r2 r2 ← r0 ≫ r1
rshiftI rshiftI r0, c1 ⇒ r2 r2 ← r0 ≫ c1

and and r0, r1 ⇒ r2 r2 ← r0 && r1 (logical and)

andI andI r0, c1 ⇒ r2 r2 ← r0 && c1 (logical and)

or or r0, r1 ⇒ r2 r2 ← r0 || r1 (logical or)

orI orI r0, c1 ⇒ r2 r2 ← r0 || c1 (logical or)

not not r0 ⇒r1 r1 ← ! r0 (logical complement)

Table 1: The ILOC Computational Operations

COMP 512, Spring 2015 4

Opcode Format Meaning

loadI loadI c0 ⇒ r1 r1 ← c0

load load r0 ⇒ r1 r1 ← WORD[r0]

loadAI loadAI r0, c1 ⇒ r2 r1 ← WORD[r0 + c1]
loadAO loadAI r0, r1 ⇒ r2 r1 ← WORD[r0 + r1]

cload cload r0 ⇒ r1 r1 ← BYTE[r0]
cloadAI cloadAI r0, c1 ⇒ r2 r1 ← BYTE[r0 + c1]

cloadAO cloadAI r0, r1 ⇒ r2 r1 ← BYTE[r0 + r1]

store store r0 ⇒ r1 WORD[r1] ← r0
storeAI store r0 ⇒ r1, c2 WORD[r1 + c2] ← r0
storeAO store r0 ⇒ r1, r2 WORD[r1 + r2] ← r0

cstore cstore r0 ⇒ r1 BYTE[r1] ← r0
cstoreAI cstore r0 ⇒ r1, c2 BYTE[r1 + c2] ← r0
cstoreAO cstore r0 ⇒ r1, r2 BYTE[r1 + r2] ← r0

i2i i2i r0 ⇒ r1 r1 ← r0 , as an integer

c2c c2c r0 ⇒ r1 r1 ← r0 , as a character

i2c i2c r0 ⇒ r1 r1 ← r0 , as a character

c2i c2i r0 ⇒ r1 r1 ← r0 , as a character

Table 2: The ILOC Data-Movement Operations

colon, as in L01: add r1, r2 ⇒ r3, or L02: [add r1, r2 ⇒ r3 ; i2i r0 ⇒ r4].
In the tables, ri represents a register name; the subscripts make explicit the correspon-

dence between operands in the “Format” column and the “Meaning” column. The notation
ci represents an integer constant, and Li represents a label. “WORD[ex]” indicates the con-
tents of the word of data memory at the location specified by ex. The address expression, ex,
must be word-aligned—that is (ex MOD 4) must be 0. “BYTE[ex]” indicates the contents of
the byte of data memory at the location specified by ex, without an alignment constraint on
ex.

Register names have an initial r followed immediately by a non-negative integer. The ’r’
is case sensitive (as is all of ILOC). Leading zeroes in the register name are not significant;
thus r017 and r17 refere to the same register. Arguments that do not begin with an ’r’
which appear as a c in the tables, are assumed to be positive integers constants in the range
0 to 231-1.

Blanks and tabs are treated as whitespace. All ILOC opcodes must be followed by
whitespace—any combination of blanks or tabs. Whitespace preceding and following other
symbols is optional. Whitespace may not appear within operation names, register names,
or the assignment symbol. A double slash (“//”) indicates that the rest of the line is a
comment. Empty lines may appear in the input; the simulator will ignore them.

In addition to the ILOC operations, the simulator supports two pseudo-operations to
initialize memory with known values; they are “pseudo” operations in the sense that their

COMP 512, Spring 2015 5

Opcode Format Meaning

br br → L0 control transfers to L0

cbr cbr r1 → L1, L2 if r0 is true, control transfers to L1

otherwise, control transfers to L2

cmp LT cmp LT r0, r1 ⇒ r2 r2 ← true if r0 < r1
otherwise, r2 ← false

cmp LE cmp LE r0, r1 ⇒ r2 r2 ← true if r0 le r1
otherwise, r2 ← false

cmp GT cmp GT r0, r1 ⇒ r2 r2 ← true if r0 > r1
otherwise, r2 ← false

cmp GE cmp GE r0, r1 ⇒ r2 r2 ← true if r0 ge r1
otherwise, r2 ← false

cmp EQ cmp EQ r0, r1 ⇒ r2 r2 ← true if r0 = r1
otherwise, r2 ← false

cmp NE cmp NE r0, r1 ⇒ r2 r2 ← true if r0 6= r1
otherwise, r2 ← false

output output c0 writes WORD[c0] to stdout

c0 must be a word-aligned integer constant

coutput coutput c0 writes BYTE[c0] to stdout as a character

Table 3: The ILOC Control-Flow and Output Operations

effects occur before the ILOC code starts execution.

Pseudo-Op Format Meaning

dcs dcs c0 c1 c2 . . . cn c0 is an integer address. c1 through cn are characters sep-
arated by blanks. c1 through cn are placed in consecutive
bytes of memory, starting at address c0.

dis dis c0 c1 c2 . . . c3 c0 is a word-aligned integer address. c1 through cn are
integers. c1 through cn are placed in consecutive words of
memory, starting at address c0.

Here, dcs is an acronym for define character storage and dis is an acronym for define integer

storage. These pseudo-operations provide a convenient way to initialize large quantities of
memory, such as an array.

The pseudo-operations must appear before the first ILOC operation. There is no arbitrary
restriction on the number of pseudo-operations or their relative order. The obvious way to
use these pseudo-operations is to create a “data” file and use the -d command-line flag to
prepend it to an ILOC file. In this way, a single program can be easily run against multiple
different data files.

COMP 512, Spring 2015 6

4 Data-Initialization Methods

There are three mechanisms to initialize the simulator’s data memory before any code ex-
ecuted. The -i and -c command-line options allow the user to specify an address and a
list of data values. The initialization occurs before any operation executes. Note that the
command line may contain more than one -i or -d sequence. Negative numbers cannot
occur in either of these sequences.

The other mechanism to initialize the simulator’s data memory is the -d option. This
option lets the user specify a data-initialization file that contains one or more dis or dcs
pseudo-operations, as described in § 3. Only one data-initialization file can be specified.

The -d option has the following behavior. It creates a temporary file in the designated
temporary file area (specified by the macro definition TEMPDIR in file sim.h). It copies the
contents of the data initialization file to the temporary file. It then copies the contents of
the code file, either filename from the command line or stdin if no filename is given. It
closes the temporary file and reopens it as the scanner’s input file. After execution, it deletes
the temporary file.

5 Understanding the Trace Output

To help the user understand the details of a specific execution,
the ILOC simulator includes a trace facility, invoked with the
-t command-line flag. The trace shows each executed instruc-
tion, its arguments and its results.

Figure 1 shows an example trace generated by the ILOC

code for the small program shown to the right. Below the
source code is the ILOC code that the compiler generated.
While the program is simple, it highlights several of the im-
portant features of the trace facility.

In the translation, both a and i are kept in registers.
Thus, the ILOC code contains no load operations. The only
store operation is generated by the print statement, which
must store a’s value to memory so that it can generate an
ILOC output operation. Notice that the code assumes a sin-
gle functional-unit configuration of the simulator; it contains
no explicitly specified instruction-level parallelism.

Turning our attention to the trace in Figure 1, it begins by
listing the version number of the simulator and the interlock
settings in use for the run. The final line in the trace is the
execution summary generated by every simulator run, whether
traced or not. Between the interlock settings and the execution
summary, the trace lists the operations executed at each cycle
of the execution, one cycle per line. Each line begins with the
cycle number.

procedure main {

int a, i;

a = 1;

for i = 1 to 4 by 1 {

a = a + 1;

}

print a;

}

Source Program

loadI 1 => r0

loadI 1 => r1

loadI 4 => r2

cmp_LE r1, r2 => r3

cbr r3 -> L0, L1

L0: addI r0, 1 => r4

i2i r4 => r0

addI r1, 1 => r1

cmp_LE r1, r2 => r5

cbr r5 -> L0, L1

L1: loadI 0 => r6

store r0 => r6

output 0

ILOC Program

To the right of the cycle number, the operation(s) executed in that cycle are listed. For
any register operand, the value of the register appears in parentheses after the register’s

COMP 512, Spring 2015 7

ILOC Simulator, Version 512-2-0

Interlock settings: memory registers branches

0: [loadI 1 => r0 (1)]

1: [loadI 1 => r1 (1)]

2: [loadI 4 => r2 (4)]

3: [cmp_LE r1 (1), r2 (4) => r3 (1)]

4: [cbr r3 (1) -> L0*, L1]

5: [addI r0 (1), 1 => r4 (2)]

6: [i2i r4 (2) => r0 (2)]

7: [addI r1 (1), 1 => r1 (2)]

8: [cmp_LE r1 (2), r2 (4) => r5 (1)]

9: [cbr r5 (1) -> L0*, L1]

10: [addI r0 (2), 1 => r4 (3)]

11: [i2i r4 (3) => r0 (3)]

12: [addI r1 (2), 1 => r1 (3)]

13: [cmp_LE r1 (3), r2 (4) => r5 (1)]

14: [cbr r5 (1) -> L0*, L1]

15: [addI r0 (3), 1 => r4 (4)]

16: [i2i r4 (4) => r0 (4)]

17: [addI r1 (3), 1 => r1 (4)]

18: [cmp_LE r1 (4), r2 (4) => r5 (1)]

19: [cbr r5 (1) -> L0*, L1]

20: [addI r0 (4), 1 => r4 (5)]

21: [i2i r4 (5) => r0 (5)]

22: [addI r1 (4), 1 => r1 (5)]

23: [cmp_LE r1 (5), r2 (4) => r5 (0)]

24: [cbr r5 (0) -> L0, L1*]

25: [loadI 0 => r6 (0)]

26: [store r0 (5) => r6 (addr: 0)]

27: [stall]

28: [stall]

29: [stall]

30: [stall] *26

31: [output 0 (5)]

output generates => 5

Executed 28 instructions and 28 operations in 32 cycles.

Figure 1: Execution Trace for Simple Example

COMP 512, Spring 2015 8

name. Registers that are used show their values before the operation executes. Registers
that are defined show their values after the operation takes effect.

For a long-latency operation, the result is shown in the trace for the cycle in which the
instruction issues. When a long-latency operation completes, that fact is noted at the end of
the trace for the cycle in which it completes. The trace for that cycle will show an asterisk
(‘*’) followed by the cycle number in which the long-latency operation was first issued.

Look at the store issued in cycle 26. Because the output uses the same memory location
(and the simulator has memory interlocks enabled), the output operation stalls until the
store completes in cycle 30. The trace for cycle 30 ends with the notation “*26” to indicate
that an operation issued in cycle 26 completed at the end of cycle 30. The output is then
issued in the next cycle.

Now, look at the cbr operations in cycles 9, 14, 19, and 24. The asterisk in the trace
for cbr indicates which branch was taken. In the first three cbr operations, the branch
transferred control to L0 at the top of the loop. In the final cbr, it transferred control to L1,
the label on the first statement after the loop.

When the simulator is generating a trace, it changes the format of the output generated
by the output operation. In a run without tracing, the number is simply writted to the
standard output stream, one number per line. In a run with tracing, the simulator adds the
text output generates => to help the user find the printed result.

6 Details of Specific Simulator Configurations

This section lists configuration details of implementations for specific classes.

6.1 COMP 512, Spring 2015

For the Spring 2015 semester, the COMP 512 simulator executes one operation per cycle.
All operations have a latency of one, except as follows.

• Four operations have a three-cycle latency: mult, multI, div, and divI.

• Twelve operations have a five-cycle latency: load, loadAI, loadAO, cload, cloadAI,
cloadAO, store, storeAI, storeAO, cstore, cstoreAI, and cstoreAO.

Note the loadI has a single-cycle latency; it does not touch memory.

For this semester, none of the example codes will use character data. Thus, your labs do
not need to deal with the character loads and stores, or the i2c, c2i, and c2c operations.
The simulator will flag these operations as unimplemented.

The default memory size is 4,000,000 bytes. The default register set size is 1,000 registers.
Both of those can be changed using command-line options (see § 2). Program memory is
arbitrarily large–limited by address space.

References

[1] Keith Cooper and Linda Torczon. Engineering A Compiler. Elsevier Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2011.

COMP 512, Spring 2015 9

