Comp 512
Rice University
Spring 2015

Overview of Optimization, 3

Iterative Global Data Flow Analysis, in depth

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Computing Available Expressions

The Big Picture
1. Build a control-flow graph

2. Gather the initial data (/ocal data) data — DEEXPR(b) & EXPRKILL(b) — and
initialize the AVAIL sets (unknowns) at each block

3. Evaluate the equation at each node, then repeat to fixed point
¢ Propagates information around the graph’

¢ Annotates each block with its correct and complete AVAIL set

AVAIL(D) = N, preasiry (DEEXPR(x) U (AVAIL(X) N EXPRKILL(x)))

Most data-flow problems are solved in, essentially, the same way

COMP 512, Fall 2006 2

Round-robin Iterative Algorithm ,g? B

@
AVAIL(b,) < @ -

fori<—1toN The round-robin solver is easier
AVAIL(b.) < { all expressions } to analyze than a worklist solver.
I Y

change < true
while (change)
change < false
fori<—OtoN
TEMP <= M, e v (DEEXPR (x) U (AVAIL(x) N EXPRKILL(X)))

if AVAIL(b,) # TEMP then
change < true
AVAIL(b,) <~ TEMP

Questions that we should ask:
* Termination: does it halt?
* Correctness: what answer does it produce?

* Speed: how quickly does it find that answer?

COMP 512, Fall 2006 3

Data-flow Analysis

Definition
Data-flow analysis is a collection of techniques for compile-time reasoning
about the run-time flow of values

* Almost always involves building a graph

¢ Problems are trivial on a basic block
¢ Global problems => control-flow graph (or derivative)
¢ Whole program problems => call graph (or derivative)

* Usually formulated as simultaneous equations over sets of values

¢ Sets attached to nodes and / or edges
¢ Semilattice to describe values
¢ We solved AVAIL with an iterative fixed-point algorithm

* Desired result is usually meet over all paths solution
¢ “What is true on every path from the entry?”
¢ “Can this happen on any path from the entry?”
¢ Related to the safety of optimization (how we use the results)

COMP 512, Fall 2006

MOP = meet over all paths solution
LFP = |east fixed-point solution

Data'ﬂOW Ana|VSiS MFP = maximal fixed-point solution

Limitations
1. Precision — these algorithms are precise “up to symbolic execution”

¢ Assume all paths are taken

2.Solution — cannot afford to compute MOP solution
¢ Large class of problems where MOP = MFP = LFP

¢ Not all problems of interest are in this class

3. Arrays — classical analysis treats them naively The Good News:

¢ Represent whole array with a single fact Simple problems can
carry us pretty far

4. Pointers — difficult (and expensive) to analyze
¢ Imprecision rapidly adds up
¢ Need to ask the right questions

Summary

For scalar values, we can quickly solve simple problems

COMP 512, Fall 2006 * 5

Data-flow Analysis

Semilattice

A semilattice is a set L and a meet operation A suchthat, Va, b, &cEL:
1. ana=a
2. anb=bnAa
3.an(bac)=(anb)ac

A imposes a partial orderon [,V a, b, & c €L

l1.az2bsanb=b a and b may not be comparable,
2. a>b<a=2banda#b when a A b is neither a nor b

A semilattice has a bottom element, denoted L
1. Vael, Laa=1
2. Yael, a2l

A is the operator applied to sets when two control-flow paths converge
COMP 512, Fall 2006 6

Data-flow Analysis

How does this relate to data-flow analysis?
* Choose a semilattice to represent the facts
* Attach a meaningtoeachael

Each a € L is a distinct set of known facts

* With each node n, associate a functionf, : L —= 1L

f, models behavior of code in block corresponding to n

* Let F be the set of all functions that the code might generate

Example — AVAIL

* Semilattice is (25,A), where E is the set of all expressions & A is N
¢ Set are bigger than |variables|, L is @

®* Foranoden, f, hastheformf (x)=a,U(xMNb,)
¢ Where a, is DEEXPR(n) and b, is not(EXPRKILL(n))

COMP 512, Fall 2006 7

Concrete Example: Available Expressions

E = {a+b,c+d,e+f,a+17,b+18}

A me<a+b
/n < a+h 2E is the set of all subsets of E
Bl p<—c+ a4 Cl g« a+b 2E=[{a+b,c+d,e+f,a+17,b+18},
r < c+d re—c+d {a+b,c+d,e+f,a+17},
T E|>e — {a+b,c+d,e+f, b+18},
s < a+hb t e e+ d {a+b,c+d,a+17,b+18},
u<«—e+f u<«—e+f {a+b,e+f,a+17,b+18},
i 3 r {c+d,e+f,a+17,b+18}, {a+b,c+d,e+f},
voaue {a+b,c+d,b+18}, {a+b,c+d,a+17},
x — e+ f {a+b,e+f,a+17}, {a+b,e+f,b+18},
4 {a+b,a+17,b+18}, {c+d,e+f,a+17},
¢ y<a+h {c+d,e+f,b+18}, {c+d,a+17,b+18},

{e+f,a+17,b+18}, {a+b,c+d},

{a+b,e+f}, {a+b,a+17}, {a+b,b+18},
{c+d,e+f}, {c+d,a+17}, {c+d,b+18},
{e+f,a+17}, {e+f,b+18}, {a+17,b+18},{a
+b}, {c+d}, {e+f}, {a+17}, {b+18}, {}]

COMP 512, Fall 2006 8

Concrete Example: Available Expressions

The Lattice
{atb,c+d,e+f,a+17,b+18}, Comparability
/ \\ (transitive)

{atb,c+d,e+f,a+17} {atb,c+d,e+f,b+18} {atb,c+d,a+17,b+18}

atb,e+f, 3 7, +18} .b:"sr ’ 1 ,b+18}

v '\”\{'II. I

T SS—

{atb, /,5," {3 3 atb,e+f at+l7} {atb,e+£f,b+18}

fe*f,a+17 ,b+18},

{a+b,a+17,b+1 ‘
W] y {afi7,b+18}

{}

COMP 512, Fall 2006 * 9

Concrete Example: Available Expressions

The Lattice
{a+b,c+d, e+f,a+17,b+18), Effect of meet operator
{atb,c+d,e+f,a+17} {atb,c+d,e+f,b+18} {atb,c+d,a+17,b+18}
{a+b,e+f,a+17,b+18} {c+d,e+f,a+17,b+18}

{atb,c+d, e+ b,c+d, b+18} {a+b,c+d,a+17} {a+b,e+f,a+17} {at+b,e+f,b+18}

{atb,a+17,b+18} {ct+d\e+f, a+ {c+d, e+f,b+18} {c+d,a+17 ,b+18} {e+f,a+17,b+18},

{a+b, c+d} {a+b,a+17} {c+d, e+f} {c+d,b+18} {e+f,b+18}
{atb,e+f} {a+b,b+18} {c+d, a+17} {e+f,a+17} {a+17,b+18}

{a+b} {c+d} {e+f} {a+17} {b+18}

COMP 512, Fall 2006 10

Round-robin Iterative Algorithm

AVAIL(b,) < @
fori<—1toN

AVAIL(b;) < { all expressions }
change < true
while (change)

change < false

fori<—OtoN

TEMP <= M, ess) (DEEXPR (x) U (AVAIL(x) M EXPRKILL(X)))

if AVAIL(b,) # TEMP then
change < true
AVAIL(b,) <~ TEMP

Termination
* Makes sweeps over the nodes

* Halts when some sweep produces no change

COMP 512, Fall 2006

Y
Inner loop, or
one “sweep”

11

Iterative Data-flow Analysis

Termination

* |f every f, € Fis monotone, i.e., x <y = f(x) < f(y), and

® |f the lattice is bounded, i.e., every descending chain is finite

> Chain is sequence Xy, X,, ..., X, Wherex. €L, 1 <i<n

> X, >X.,;, 1 <£i<n =>chain is descending

Then

® The set at each node can only change a finite number of times

® The iterative algorithm must halt on an instance of the problem ¢

* Any finite semilattice is bounded // | \\

-.001 .

* Some infinite semilattices are bounded - \\ | /

Real constants
COMP 512, Fall 2006 12

Iterative Data-flow Analysis

Correctness (What does it compute?)

* If every f, € Fis monotone, i.e., x <y = f(x) < f(y), and

® |f the semilattice is bounded, i.e., every descending chain is finite
> Chain is sequence x4, X,, ..., X, Wherex, €L, 1 <i<n

> X >X;,;, 1 £i<n = chainis descending

Given a bounded semilattice S and a monotone function space F
® J ksuch that f4(L) =f/(L)Vj>k

® fk() is called the least fixed-point of f over S pessimism
e |f L hasa T, then 3 k such that f%(T) = f{(T) Vj> k and
fX(T) is called the maximal fixed-point of f over S optimism

COMP 512, Fall 2006 13

Iterative Data-flow Analysis

Correctness

* If every f, € F is monotone, i.e., f(xay) < f(x) A f(y), and

* |f the lattice is bounded, i.e., every descending chain is finite
¢ Chain is sequence Xy, X,, ..., X, Wherex, €L, 1 <i<n

¢ X. >X,;, 1 <i<n = chainis descending

Then
* The round-robin algorithm computes a least fixed-point (LFP)

* The uniqueness of the solution depends on other properties of F

* Unique solution = it finds the one we want

* Multiple solutions = we want to know which solution it finds

¢ Specific solution may depend on order in which algorithm visits the nodes ...

COMP 512, Fall 2006 14

MOP = meet over all paths solution
LFP = |east fixed-point solution

Iteraﬁve Data'ﬂOW Ana'VSiS MFP = maximal fixed-point solution

Correctness

* Does the iterative algorithm compute the desired answer?

Admissible Function Spaces

_ Not distributive = fixed point
1. VfEFRYxyEL flxay)=f(x) nf(y) solution may not be unique
2. df,€Fsuchthat Vx&EL f(x)=x
3. g €EF3dh&EF suchthat h(x)=f(g(x))
4. ¥ x€L, dafinite subset HC Fsuch that x = Aoy f(L)

If F meets these four conditions, then an instance of the problem will have a
unique fixed point solution (instance = graph + initial values)

= LFP = MFP = MOP

=> order of evaluation does not matter

COMP 512, Fall 2006 15

Iterative Data-flow Analysis

If a data-flow framework meets those admissibility conditions then
it has a unique fixed-point solution

* The iterative algorithm finds the (best) answer
* The solution does not depend on order of computation

* Algorithm can choose an order that converges quickly

Intuition

* Choose an order so that changes propagate as far as possible on each
major iteration, or “sweep” over the graph

¢ Process a node’s predecessors before the node
* Cycles pose problems, of course

¢ lgnore back edges when computing the order?

COMP 512, Fall 2006 17

Ordering the Nodes to Maximize Propagation

Postorder Reverse Postorder

N+1 - postorder number

* Reverse postorder visits predecessors before visiting a node

* Use reverse preorder for backward problems

¢ Reverse postorder on reverse CFG is not reverse preorder [EaC2e, exercise 9.4(b)]

COMP 512, Fall 2006 18

Sets stabilize in two

Iterative Data-flow Analysis passes around a loop

Speed
* For a problem with an admissible function space & a bounded semilattice,

* |f the functions all meet the rapid condition, i.e.,

VigeEF, VY x&L, f(g(Ll))2g(L)Af(x)Aax

then, a round-robin, reverse-postorder iterative algorithm

will halt in d(G)+3 passes over a graph G Each pass does O(E) meets &
O(N) other operations

d(G) is the loop-connectedness of the graph with respect to a DFST
¢ Maximal number of back edges in an acyclic path
¢ Several studies suggest that, in practice, d(G) is small (<3)
¢ For most CFGs, d(G) is independent of the specific DFST

COMP 512, Fall 2006 19

Iterative Data-flow analysis

What does all this mean?
* Reverse postorder
¢ Easily computed order that increases propagation per pass
®* Round-robin iterative algorithm
¢ Visit all the nodes in a consistent order (RPO)
¢ Do it again until the sets stop changing
* Rapid condition

¢ Most classic global data-flow problems meet this condition

These conditions are easily met
¢ Admissible framework, rapid function space
¢ Round-robin, reverse-postorder, iterative algorithm

=> The analysis runs in (effectively) linear time

COMP 512, Fall 2006

20

Iterative Data-Flow Analysis

Almost all of the classic global data-flow problems are admissible and rapid

* Equations have form and properties similar to AVAIL
¢ Live variables, reaching definitions, reachable uses

¢ Some, such as dominance, have simpler equations

* |terative algorithm will generate the correct answer quickly

The iterative algorithm is your “desert island” data-flow algorithm
®* One algorithm for almost all problems
* Easy to formulate, easy to implement, easy to understand

COMP 512, Spring 2015 21

Some problems are not admissible

Global constant propagation

S1: {b=3,c=4} s2: {b=1,c=6} ® Function “f” models block’s effects
® f(s1) = {a=7,b=3,c=4}

® f(s2) = {a=7,b=1,c=6}

°® f(S1AS2) =@

a<—b+c

* First condition in admissibility
VIEFRVYxyELfxay)=f(x)af(y)

* Constant propagation is not admissible
¢ Kam & Ullman time bound does not hold
¢ There are tight time bounds, however, based on lattice height

¢ Require a variable-by-variable formulation ...

* Fixed point is not unique (no guarantee that LFP = MFP = MOP)

COMP 512, Fall 2006 22

Some admissible problems are not rapid

Interprocedural May Modify Sets

shift(a,b,c,d,e,f)

{ ® Assume call-by-reference
}.ocal ti ® Compute the set of variables
call shift(t,a,b,c,d,e); (in shift) that can be modified
f =1; by a call to shift

} * How long does it take?

* |terations proportional to number of parameters

¢ Not a function of the call graph @

¢ Can make example arbitrarily bad

* Proportional to length of chain of bindings...

e Q e 0 e o Nothing to do with d(G)

COMP 512, Fall 2006 23

