Welcome to COMP 512

Comp 512
Rice University
Spring 2015

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these

materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,

provided this copyright notice is preserved

COMP 512

This class is COMP 512 — “Advanced Compiler Construction”

* Subject Matter
¢ Compiler-based code-improvement techniques
— Sometimes called “optimization”
— Transformations that rewrite the code

— Analyses needed to support transformation

¢ No vector or multiprocessor parallelism
— See COMP 515 for that material

* Required Work
¢ Mid-term exam (30%), Final Exam (30%), and Project (40%)

¢ Project will be an optimizer for an ILOC subset (see Appendix A, EaC2e)

Notice: Any student with a disability that requires accommodations in this class is
encouraged to contact me after class or during office hours. Students may also contact
Alan Russell, Rice’s Director of Disability Support Services.

COMP 512, Spring 2015

Reading Materials

* We will use multiple sources for reading materials
¢ Chapters 8, 9, & 10 of Engineering a Compiler, 2" Edition
¢ Technical papers available on the net (ACM Digital Library) or on the web site

* You will learn much more if you actually read the material

¢ Part of a graduate education is learning to read technical papers and think
critically about their contents

¢ Reading original work is a critical part of your training that is tested in the oral
exams for the Masters and Ph.D.

* Slides from lecture will be available on the course web site
¢ http://www.clear.rice.edu/comp512

¢ | will post them before class

You are responsible for reading the material and coming to class

COMP 512, Spring 2015 3

Comp 512

My goals for the course (version 1)

* Convey a fundamental understanding of the current state-of-the-art in
code optimization and code generation

* Develop a mental framework for approaching these techniques
* Differentiate between the past & the present

* Motivate current research areas (and expose dead problems)

Explicit non-goals
* Cover every transformation in the “catalog”
* Teach every data-flow analysis algorithm

* Cover issues related to multiprocessor parallelism

COMP 512, Rice University 4

Comp 512

Rough syllabus

* Introduction to optimization
¢ Examples at different scopes
¢ Principles of optimization

* Static analysis
¢ lterative data-flow analysis
¢ SSA construction

* Classic scalar optimization
¢ Best-practice techniques

¢ Combining optimizations

EaC2e § 8
Safety, opportunity, & profitability
Decision complexity
Potential sources of improvement
EaC2e §9

EaC2e § 10 + papers

* Analyzing and improving whole programs

For next class, start reading Chapter 8 in EaC2e

COMP 512, Rice University

Comp 512

Many educated computer scientists have serious misperceptions about
compiler-based code optimization

* Principles are not well elucidated
* Sources of improvement are not always clear
¢ Dasgupta’s unrolling example

* Practitioners can get so wrapped up in the minutia that they fail to paint
the big picture

¢ Interview talks in this area tend to do a mediocre job of introducing and
explaining the work — “... just a grab bag collection of tricks ...”

By the end of Comp 512, you will be literate in the field of scalar code
optimization, to the point where you should be able to do independent
implementation and research in the area.

| used to complain here about the Wikipedia page on
COMP 512, Rice University compiler optimization, but it has improved markedly. 6

Comp 512

How does optimization change the program?

Source Target
Compiler »
Program Program

Optimizer tries to
1. Eliminate overhead from language abstractions

2. Map source program onto hardware efficiently
¢ Hide hardware weaknesses, utilize hardware strengths

3. Equal the efficiency of a good assembly programmer

COMP 512, Rice University 7

Comp 512

What does optimization do?

Output

Input , . Output ,
Compiler

Output

Output ,

* The compiler can produce many outputs for a given input
¢ The user might want the fastest code
¢ The user might want the smallest code
¢ The user might want the code that pages least

¢ The user might want the code that ...

* Optimization tries to reshape the code to better fit the user’s goal

COMP 512, Rice University 8

Comp 512

* Some inputs have always produced good code
¢ First Fortran compiler focused on loops
¢ PCC did well on assembly-like programs

Input , Output ;
Input , . Output,
Input Compiler

3 Output
Input , Output ,

* The compiler should provide robust optimization
¢ Small changes in the input should not produce wild changes in the output
¢ Create (& fulfill) an expectation of excellent code quality
¢ Broaden the set of inputs that produce good code

* Routinely attain large fraction of peak performance (not 10%)

COMP 512, Rice University 9

Comp 512

Good optimizing compilers are crafted, not assembled

* Consistent philosophy

Careful selection of transformations

Thorough application of those transformations

Careful use of algorithms and data structures

Attention to the output code

Compilers are engineered objects

* Try to minimize running time of compiled code
* Try to minimize compile time

* Try to limit use of compile-time space

* With all these constraints, results are sometimes unexpected

COMP 512, Rice University

10

Comp 512

One strategy may not work for all applications

* Compiler may need to adapt its strategies to fit specific programs
¢ Choice and order of optimizations

¢ Parameters that control decisions & transformations

* Field of “autotuning” or “adaptive compilation”
¢ Compiler writer cannot predict a single answer for all possible programs

¢ Use learning, models, or search to find good strategies

* Lots of recent work in this area
¢ Talk at Rice last fall by Mary Hall, Utah CS Professor

¢ We’'ll talk about some of the problems & solutions

COMP 512, Rice University 11

A QuicK Look AT REAL COMPILERS

Consider inline substitution

* Replace procedure call with body of called procedure
¢ Rename to handle naming issues
¢ Widely used in optimizing OOPs

* How well do compilers handle inlined code?

Characteristics of inline substitution

* Safety: almost always safe

We will talk about inlining
later. For now, focus on
how compilers handle
inlined code.

* Profitability: expect improvement from avoiding the overhead of a

procedure call and from specialization of the code

* Opportunity: inline leaf procedures, procedures called once, others where

specialization seems likely

COMP 512, Rice University

12

A QuicK Look AT REAL COMPILERS

The Study Five good compilers!
* Eight programs, five compilers, five processors
* Eliminated over 99% of dynamic calls in 5 of programs

* Measured speed of original versus transformed code

Inliner » Compiler —* EXE’?UtE
/ & time
Source
. Execute
Program , Compiler —
P & time

Experimental Setup

* We expected uniform speed up, at least from call overhead
* What really happened?

COMP 512, Rice University 13

A QuicK Look AT REAL COMPILERS

1.30

2o\

—— 3081
—m—MIPS

0.90 —aA— Sequent
—e— Convex
—¥— Stardent

0.80 X \ \

0.70

& Inprovemment

)(

0.60
Do you see a
pattern in this
0.50
vortex shal64 efie304 wanall wave euler cedeta linpackd data?
Program

COMP 512, Rice University 14

A QuicK Look AT REAL COMPILERS

And this happened with (what were then) good compilers!

What happened?

Input code violated assumptions made by compiler writers
¢ Longer procedures

¢ More names

¢ Different code shapes

|II

Exacerbated problems that are unimportant on “normal” code

¢ Imprecise analysis
¢ Algorithms that scale poorly
¢ Tradeoffs between global and local speed

¢ Limitations in the implementations

The compiler writers were surprised (most of them)

COMP 512, Rice University 15

A QuicK Look AT REAL COMPILERS

One standout story
MIPS M120/5, 16 MB of memory

Running standalone, wanall took > 95 hours to compile

¢ Original code, not the transformed code
¢ 1,252 lines of Fortran (not a large program)
¢ COMP 512 met twice during the compilation

Running standalone with 48 MB of memory, it took < 9 minutes

The compiler swapped for over 95 hours |?!

For several years, wanall was a popular benchmark

¢ Compiler writers included it to show their compile times!

COMP 512, Rice University 16

Comp 512

My Goals for Comp 512 (version 2)

* Theory & practice of scalar optimization
¢ The underpinning for all modern compilers

¢ Influences the practice of computer architecture

COMP 512, Rice University

Register windows as
an example

17

DIGRESSION ON REGISTER WINDOWS

The Idea
* Provide hardware support for the en masse register spills at call sites

Register Transfer

Engine

Processor

- Large backing
register set

set of registers

* Hardware transfer engine invoked by single instruction
4 Savings in code space & execution time

* |dea died out quickly
. Caller saves
¢ Once backing register set is full, it must spill to RAM Cilem cavis
¢ Hardware solution failed to take into account program context
¢ Compiler could do it as well, in general, and better in extreme cases

— Recursive fibonacci in scheme was orders of magnitude faster than in C on the early
SPARC chips

FURTHER DIGRESSION: It is hard to make the large register set into addressable registers
because of instruction-size constraints. The set of names is limited by word length. 18

Comp 512

My Goals for Comp 512 (version 2)

* Theory & practice of scalar optimization FElB iR mnone ae
an example

¢ The underpinning for all modern compilers

¢ Influences the practice of computer architecture

Learn not only “what” but also “how” and “why”

Provide a framework for thinking about compilation

Class will emphasize transformations

Analysis should be driven by needs of transformations

Role of the lab

* Provide experience working with multiple optimizations & their interactions
¢ You will build an optimizer for an ILOC subset

¢ Details next week

COMP 512, Rice University 19

Optimization Content from § 8 EaC2e

Compilers operate at many granularities or scopes

* Local techniques
¢ Work on a single basic block

¢ Maximal length sequence of straight-line code

* Regional techniques
¢ Consider multiple blocks, but less than whole procedure

¢ Single loop, loop nest, dominator region, ...

* Intraprocedural (or global) techniques
¢ Operate on an entire procedure (but just one)

¢ Common unit of compilation

* Interprocedural (or whole-program) techniques
¢ Operate on > 1 procedure, up to whole program

¢ Logisitical issues related to accessing the code (link time?)

COMP 512, Rice University 20

Optimization

At each of these scopes, the compiler uses different graphs

* Local techniques

¢ Dependence graph (instruction scheduling)

* Regional Techniques
¢ Control-flow graph (natural loops)

¢ Dominator tree

* Intraprocedural (or global) techniques
¢ Control-flow graph

¢ Def-use chains, sparse evaluation graphs, SSA as graph

* Interprocedural (or whole-program) techniques
¢ Call (multi) graph

Compiler writers must be able to perform graph traversals in their
COMP 512, Rice University sleep — preorder, postorder, reverse postorder, depth first, ... 21

Optimization

At each of these scopes, the compiler uses kinds of techniques

* Local techniques
¢ Simple walks of the block

* Regional Techniques
¢ Find a way to treat multiple blocks as a single block (EBBs, dominators)

¢ Work with an entire loop nest

* Intraprocedural (or global) techniques
¢ Data-flow analysis to determine safety and opportunity

¢ Separate transformation phase to rewrite the code

* Interprocedural (or whole-program) techniques
¢ Need a compilation framework where optimizer can see all the relevant code
¢ Sometimes, limit to all procedures in a file

¢ Sometimes, perform optimization at link time

COMP 512, Rice University 22

Optimization

We want to differentiate between analysis and transformation
* Analysis reasons about the code’s behavior

* Transformation rewrites the code to change its behavior

Local techniques can interleave analysis and transformation

* Property of basic block: operations execute in defined order

Over larger regions, the compiler typically must complete its analysis before it
transforms the code

* Analysis must consider all possible paths, including cycles

¢ Cycles typically force compiler into offline analysis

n u

* Leads to confusion in terminology between “optimization”, “analysis”,
and “transformation”

COMP 512, Rice University 23

Optimization

Terminology

Optimization
* We will use “optimization” to refer to a broad technique or strategy, such
as code motion or dead code elimination

Transformation

* We will use “transformation” to refer to algorithms & techniques that
rewrite the code being compiled

Analysis

* We will use the term “analysis” to refer to algorithms & techniques that
derive information about the code being compiled

This subtle distinction in usage was suggested by Vivek Sarkar.

COMP 512, Rice University 24

