Comp 512
Rice University
Spring 2015

Overview of Optimization, Part |

Local Value Numbering, Terminology, EBBs

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Optimization Content from § 8 EaC2e

Compilers operate at many granularities or scopes

* Local techniques
¢ Work on a single basic block

¢ Maximal length sequence of straight-line code

* Regional techniques
¢ Consider multiple blocks, but less than whole procedure

¢ Single loop, loop nest, dominator region, ...

* Intraprocedural (or global) techniques
¢ Operate on an entire procedure (but just one)

¢ Common unit of compilation

* Interprocedural (or whole-program) techniques
¢ Operate on > 1 procedure, up to whole program

¢ Logisitical issues related to accessing the code (link time?)

COMP 512, Rice University 2

Optimization

At each of these scopes, the compiler uses different graphs

* Local techniques

¢ Dependence graph (instruction scheduling)

* Regional Techniques
¢ Control-flow graph (natural loops)

¢ Dominator tree

* Intraprocedural (or global) techniques
¢ Control-flow graph

¢ Def-use chains, sparse evaluation graphs, SSA as graph

* Interprocedural (or whole-program) techniques
¢ Call (multi) graph

Compiler writers must be able to perform graph traversals in their
COMP 512, Rice University sleep — preorder, postorder, reverse postorder, depth first, ... 3

Optimization

At each of these scopes, the compiler uses different kinds of techniques

* Local techniques
¢ Simple walks of the block

* Regional Techniques
¢ Find a way to treat multiple blocks as a single block (EBBs, dominators)

¢ Work with an entire loop nest

* Intraprocedural (or global) techniques
¢ Data-flow analysis to determine safety and opportunity

¢ Separate transformation phase to rewrite the code

* Interprocedural (or whole-program) techniques
¢ Need a compilation framework where optimizer can see all the relevant code
¢ Sometimes, limit to all procedures in a file

¢ Sometimes, perform optimization at link time

COMP 512, Rice University

Optimization

We need to differentiate between analysis and transformation
* Analysis reasons about the code’s behavior

* Transformation rewrites the code to change its behavior

Local technigues can interleave analysis and transformation

* Property of basic block: operations execute in defined order

Over larger regions, the compiler typically must complete its analysis before it
transforms the code

* Analysis must consider all possible paths, including cycles

¢ Cycles typically force compiler into offline analysis

n”n u

* Leads to confusion in terminology between “optimization”, “analysis”,
and “transformation”

COMP 512, Rice University 5

Optimization

Terminology

Optimization
* We will use “optimization” to refer to a broad technique or strategy, such
as code motion or dead code elimination

Transformation

* We will use “transformation” to refer to algorithms & techniques that
rewrite the code being compiled

Analysis

* We will use the term “analysis” to refer to algorithms & techniques that
derive information about the code being compiled

This subtle distinction in usage was suggested by Vivek Sarkar.

COMP 512, Rice University 6

Redundancy Elimination as an Example Covered in 412

An expression Xty is redundant if and only if, along every path from the
procedure’s entry, it has been evaluated, and its constituent subexpressions
(x & y) have not been re-defined.

If the compiler can prove that an expression is redundant
* |t can preserve the results of earlier evaluations

* |t can replace the current evaluation with a reference
Two pieces to the problem
* Proving that Xx+y is redundant

* Rewriting the code to eliminate the redundant evaluation

One single-pass technique for accomplishing both is called value numbering

COMP 512, Rice University 7

Value Numbering An Old Idea

The key notion (Balke 1967 or Ershov 1954)
* Assign an identifying number, V(n), to each expression Vin) is n's
¢ V(x+y) = V()) iff x+y and j always have the same value »salue number”

¢ Use hashing over value numbers to make it efficient
* Use the value numbers to “improve” the code

Improving the code

* Replace redundant expressions

* Simplify algebraic identities

* Discover constant-valued expressions, fold & propagate them

* This technigue was invented for low-level, linear IrRs
* Equivalent methods exist for trees (build a DAG, § 8.3.1 in EaCle)

COMP 512, Rice University 8

Local = one block at a time

Local\Value Numbering | Block = straight-line code

The algorithm

For each operation o in the block

1 Get value numbers for the operands from a hash lookup

2 Hash <operator,VN(0,),VN(0,)> to get a value number for o
3 If o already had a value number, replace o with a reference

4 If 04 & 0, are constant, evaluate it & use a “load immediate”

If hashing behaves, the algorithm runs in linear time

¢ If you don’t believe in hashing, try multi-set discrimination

Minor issues

* Commutative operator = hash operands in each order or sort the
operands by VN before hashing (either works, sorting is cheaper)

* Looks at operand’s value number, not its name

EaC2e: digression on page |

256 or reference [65]
COMP 512, Rice University

Local Value Numbering

An Example
Original Code With VNs Rewritten
a< X+y ad < x! +y2 ad < x! +y?2
*bex+y * p3 e xT+y? * b3 al
a< 17 a* <— 17 a* <— 17
*Ce Xty * 3 x1+y? * c3<—a® (oops!)
Two redundancies: Options:
® Eliminate stmts ® Use c3<— b3
with a * ® Save a3in t3
® Coalesce results ? ® Rename around it

COMP 512, Rice University a <— 17 kills the copy of value 3 in a 10

Local Value Numbering

Example (continued)

Original Code With VNs Rewritten
8o <= Xo T Yo ap> < X'+ Yo? 2y <= Xp' + ¥p?
" by ==X * Yo * by® < X! +yy? " by® < ay’
a, < 17 at<— 17 at <17
T CpXot Yo ¥ Cp® < X'+ Yo " Gy <@g’
Renaming: Notation: Result:
® Give each value a ® While complex, ® a,°is available
unique name the meaning is ® rewriting works
® Makes it clear clear

COMP 512, Rice University 11

Simple Extensions to Value Numbering

Constant folding

* Add a field to the table that records when a value is constant
* Evaluate constant values at compile-time

* Replace with load immediate or immediate operand

* No stronger local algorithm

Aleebraic id . Identities: (Click)
raic iden

gebraic identities x<—y, x+0, x-0, x*1, x+1, x-x, x*0, x=+x,

* Must check (many) special cases xv0, X A OXFF...FF, max(x,MAXINT),

L min(x,MININT), max(x,x), min(y,y),
* Replace result with input VN () (x,x) (v,y)
and soon ...

* Build a decision tree on operation
(over values, not names)

COMP 512, Rice University 12

Optimization

In discussing any optimization, we look for three issues

Safety — Does it change the results of the computation?
* Safety is proven with results of analysis

* Data-flow analysis or other special case analysis

Profitability — Is it expected to speed up execution?
* Many authors assume transformations are always profitable
® Use either heuristics or a careful algebra of costs

Opportunity — Can we efficiently locate places to apply it?
* Can we find find all the places where the transformation works?

* Do we need to update safety information afterward?

COMP 512, Rice University 13

Safety

The first principle of optimization

Pa U

The compiler must preserve the code’s “meaning”

When can the compiler transform the code?
® Original & transformed code must have the same final state
* Variables that are visible at exit

* Equality of result, not equality of method (ignore temporaries)

Formal notion

For two expressions, M and N, we say that M and N are observationally
equivalent if and only if, in any context C where both M and N are closed
(that is, have no free variables), evaluating C[M] and C[N] either produces
identical results or neither terminates. Plotkin, 1975

= Different translations with identical results are fine

COMP 512, Rice University 14

Safety

In practice, compilers use a simpler notion of equivalence

If, in their actual program context, the result of evaluating e’ cannot
be distinguished from the result of evaluating e, the compiler can
substitute e’ for e.

* This restatement ignores divergence
* If €’ is faster than e, the transformation is profitable

Equivalence and context

* Compiled code always executes in some context
* Optimization is the art of capitalizing on context
* Lack of context = fully general (i.e., slow) code

Some compilers employ a worse standard (FORTRAN)
* Correct behavior for “standard conforming” code

* Undefined behavior for other code

COMP 512, Rice University 15

Safety

My favorite bad quote on safety

You, as a compiler writer, must decide if it’s worth the risk of doing this kind of
optimization. It’s difficult for the compiler to distinguish between the safe and
dangerous cases, here. For example, many C compilers perform risky
optimizations because the compiler writer has assumed that a C programmer
can understand the problems and take steps to remedy them at the source
code level. It’s better to provide the maximum optimization, even if it’s
dangerous, than to be conservative at the cost of less efficient code. A Pascal
programmer may not have the same level of sophistication as a C
programmer, however, so the better choice in this situation might be to avoid
the risky optimization entirely or to require a special command-line switch to

enable the optimization.
Allen Holub, Compiler Design in C, Prentice Hall, 1990, p. 677
The point
* You must not violate the first principle

* Without the first principle, just compile a return and be done

COMP 512, Rice University This statement was gone by the 2" Edition. 16

Safety & Value Numbering

Why is local value numbering safe?

Critical property of a basic block:
If any statement executes, they all

* Expressions placed in table as processed execute, in a predetermined order
* If <operator,VN(04),VN(0,)> is in the table, then

¢ It has already occurred at least once in the block

¢ Neither 04 nor 0, have been subsequently redefined

— The mapping uses VN(0,) and VN(0,), not 0, and 0,
— |f one was redefined, it would have a new VN

* Hash table starts empty

If <operator,VN(04),VN(0,)> has a VN, the compiler can safely use it

* Algorithm incrementally constructs a proof that <operator,VN(0,),VN(0,)> is
redundant

* Algorithm modifies the code, but does not invalidate the table

COMP 512, Rice University 17

Profitability

The compiler should only transform the code when it helps!
* Eliminating one or more operations
* Replacing an operation with a cheaper one

* Moving an operation to a place where it will execute fewer times

Sometimes, we can prove profitability
¢ Fold a constant expression into an immediate operation
Sometimes, we must guess
¢ Eliminating a redundant operation in a loop
Sometimes, we cannot tell ...

We should know when we cannot tell
¢ Inlining in a Fortran compiler if some transformation is profitable !

Compiler writers need to think explicitly about profitability ...

COMP 512, Rice University 18

Profitability & Value Numbering

When is local value numbering profitable?

* If reuse is cheaper than re-computation
¢ Does not cause a spill or a copy (hard to determine)

¢ In practice, assumed to be true

* Local constant folding is always profitable
¢ Re-computing uses a register, as does load immediate

¢ Immediate form of operation avoids even that cost

* Algebraic identities
¢ Ifit eliminates an operation, it is profitable (x +0)
¢ Profitability of simplification depends on target (2x = x+x)
¢ Easy to factor target machine costs into the implementation

— don’t apply it unless it is profitable!

COMP 512, Rice University 19

Opportunity

To perform an optimization, the compiler must locate all the places in the
code where it can be applied

* Allows compiler to evaluate each possible application
* Leads to efficient application of the transformation

* Avoids additional search

Approaches

* Perform analysis to find opportunities

¢ VERYBUSY expressions & code hoisting
* Look at every operation

¢ Value numbering, loop invariant code motion
* |terate over subset of the IR

¢ Operator strength reduction on SSA

COMP 512, Rice University 20

Opportunity & Value Numbering

How does local value numbering find opportunity?

® Linear scan over block, in execution order
* Constructs a model of program state

* At each operation, check for several opportunities

Summary
* |t performs an exhaustive search of the opportunities

* This answer is not satisfying, but it is true

¢ Must limit cost of checking each operation

¢ For example, use a tree of algebraic identities by operator

* Hashing keeps cost down to O(1) per operand + per operation

COMP 512, Rice University

21

A Multi-Block Example

a+ b
a+ b
C q< a+b
r < c +d
E

e < b + 18

Control-flow graph (CFG)

® Nodes for basic blocks
® Edges for branches

® Basis for much of program
analysis & transformation

e < a + 17
t < c +d
u<e+ £

COMP 512, Rice University

G = (N,E)
* N={A,B,C,D,E,F, G}

* E={(AB), (AC), (B,G),(CD),
(C,E), (D,F), (E,F), (F,E) }

® [N|=7,|E]=8

22

A Multi-Block Example

Local Value Numbering (LVN)
® 1 block at a time

® Strong local results

® No inter-block effects

p < c+d c:qea+b
r < c +d — c + d
Deeb+18 E
s < a + b
u<-e+ £
\ o«
F v << a+b
w<oc + d
X < e + f

COMP 512, Rice University

LVN finds redundant ops in red

23

A Multi-Block Example

Local Value Numbering (LVN)
® 1 block at a time

® Strong local results

® No inter-block effects

COMP 512, Rice University

LVN finds redundant ops in red
LVN misses redundant ops in blue

24

Beyond Basic Blocks: Extended Basic Blocks

/\ An Extended Basic Block (EBB)
Alm<ax E ® Set of blocks B, B,, ..., B,

n < a+t
/ \ ® B, has > 1 predecessor
p<—c+d C[g <« a+b ® All other B, have 1 pred. &
r < c+d r < c+d that pred. is in the EBB

COMP 512, Rice University 25

Extended Basic Blocks

An Extended Basic Block (EBB)

Alm<a+b ® Set of blocks B, B,, ..., B,
n<a+b
/ \ ® B, has > 1 predecessor
b — c+d C[qg<a+nb ¢ All other B, have 1 pred. &
r < c+d r < c+d that pred. is in the EBB
D[e —« b + 18 El e — a + 17
s << a+b t < c+d
u-< e+ £ u-< e+ £
\ o«
F v < a+b
wecct+d Three EBBs in this CFG
X < e + £
V4 1. {A,B,C,D,E}

COMP 512, Rice University 26

Extended Basic Blocks

An Extended Basic Block (EBB)
¢ Set of blocks B,, B,, ..., B,
® B, has > 1 predecessor

¢ All other B, have 1 pred. &
that pred. is in the EBB

COMP 512, Rice University

Three EBBs in this CFG
1. {A,B,CD,E}
2. {F}

27

Extended Basic Blocks

An Extended Basic Block (EBB)
¢ Set of blocks B,, B,, ..., B,
® B, has > 1 predecessor

¢ All other B, have 1 pred. &
that pred. is in the EBB

COMP 512, Rice University

Three EBBs in this CFG
1. {A,B,CD,E}

2. {F}

3. {G}

28

Extended Basic Blocks

An Extended Basic Block (EBB)
¢ Set of blocks B,, B,, ..., B,

B, has > 1 predecessor

b < c+d C - a + b ¢ All other B, have 1 pred. &
r < c+d ~ c +d that pred. is in the EBB
D[e —« b + 18 El ¢ « a + 17
s < a+b t < c+d
u< e+ £ u-<e+ £
\ o«
F v<a+b
wectd Three EBBs in this CFG
X < e + f
/ 1. {A,B,CD,E}
G -
Y a+b 2. {F} Degenerate or
2 crd 3 G} trivial EBBs
S S— - A

COMP 512, Rice University

29

