Overview of Optimization, 3

Iterative Global Data Flow Analysis, in depth

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved.

Citation numbers refer to entries in the EaC2e bibliography.
Computing Available Expressions

The Big Picture

1. Build a control-flow graph

2. Gather the initial data (*local data*) data — \(\text{DEEXPR}(b) \) \& \(\text{EXPRKILL}(b) \) — and initialize the \(\text{AVAIL} \) sets (unknowns) at each block

3. Evaluate the equation at each node, then repeat to fixed point

- Propagates information around the graph’
- Annotates each block with its correct and complete \(\text{AVAIL} \) set

\[
\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEEXPR}(x) \cup (\text{AVAIL}(x) \cap \text{EXPRKILL}(x)))
\]

Most data-flow problems are solved in, essentially, the same way
Round-robin Iterative Algorithm

\[
\text{AVAIL}(b_0) \leftarrow \emptyset \\
\text{for } i \leftarrow 1 \text{ to } N \\
\quad \text{AVAIL}(b_i) \leftarrow \{ \text{all expressions} \} \\
\text{change} \leftarrow \text{true} \\
\text{while (change)} \\
\quad \text{change} \leftarrow \text{false} \\
\quad \text{for } i \leftarrow 0 \text{ to } N \\
\quad \quad \text{TEMP} \leftarrow \cap_{x \in \text{preds}(b_i)} (\text{DEEXPR}(x) \cup (\text{AVAIL}(x) \cap \text{EXPRKILL}(x))) \\
\quad \text{if AVAIL}(b_i) \neq \text{TEMP} \text{ then} \\
\quad \quad \text{change} \leftarrow \text{true} \\
\quad \quad \text{AVAIL}(b_i) \leftarrow \text{TEMP}
\]

Questions that we should ask:

• Termination: does it halt?
• Correctness: what answer does it produce?
• Speed: how quickly does it find that answer?
Data-flow Analysis

Definition

Data-flow analysis is a collection of techniques for compile-time reasoning about the run-time flow of values

- Almost always involves building a graph
 - Problems are trivial on a basic block
 - Global problems ⇒ control-flow graph (or derivative)
 - Whole program problems ⇒ call graph (or derivative)

- Usually formulated as simultaneous equations over sets of values
 - Sets attached to nodes and / or edges
 - Semilattice to describe values
 - We solved AVAIL with an iterative fixed-point algorithm

- Desired result is usually meet over all paths solution
 - “What is true on every path from the entry?”
 - “Can this happen on any path from the entry?”
 - Related to the safety of optimization (how we use the results)
Data-flow Analysis

Limitations

1. Precision – these algorithms are precise “up to symbolic execution”
 ♦ Assume all paths are taken

2. Solution – cannot afford to compute MOP solution
 ♦ Large class of problems where $\text{MOP} = \text{MFP} = \text{LFP}$
 ♦ Not all problems of interest are in this class

3. Arrays – classical analysis treats them naively
 ♦ Represent whole array with a single fact

4. Pointers – difficult (and expensive) to analyze
 ♦ Imprecision rapidly adds up
 ♦ Need to ask the right questions

Summary

For scalar values, we can quickly solve simple problems

MOP ≡ meet over all paths solution
LFP ≡ least fixed-point solution
MFP ≡ maximal fixed-point solution
Data-flow Analysis

Semilattice

A **semilattice** is a set L and a meet operation \wedge such that, $\forall a, b, \& c \in L$:

1. $a \wedge a = a$
2. $a \wedge b = b \wedge a$
3. $a \wedge (b \wedge c) = (a \wedge b) \wedge c$

\wedge imposes a **partial order** on L, $\forall a, b, \& c \in L$:

1. $a \geq b \iff a \wedge b = b$
2. $a > b \iff a \geq b \text{ and } a \neq b$

A semilattice has a **bottom** element, denoted \bot

1. $\forall a \in L$, $\bot \wedge a = \bot$
2. $\forall a \in L$, $a \geq \bot$

\wedge is the operator applied to sets when two control-flow paths converge.

a and b may not be comparable, when $a \wedge b$ is neither a nor b
Data-flow Analysis

How does this relate to data-flow analysis?

• Choose a semilattice to represent the facts
• Attach a meaning to each $a \in L$
 Each $a \in L$ is a distinct set of known facts
• With each node n, associate a function $f_n : L \rightarrow L$
 f_n models behavior of code in block corresponding to n
• Let F be the set of all functions that the code might generate

Example — AVAIL

• Semilattice is $(2^E, \wedge)$, where E is the set of all expressions & \wedge is \cap
 ♦ Set are bigger than $|\text{variables}|$, \bot is \varnothing
• For a node n, f_n has the form $f_n(x) = a_n \cup (x \cap b_n)$
 ♦ Where a_n is DEEXPR(n) and b_n is not(EXPRKILL(n))
Concrete Example: Available Expressions

\[E = \{a+b, c+d, e+f, a+17, b+18\} \]

\[2^E \text{ is the set of all subsets of } E \]

\[2^E = [\{a+b, c+d, e+f, a+17, b+18\}, \{a+b, c+d, e+f, a+17\}, \{a+b, c+d, e+f, b+18\}, \{a+b, c+d, a+17, b+18\}, \{a+b, e+f, a+17, b+18\}, \{a+b, c+d, a+17, b+18\}, \{a+b, e+f, a+17\}, \{a+b, e+f, b+18\}, \{a+b, a+17, b+18\}, \{c+d, e+f, a+17\}, \{c+d, e+f, b+18\}, \{c+d, a+17, b+18\}, \{e+f, a+17, b+18\}, \{a+b, c+d\}, \{a+b, e+f\}, \{a+b, a+17\}, \{a+b, b+18\}, \{c+d, e+f\}, \{c+d, a+17\}, \{c+d, b+18\}, \{e+f, a+17\}, \{e+f, b+18\}, \{a+17, b+18\}, \{a+b\}, \{c+d\}, \{e+f\}, \{a+17\}, \{b+18\}, \{\}] \]
Concrete Example: Available Expressions

The Lattice

Comparability (transitive)
Concrete Example: Available Expressions

The Lattice

\{a+b, c+d, e+f, a+17, b+18\},

Effect of meet operator

\{a+b, c+d, e+f, a+17\} \quad \{a+b, c+d, e+f, b+18\} \quad \{a+b, c+d, a+17, b+18\}

\{a+b, e+f, a+17\} \quad \{c+d, e+f, a+17\} \quad \{a+b, e+f, a+17\} \quad \{a+b, e+f, b+18\}

\{a+b, a+17, b+18\} \quad \{c+d, e+f, a+17\} \quad \{c+d, e+f, b+18\} \quad \{c+d, a+17, b+18\} \quad \{e+f, a+17, b+18\}

\{a+b, c+d\} \quad \{a+b, a+17\} \quad \{c+d, e+f\} \quad \{c+d, b+18\} \quad \{e+f, b+18\}

\{a+b, e+f\} \quad \{a+b, b+18\} \quad \{c+d, a+17\} \quad \{e+f, a+17\} \quad \{a+17, b+18\}

\{a+b\} \quad \{c+d\} \quad \{e+f\} \quad \{a+17\} \quad \{b+18\}

\{\}
Round-robin Iterative Algorithm

AVAIL\(b_0\) ← \(\emptyset\)
for i ← 1 to N
 AVAIL\(b_i\) ← \{ all expressions \}
change ← true
while (change)
 change ← false
for i ← 0 to N
 TEMP ← \(\bigcap_{x \in \text{preds}(b)} (\text{DEEXPR}(x) \cup (\text{AVAIL}(x) \cap \text{EXPRKILL}(x)))\)
 if AVAIL\(b_i\) ≠ TEMP then
 change ← true
 AVAIL\(b_i\) ← TEMP

Termination
• Makes sweeps over the nodes
• Halts when some sweep produces no change
Iterative Data-flow Analysis

Termination

• If every \(f_n \in F \) is monotone, i.e., \(x \leq y \Rightarrow f(x) \leq f(y) \), and
• If the lattice is bounded, i.e., every descending chain is finite
 > Chain is sequence \(x_1, x_2, \ldots, x_n \) where \(x_i \in L, 1 \leq i \leq n \)
 > \(x_i > x_{i+1}, 1 \leq i < n \) \(\Rightarrow \) chain is descending

Then

• The set at each node can only change a finite number of times
• The iterative algorithm must halt on an instance of the problem

• Any finite semilattice is bounded
• Some infinite semilattices are bounded
Iterative Data-flow Analysis

Correctness

(What does it compute?)

• If every \(f_n \in F \) is monotone, i.e., \(x \leq y \Rightarrow f(x) \leq f(y) \), and

• If the semilattice is bounded, i.e., every descending chain is finite
 > Chain is sequence \(x_1, x_2, \ldots, x_n \) where \(x_i \in L, 1 \leq i \leq n \)
 > \(x_i > x_{i+1}, 1 \leq i < n \Rightarrow \) chain is descending

Given a bounded semilattice \(S \) and a monotone function space \(F \)

• \(\exists k \) such that \(f^k(\bot) = f^j(\bot) \ \forall \ j > k \)

• \(f^k(\bot) \) is called the least fixed-point of \(f \) over \(S \)

• If \(L \) has a \(T \), then \(\exists k \) such that \(f^k(T) = f^j(T) \ \forall \ j > k \) and
 \[f^k(T) \] is called the maximal fixed-point of \(f \) over \(S \)

pessimism

optimism

COMP 512, Fall 2006
Iterative Data-flow Analysis

Correctness

• If every $f_n \in F$ is monotone, i.e., $f(x \land y) \leq f(x) \land f(y)$, and
• If the lattice is bounded, i.e., every descending chain is finite
 ♦ Chain is sequence $x_1, x_2, ..., x_n$ where $x_i \in L$, $1 \leq i \leq n$
 ♦ $x_i > x_{i+1}$, $1 \leq i < n \Rightarrow$ chain is descending

Then

• The round-robin algorithm computes a least fixed-point (LFP)
• The uniqueness of the solution depends on other properties of F

• Unique solution \Rightarrow it finds the one we want
• Multiple solutions \Rightarrow we want to know which solution it finds
 ♦ Specific solution may depend on order in which algorithm visits the nodes ...
Iterative Data-flow Analysis

Correctness
• Does the iterative algorithm compute the desired answer?

Admissible Function Spaces
1. $\forall f \in F, \forall x,y \in L, f(x \land y) = f(x) \land f(y)$
2. $\exists f_i \in F$ such that $\forall x \in L, f_i(x) = x$
3. $f,g \in F \exists h \in F$ such that $h(x) = f(g(x))$
4. $\forall x \in L, \exists$ a finite subset $H \subseteq F$ such that $x = \land_{f \in H} f(\bot)$

If F meets these four conditions, then an instance of the problem will have a unique fixed point solution

$\Rightarrow LFP = MFP = MOP$

\Rightarrow order of evaluation does not matter

MOP \equiv meet over all paths solution
LFP \equiv least fixed-point solution
MFP \equiv maximal fixed-point solution

Not distributive \Rightarrow fixed point solution may not be unique
Iterative Data-flow Analysis

If a data-flow framework meets those admissibility conditions then it has a unique fixed-point solution

• The iterative algorithm finds the (best) answer
• The solution does not depend on order of computation
• Algorithm can choose an order that converges quickly

Intuition

• Choose an order so that changes propagate as far as possible on each major iteration, or “sweep” over the graph
 ◆ Process a node’s predecessors before the node
• Cycles pose problems, of course
 ◆ Ignore back edges when computing the order?
Ordering the Nodes to Maximize Propagation

- Reverse postorder visits predecessors before visiting a node
- Use reverse preorder for backward problems
 - Reverse postorder on reverse CFG is not reverse preorder
 [EaC2e, exercise 9.4(b)]

Postorder

Reverse Postorder

N+1 - \textit{postorder number}
Iterative Data-flow Analysis

Speed

- For a problem with an admissible function space & a bounded semilattice,
- If the functions all meet the *rapid* condition, *i.e.*,

\[\forall f,g \in F, \forall x \in L, f(g(\bot)) \geq g(\bot) \land f(x) \land x \]

then, a round-robin, reverse-postorder iterative algorithm will halt in \(d(G) + 3 \) passes over a graph \(G \)

\(d(G) \) is the *loop-connectedness* of the graph with respect to a *DFST*

- Maximal number of back edges in an acyclic path
- Several studies suggest that, in practice, \(d(G) \) is small \((<3)\)
- For most CFGs, \(d(G) \) is independent of the specific *DFST*

Sets stabilize in two passes around a loop

Each pass does \(O(E) \) meets & \(O(N) \) other operations
Iterative Data-flow analysis

What does all this mean?

• Reverse postorder
 ♦ Easily computed order that increases propagation per pass

• Round-robin iterative algorithm
 ♦ Visit all the nodes in a consistent order (RPO)
 ♦ Do it again until the sets stop changing

• Rapid condition
 ♦ Most classic global data-flow problems meet this condition

These conditions are easily met

♦ Admissible framework, rapid function space
♦ Round-robin, reverse-postorder, iterative algorithm

⇒ The analysis runs in \(\text{effectively}\) linear time
Iterative Data-Flow Analysis

Almost all of the classic global data-flow problems are admissible and rapid

• Equations have form and properties similar to AVAIL
 ♦ Live variables, reaching definitions, reachable uses
 ♦ Some, such as dominance, have simpler equations
• Iterative algorithm will generate the correct answer quickly

The iterative algorithm is your “desert island” data-flow algorithm

• One algorithm for almost all problems
• Easy to formulate, easy to implement, easy to understand
Some problems are not admissible

Global constant propagation

- First condition in admissibility
 \(\forall f \in F, \forall x,y \in L, f(x \land y) = f(x) \land f(y) \)

- Constant propagation is not admissible
 - Kam & Ullman time bound does not hold
 - There are tight time bounds, however, based on lattice height
 - Require a variable-by-variable formulation ...

- Fixed point is not unique

 \[\text{(no guarantee that LFP = MFP = MOP)} \]

- Function “f” models block’s effects
 - \(f(S1) = \{a=7, b=3, c=4\} \)
 - \(f(S2) = \{a=7, b=1, c=6\} \)
 - \(f(S1 \land S2) = \emptyset \)

\[a \leftarrow b + c \]

\(S1: \{b=3, c=4\} \quad S2: \{b=1, c=6\} \]
Some admissible problems are not rapid

Interprocedural May Modify Sets

```c
shift(a,b,c,d,e,f)
{
  local t;
  ...
  call shift(t,a,b,c,d,e);
  f = 1;
  ...
}
```

• Iterations proportional to number of parameters
 ♦ Not a function of the call graph
 ♦ Can make example arbitrarily bad

• Proportional to length of chain of bindings...

![Diagram showing the function call graph for shift]

Nothing to do with d(G)