Comp 512
Rice University
Spring 2015

Overview Of Optimization, 2

Superlocal Value Numbering, GCSE

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers, when given, refer to entries in the EaC2e bibliography.

Local Value Numbering Review

The algorithm

For each operation o in the block

1 Get value numbers for the operands from a hash lookup

2 Hash <operator,VN(0,),VN(0,)> to get a value number for o
3 If o already had a value number, replace o with a reference

4 If 04 & 0, are constant, evaluate it & use a “load immediate”

If hashing behaves, the algorithm runs in linear time

¢ If you don’t believe in hashing, try multi-set discrimination

Minor issues

* Commutative operator = hash operands in each order or sort the
operands by VN before hashing (either works, sorting is cheaper)

* Looks at operand’s value number, not its name

EaC2e: digression on page |

256 or reference [65]
COMP 512, Spring 2015

A Multi-Block Example

Review

Control-flow graph (CFG)

® Nodes for basic blocks
® Edges for branches

® Basis for much of program
analysis & transformation

e < a + 17
t < c +d
u<e+ £

p < c+d c:qea+b
r < c +d r < c +d
Deeb+18 E
s < a+b
u< e+ £
\ o«
F v < a + b
w < c + d
X < e + £
G y < a+b
z < c + d
\

COMP 512, Spring 2015

G = (N,E)
* N={A,B,C,D,E,F, G}

* E={(AB), (AC), (B,G),(CD),
(C,E), (D,F), (E,F), (F,E) }

® [N|=7,|E]=8

A Multi-Block Example

Review

Local Value Numbering (LVN)
® 1 block at a time

® Strong local results

® No inter-block effects

COMP 512, Spring 2015

LVN finds redundant ops in red

A Multi-Block Example

Review

Local Value Numbering (LVN)
® 1 block at a time

® Strong local results

® No inter-block effects

COMP 512, Spring 2015

LVN finds redundant ops in red
LVN misses redundant ops in blue

Beyond Basic Blocks: Extended Basic Blocks Review

/\ An Extended Basic Block (EBB)
Alm<ax E ® Set of blocks B, B,, ..., B,

/ \ ® B, has > 1 predecessor
¢ All other B, have 1 pred. &
r < c+d r < c+d that pred. is in the EBB

COMP 512, Spring 2015 6

Extended Basic Blocks Review

An Extended Basic Block (EBB)

Alm<a+b ® Set of blocks B, B,, ..., B,
n<a+b
/ \ ® B, has > 1 predecessor
b — c+d C[qg<a+nb ¢ All other B, have 1 pred. &
r < c+d r < c+d that pred. is in the EBB
D[e —« b + 18 El e — a + 17
s << a+b t < c+d
u-< e+ £ u-< e+ £
\ o«
F v < a+b
wecct+d Three EBBs in this CFG
X < e + £
V4 1. {A,B,C,D,E}

COMP 512, Spring 2015 7

Extended Basic Blocks Review

An Extended Basic Block (EBB)

Alm<a+b ® Set of blocks B, B,, ..., B,
n<a+b
/ \ ® B, has > 1 predecessor
b — c+d C[g <a+nb ® All other B, have 1 pred. &
r < c+d r < c+d that pred. is in the EBB
Dl ¢ <« b + 18 El e < a + 17
s << a+b t < c+d
u< e+ £ u< e+ £
\ o«
F v<a+bhb
weoc+d Three EBBs in this CFG
X < e + £
/ 1. {A,B,C,D,E}
G[y<a+b 2. {F}
z < c +d
\

COMP 512, Spring 2015

Extended Basic Blocks Review

An Extended Basic Block (EBB)

Alm<a+b ® Set of blocks B, B,, ..., B,
n<a+b
/ \ ® B, has > 1 predecessor
p<—c+d C[g <« a+b ® All other B, have 1 pred. &
r < c+d r < c+d that pred. is in the EBB
Dl ¢ <« b + 18 El e < a + 17
s << a+b t < c+d
u< e+ £ u< e+ £
\ o«
F v<a+bhb
wec+d Three EBBs in this CFG
Xx < e + £
V4 1. {A,B,C,D,E}
G[y<a+b 2. {F}
z < c +d 3 G)
—— -

COMP 512, Spring 2015

Extended Basic Blocks

Review

An Extended Basic Block (EBB)
¢ Set of blocks B,, B,, ..., B,

B, has > 1 predecessor

b < c+d C - a + b ¢ All other B, have 1 pred. &
r < c+d ~ c +d that pred. is in the EBB
D[e —« b + 18 El ¢ « a + 17
s < a+b t < c+d
u< e+ £ u-<e+ £
\ o«
F v<a+b
wectd Three EBBs in this CFG
X < e + f
/ 1. {A,B,CD,E}
G -
Y a+b 2. {F} Degenerate or
2 crd 3 G} trivial EBBs
S S— - A

COMP 512, Spring 2015

10

Value Numbering Over Extended Basic Blocks Review

A /\ Superlocal VN (SVN)
m—ate * Apply LVN to each path in EBB

/ \ * Carry hash table forward, block
B[p « c + 4 C[g < a+b to block

r < c+d r << c+d

Dl ¢ « b + 18 El e < a + 17

s << a+b t < c+d

us<e+ £ us<e+ £

A\ /

F v<a+b

/
G y < a+b Apply LVN to each path in EBB
z < c + d 1. (A, B)
\

COMP 512, Spring 2015 11

Value Numbering Over Extended Basic Blocks Review

. /\ Superlocal VN
m< a+b * Apply LVN to each path in EBB

/ \ * Carry hash table forward, block
B[b — ¢ + 4 C [to block

r < c +d r < c+d

D e « b + 18 E| e <« a + 17

s < a+b t < c+d

u<e+ £ u-<e+ £

\ e

F v<a+b

/
G y < a+b Apply LVN to each path in EBB
z < c +d 1. (A, B)
— 2. (A, C, D)

COMP 512, Spring 2015 12

Value Numbering Over Extended Basic Blocks Review

Superlocal VN
A m-< a+ b
b

* Apply LVN to each path in EBB
* Carry hash table forward, block

to block

e < a + 17
t < c + d

COMP 512, Spring 2015

Apply LVN to each path in EBB

1. (A, B)
2. (A C, D)
3. (A C,E)

13

Superlocal Value Numbering

Efficiency
* Easy to implement if we are willing to process A three times & C twice
¢ A AB,A, AC ACD,A,AC,ACE, F, G
* Could be faster if we reused the results from A& C
¢ A AB, AC,ACD, ACE,F, G

COMP 512, Spring 2015

Superlocal Value Numbering

Efficiency
* Easy to implement if we are willing to process A three times & C twice
¢ A AB,A, AC ACD,A,AC,ACE, F, G
* Could be faster if we reused the results from A& C
¢ A AB, AC,ACD, ACE,F, G

Worst Case Bl p — c +4d

* Imagine SVN on a case statement

The Role of Names in Superlocal Value Numbering

What work must be repeated in a predecessor block?

* Value numbers are stored in a hash table A

¢ Keyed by name or <op,vn,vn> construct

* To avoid repeated work, SVN should roll A
B

back changes to the hash table

¢ Rather than A, AB, A, AC we want to go from
AB to AC without revisiting A

In the example, the definition of x in B changes the hash table entry for x

* After AB, SVN needs to roll x’s value number back to the value from A
¢ Could run backward through B and “undo” each definition (with bookkeeping)
¢ Could reprocess A
* Better way is to rename so that each definition has a unique name
— We saw the same issue in LVN, in local register allocation, & in local scheduling.

* We need a global name space with the right set of properties

COMP 512, Spring 2015 16

Superlocal Value Numbering

Efficiency
* Easy to implement if we are willing to process A three times & C twice
¢ A AB,A, AC ACD,A,AC ACE F, G
* Could be faster if we reused the results from A& C
¢ A AB, AC,ACD, ACE,F, G

¢ Need an appropriate name space & A —
a scoped hash table (parsing?) DS
— Alternative is to add lots of 4
complex mechanism for kills Blp — ¢ : 3
r < ¢C

& table management

Desired Name Space U~ e+ £

* Unique name for each definition

¢ Name & VN

* SSA name space is ideal Gl y <

COMP 512, Spring 2015 Scoped Table? § 5.5 in EaC2e

Aside: SSA Name Space (In General)

Two principles
* Each name is defined by exactly one operation

* Each operand refers to exactly one definition A ¢-function selects one of its
operands, based on the

control-flow path used to

. . . reach the block.
To reconcile these principles with real code

* Insert ¢-functions at merge points to reconcile name space
* Add subscripts to variable names for uniqueness

X<.. X< ..

Xog < ... X, < ...
\ / becomes \ /

e X2 < 0Xo,)
X, + ...

We'll look at how to construct SSA form in a week or two

COMP 512, Spring 2015 18

Superlocal Value Numbering

Now, SVN becomes
1. Identify EBBs

2. In depth-first order over an EBB, starting with the head of the EBB, b,
a. Apply LVN to b,

b. Invoke SVN on each of b/s EBB successors

— When going from b, to its EBB
successor b;, extend the symbol
table with a new scope for b,
apply LVN to b;, & process b;s
EBB successors

— When going from b; to its EBB

predecessor b;, discard the scope
for b;

It is that easy, with a scoped table &
the right name space

COMP 512, Spring 2015

SVN on the Example

COMP 512, Spring 2015

LVN finds redundant ops in red
SVN finds redundant ops in blue

20

SVN on the Example

LVN finds redundant ops in red
SVN finds redundant ops in blue

Both miss redundancies in F & G

COMP 512, Spring 2015 21

Perspective

SVN sidesteps the need for separate analysis & transformation
* Applies LVN over a larger acyclic context

* Along a path in an EBB, order is fully specified

¢ Direct contrast with scheduling in an EBB or a trace, because scheduling moves
around operations and changes the order

¢ Result, in scheduling, is compensation code

¢ Redundancy elimination preserves the order, so we can stretch LVN to EBBs

To go (much) beyond EBBs, we need separate transformation & analysis

Later in the semester, we will look at methods that combine code motion &
redundancy elimination, such as lazy code motion [225,133], and at a technique that
applies Hopcroft’s partitioning algorithm to expressions over SSA names [22].

=> But first, we will look at the classical formulation of global common subexpression
elimination based on the global data-flow problem: available expressions [218]

COMP 512, Spring 2015 22

Global Common Subexpression Elimination (GCSE)

The Goal

Find redundant expressions (“common subexpressions”) whose range spans
multiple basic blocks, and eliminate any unnecessary re-evaluations

Safety

* Formulate availability of a redundant expression at point p as a data-flow
problem: available expressions (annotate each block b with a set AVAIL(b))

¢ If x € AVAIL(b), then, along each path from the entry to block b, x is evaluated
and its constituent subexpressions (i.e., operands) are not redefined

¢ Evaluating x at the start of b would produce the same answer as at its most
recent evaluation, along any path leading from the entry to b
* Transformation preserves the result of prior computations and uses them

¢ Only replaces an evaluation that is in the AVAIL set of its block & still available at
the point of evaluation
¢ GCSE does not move evaluations, it eliminates them

Safety of GCSE hinges on the correctness of the AVAIL sets

COMP 512, Spring 2015 This treatment follows Cocke’s classic paper [87]. 23

Global Common Subexpression Elimination

The Goal
Find redundant expressions (“common subexpressions”) whose range spans
multiple basic blocks, and eliminate any unnecessary re-evaluations

Profitability

* The transformation does not add any new evaluations to the code

* The transformation replaces the evaluation of the redundant expression
with a register-to-register copy from a preserved value

¢ Copy operations are inexpensive
¢ Many copies will coalesce away
* The transformation can increase or decrease demand for registers

¢ If the redundant expression is the last use of one of its operands, it may reduce
register pressure

¢ Difficult to understand the impact of any given replacement on register pressure

COMP 512, Spring 2015 24

Available Expressions

For each block b

* Let AVAIL(b) be the set of expressions available on entry to b
¢ Initially, AVAIL(n) = {all expressions}, Vn € N, except n,
¢ Initially, AVAIL(n,) = @

* Let EXPRKILL(D) be the set of expressions killed in b

* Let DEEXPR(b) be the set of expressions defined in b and not subsequently
killed in b (downward-exposed expressions)

complement operator
Now, AVAIL(b) can be defined as:
(DEEXPR(x) U (AVAIL(x) N EXPRKILL(x)))

AVAIL(D) = M, c predsio)

where preds(b) is the set of b’s predecessors in the control-flow graph

This system of simultaneous equations forms a data-flow problem
=> Solve it with a data-flow algorithm (e.g., iterative fixed-point scheme)

COMP 512, Spring 2015 25

Using Available Expressions for GCSE

The Method
1. Build a control-flow graph (CFG)
2. V block b, compute DEEXPR(b) and EXPRKILL(b) & initialize AVAIL(b)

Expressions killed in

3. V block b, compute AVAIL(b) Downward-exposed expressions

4. VY block b, replace expressions that are available with references

Two key issues
* Computing AVAIL(b) *

* Managing the replacement process

We’'ll look at the replacement issue first

¥ Assume, without loss of generality (wlog), that we can compute AVAIL(b) correctly
and efficiently for each block b. 26

Replacement in GCSE

The key lies in managing the name space

Need a unique name VY e € AVAIL(b)

1. Can generate them as replacements are done (Fortran H)

2. Can pre-compute a static mapping (Classic answer)
3. Can encode value numbers into names (Simpson)
Strategy

1. This works; it is the classic method

2. Fast; allows single pass to insert code to preserve values of non-
redundant evaluations & to replace the redundant evaluations

3. Requires more analysis (VN), but yields more cSEs

Assume solution 2

COMP 512, Spring 2015 27

Global CSE (replacement step)

Compute a static mapping from expressions to names

* After analysis & before transformation
¢ V block b, V e € AVAIL(b), assign a global nameto e

¢ Integer can be tied to index of bit-vector set representation

® During transformation step c trat
ommon strategy:

¢ Evaluation of e = insert copy name(e) <—e e Insert copies that might be useful

¢ Reference to e = replace e with name(e) e Let dead code elim. sort them out

Simplifies design & implementation

The major problem with this approach

* |nserts extraneous copies to preserve values that are of no later use

¢ At all definitions and uses of any e € AVAIL(b), V b
— e € AVAIL(b) says nothing about whether or not e is ever computed again

¢ Those extra copies are dead and easy to remove

¢ The useful ones often coalesce away

COMP 512, Spring 2015 28

An Aside on Dead Code Elimination

What does “dead” mean?
®* Useless code — result is never used
* Unreachable code — code that cannot execute

Both useless code & unreachable are often lumped together as “dead”

To perform Dead Code Elimination
* Must have a global mechanism to recognize usefulness
* Must have a global mechanism to eliminate unneeded stores

* Must have a global mechanism to simplify control-flow predicates
All of these will come later in the course

COMP 512, Spring 2015 29

Global CSE

So, we have a three step process
1. Compute AVAIL(b), V block b
2. Assign unique global names to expressions in AVAIL(b)

3. Perform replacement with local value numbering

Earlier in the lecture, the slide said

Assume, without loss of generality, that we can
compute available expressions for a procedure.

Next lecture, we will make good on that assumption

COMP 512, Spring 2015 30

