Comp 512
Rice University
Spring 2015

Overview 4

Global & Interprocedural Optimization

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Interprocedural Optimization

Global optimization finds and removes many inefficiencies.
It misses others.

* Some opportunities arise from procedure linkages

¢ Parameter binding, branches, register save/restore code

¢ Costs involved in indirect calls (function parameters, methods in OOLs)
* Some single-procedure opportunities are disrupted by calls

¢ Stops propagation of constants (parameters & globals)

¢ Register save & restore (tracking values through memory is hard)

Interprocedural optimization tries to eliminate some of those inefficiencies.

* Interprocedural analysis

¢ Analyze all the code that is available & use the results to improve the code

* Interprocedural transformations

¢ Transformations that involve code in two or more procedures

COMP 512, Rice University 2

Where Are We?

Last Lecture

e Safety of global optimization often formulated as a data-flow analysis
problem

* Long discussion—very long—on theory behind iterative data-flow analysis

Today
* Another global optimization
¢ Block placement
* Two interprocedural optimizations
¢ Procedure placement (interprocedural analog of block placement)

¢ Inline substitution

COMP 512, Spring 2015 3

Profile-Guided Code Positioning: The Motivation

Examples within HP
* Early PA-RISC tests showed CPI of 3, with 1/3 of that due to I-cache misses

¢ Subsequent hardware improvements reduced that, but authors claim that the
impact of I-cache misses on CPl was still substantial

* Pascal compiler
¢ Moved frequently executed blocks to top of procedure
¢ 40% reduction in instruction cache misses

¢ 5% improvement in compiler’s running time

* Fortran compiler
¢ Rearranged object files before linking
¢ Attempt to improve locality on calls
¢ 20% system throughput improvement

So, they believed ...
Karl Pettis and Robert C. Hansen, “Profile Guided Code Positioning,”

Proceedings of the ACM SIGPLAN ‘90 Conference on Programming
COMP 512, Rice University Language Design and Implementation, 1990, pages 16-27.

Code Placement

Pettis & Hansen looked at two distinct problems

Block Placement (Global optimization)

* Find blocks on the hot path, bring them together, & use fall-through paths
¢ Fall-through branches are, generally, faster than taken branches

* Rarely executed code can decrease instruction-cache utilization

¢ Always bad to fetch operations that do not execute

Procedure Placement (Whole-program optimization)

* If A calls B, would like A & B in adjacent locations Block placement precedes
procedure placement, both at

¢ On same page means smaller working set hanhy e
compile-time & in this lecture.

¢ Adjacent locations limit I-cache conflicts
* Unfortunately, many procedures might call B (& A)

¢ A common & critical problem in interprocedural optimization
* This is an issue for the linker

COMP 512, Spring 2015 6

Block Placement (The “global” part of the problem)

Targets branches with unequal execution frequencies
* Make likely case the “fall through” case

* Move unlikely case out-of-line & out-of-sight

Potential benefits

* Longer branch-free code sequences (local optimizations, such as LVN)
* More executed operations per cache line

* Denser instruction stream = fewer cache misses

* Moving rarely executed code = denser page use & fewer page faults

COMP 512, Rice University 7

Block Placement

Moving infrequently executed code

Likely path gets fall
\ through (cheap) case

»1/8\1,‘000

B B,

& /ooo
B,

Would like this to become

Unlikely path gets an
extra branch

\ Long distance

In another
page, ...

7’
/
/
I
I
—_—T>
These branches \!\
goes away ‘
\
\
\
N\

Denser instruction stream

COMP 512, Rice University * 8

Block Placement

Overview

1. Build chains of frequently executed paths ()
¢ Work from profile data
¢ Edge profiles are better than node profiles
¢ Combine blocks with a simple greedy algorithm

2. Lay out the code so that chains follow short forward branches

Gathering profile data While precision is desirable,
a good approximation will
probably work well.

* Instrument the executable
* Statistical sampling
* Infer edge counts from performance count data

COMP 512, Rice University Profiling: See COMP 412 lecture 39, slide 15ff, or EaC2e, pp. 452-453 | 9

Block Placement

The Idea
=> Form chains that should be placed to form straight-line code

First step: Build hot paths

E « |edges| EaC2e, Figure 8.16

for each block b

make a degenerate chain, d, for b
priority(d) <+ E

P+ 0

for each CFG edge <x,y>, x # y, in decreasing frequency order
if x is the tail of chain a and y is the head of chain b then Point is to place
t « priority(a) targets after their
append b onto a sources, to make
p.p . . . forward branches
priority(a) < min(t,priority(b),P++)

PA-RISC predicted most forward branches

COMP 512, Rice University as taken, backward as not taken 10

Block Placement |

Second step: Lay out the code —

t < chain headed by the CFG entry node, n,,
WorkList « {(t,priority(t)) }

while (Worklist # @)
remove a chain c of lowest priority from WorkList

for each block x in c, in chain order
place x at the end of the executable code

for each block x in ¢
for each edge <x,y> where y is unplaced
t < chain containing y
if (t,priority(t)) & WorkList
then add (t,priority(t)) to WorkList

Intuitions
* Entry node first

* Tries to make edge from chain i to chainj a forward branch
—> Predicted as taken on target machine

COMP 512, Rice University See example in § 8.6.2 in EaC2e | 11

Going Further — Procedure Splitting

Any code that has profile count of zero (0) is “fluff”

* Move fluff into the distance
¢ It rarely executes
¢ Get more useful operations into | cache

¢ Increase effective density of | cache

* Slower execution for rarely executed code

Implementation

Branch to fluff becomes short
branch to long branch.

Block with long branch gets sorted
to end of current procedure.

* Create a linkage-less procedure with an invented name

* Give it a priority that the linker will sort to the code’s end

* Replace original branch with a 0-profile branch to a 0-profile call

¢ Cause linkage code to move to end of procedure to maintain density

COMP 512, Rice University

* 12

Block Placement

Safety
* Changing position of code, not values it computes

* Barring bugs in implementation, should be safe

Profitability
* More fall-through branches
* Where possible, more compiler-predicted branches

* Better code locality

Opportunity
* Profile data shows high-frequency edges

* Looks at all blocks and edges in transformation — O(N+E)

Many transformations have
an O(N+E) component

COMP 512, Rice University

13

Procedure Placement (The “interprocedural” part of the problem)

Simple Principles
* Build the call graph

* Annotate edges with execution frequencies As much as 80 to 98%
reduction in executed

* Use “closest is best” placement long branches

¢ A calls B most often = place A nextto B
¢ Keeps branches short (advantage on PA-RISC)
¢ Direct mapped I-cache = A & B unlikely to overlap in I-cache

Ignored indirect calls
(through a pointer)
Profiling the Call Graph

* Linker inserts a stub for each call that bumps a counter
* Counters are kept in statically initialized storage (set to zero)
* Adds overhead to execution, but only in training runs

COMP 512, Rice University 14

Procedure Placement

Computing an order
* Combine all edges from Ato B (make the multi-graph into a graph)
* Select highest weight edge, say X—Y

¢ Combine X & Y, along with their common edges, X—=Z & Y—Z

¢ PlaceXnexttoY

* Repeat until graph cannot be reduced further

X . ® May have disconnected subgraphs

XY
10
‘ 6
/ \ \ ® Must add new procedures at end
Z

Y
2z o W—X and Y—Z with WZ & XY
¢ Use weights in original graph
o Largest weight closest

COMP 512, Rice University The algorithm is straight forward 15

Experimental Results

They evaluated several codes on three PA-RISC Models

Language | SLOCs Obj Bytes
Othello Pascal 1,133 82,139
Simulator C 21,261 323,168
Pascal Pascal & C 312,500 2,225,814
825 835 840
VMIPS 9.8 14.8 8.7
RAM 8MVIB 40 MB 24 MB
Cache
Unified/Split Unified Unified Split
Sizee 16 KB 128 KB | 64 KB/64 KB
Associativity, 1 2 1/1
Line Sizef, 32b 23 8B 16 B/16 b
Lines/Way, 256 2048 4096/4096
Clean Miss
Penalty 27 27 7/7
Dirty Miss
Penalty, 27 27 14/—

COMP 512, Rice University 16

Experimental Results

They evaluated several codes on three PA-RISC Models

835 Procedure Block Block+Fluff | Block+Proc | All Three
Othello 0.0 1.6 1.6 2.1 2.1
Simulator 0.0 4.5 5.5 4.5 5.5
Pascal 1.9 5.6 6.9 6.9 7.6

840 Procedure Block Block+Fluff | Block+Proc | All Three
Othello 0.9 4.7 4.4 4.2 4.0
Simulator 9.9 0.6 13.8 13.9 14.9
Pascal 4.3 1.8 9.2 9.3 9.8

825 | Procedure | Block | Block+Fluff | Block+Proc | All Three
Othello 7.2 7.9 8.7 ‘ 8.7 10.2
Simulator 8.2 16.2 13.9 20.3 26.0

Percentage improvements over baseline full optimization

COMP 512, Rice University

17

Putting It Together

* Procedure placement is done in the linker

Block placement is done in the optimizer
¢ Allows branch elision due to fluff, other tailoring

Speedups varied, but were significant
¢ 2% to 10% on the PA-RISC; better results on x86 systems

This technique paid off handsomely on early 1990s PCs
¢ Slow page faults, pages based on 386 segment registers (rather than hw pagesize)

¢ Microsoft insiders suggested it was one of the most important optimization for
codes like Office (Word, PowerPoint, Excel)

COMP 512, Rice University 18

The oldest interprocedural optimization [Ershov 1966]
Inline Substitution The canonical interprocedural optimization

Replace a procedure call with the body of the called procedure

Textual substitution to create effects of parameter binding

Private copy of code can be tailored to call site’s context

¢ Constants, unambiguous pointers, aliases, ...

.. . . Inline substitution plays an
Eliminates disruption of procedure call important role in optimizing

OOLS, due to their relatively
high ratio of call overhead to

¢ Register save & restore

¢ Disruption of call & return useful work and the difficulty
.. . of converting virtual calls into
* Eliminates benefits of procedure call direct calls.
¢ Call resets state of register allocator Inlining one call can reveal the

. relevant class for another ...
¢ Procedure abstraction keeps name space small

Usually assumed to be profitable, although studies disagree ...
¢ Some authors report major degradation from code-cache blowout

¢ Those studies are dated; today’s processor may have better code caches

COMP 512, Rice University 19

Inline Substitution

Example

fee

T

call

v

. foe |

A

COMP 512, Rice University

call

. foe |
)

v

foe

20

Inline Substitution — After inlining foe

COMP 512, Rice University Potential for exponential growth ...

21

Inline Substitution

Potential for exponential growth

Complete inlining would create 6 copies of each of the “leaf” routines, L, L,, L,

It would also create a call graph with no merge points.

COMP 512, Rice University

22

Inline Substitution

The transformation is easy
* Rewrite the call site with the callee’s body

* Rewrite formal parameter names with actual parameter names

Safety
* Aslong as the IR can express the result, it should be safe

* Semantics does not address the number of copies of a procedure in the
executable code

Profitability
* The obvious profit comes from eliminating call overhead

* The complications arise from changes in how the code optimizes

Opportunity

* Most implementations traverse the (partial) call graph & look at each edge

COMP 512, Rice University 23

Inline Substitution

The transformation is easy
* Rewrite the call site with the callee’s body

* Rewrite formal parameter names with actual parameter names

The decision procedure is hard (quite hard)

* At a given call site, profitability depends on the extent to which the callee
can be tailored to the specific context

¢ Performance can improve or degrade
* Resource constraints limit the amount of inlining
¢ Experience suggests register demand is important

¢ Code size (whole program & current procedure) play a role

— Excessive code growth leads to excessive compilation time

* Each decision affects profitability & resource use of other call sites

COMP 512, Rice University 24

Inline Substitution

Choosing which call sites to inline is hard

* Performance of transformed code is hard to predict

¢ Recall the story from the introductory lecture ...

* Decisions interact
¢ Inlining A into B changes B’s properties

4 Inlining A into B might make B a leaf

®* Can’t even name the call sites

¢ Inlining destroys some & creates others

* Some decisions look easy, others look hard
¢ Inline procedure smaller than linkage or called from one place

¢ Don’tinline large procedure or calls in critical loops

Existing compilers use heuristics, such as ORC’s temperature

COMP 512, Rice University ORC eventually became Open64 @ 25

To Inline or Not to Inline? Enhanced Inlining Decisions 407

ORC’s Heuristi
an edge E;(p,q) (i.e. a call site in function p which calls function ¢ in the call S e u Is c

graph).! .
temperatureg,p,q) = % (1) %
wheres Compute a “temperature” for each

@ call site

freqp, (pq) 18 the frequency of the edge F;(p, ¢) and freq, is the overall execu-

tion frequency of function ¢ in the training execution. o CO m p I i Ca te d CO m p uta ti O n

Total_cycle_count is the estimated total execution time of the application:

fredqs, (p.q) cycle_count,
freqq Total cycle_count

cycle_ratiog,(p.q) =

Total_cycle_count = Z cycle_county, (3) ® Si ng I e n u m be r to C h a ra Cte ri Ze

k € PUset

PUset is the set of all program units (i.e. functions) in the program, ea C h Site
cycle_count, is the estimated number of cycles spent on function g.

celecomty = 3, fren g * |Inline sites that are hotter than

where stmts, is the set of all statements of function ¢, freg; is the frequency of h h I d
execution of statement ¢ in the training run. SO l I I e t res O

Furthermore, the overall frequency of execution of the callee ¢ is computed by:

frem= Y freiee o) * Tuning implies choosing the

k € callers,

where callersg is the set of all functions that contain a call to g. t h res h 0 I d

Essentially, cycle_ratio is the contribution of a call graph edge to the ex-
ecution time of the whole application. A function’s cycle count is the exe-

Te4B; (p9)
freqq
cycle_county) is the number of cycles contributed by the callee ¢ invoked by the
edge E;(p,q). Thus, cycle ratiog,(,,q) is the contribution of the cycles resulting

from the call site F;(p,q) to the application’s total cycle count. The larger the

cycle_ratiog, () is, the more important the (iall graph edge. EX p I a n ati O n a Ct u a I Iy goes
q “ on for another half page

Total application_size is the estimated size of the application. It is the sum
of the estimated sizes of all the functions in the application. size,, the estimated
size of the function ¢, is computed by:

cution time spent in that function, including all its invocations. (*

size_ratioy = —————————
7 Total _application_size

! Because function p may call q at different call sites, the pair (p,q) does not define

an unique call site. Thus, we add the subscript i to uniquely identify the i call site

from p to q.

From “To Inline or Not to Inline? Enhanced
Inlining Decisions” by Zhao & Amaral 26

Inline Substitution

What have we learned?
* Inline substitution cures many inefficiencies that can arise at a call site

¢ Eliminates overhead
¢ Allows context-specific tailoring

¢ Eliminates disruption to analysis in both caller and callee

* Inline substitution can cause its own problems
¢ Unlimited compilation times (ignoring the MIPS story)
¢ Performance degradation

¢ Significant code growth

And, there are other consequences of inline substitution ...

COMP 512, Rice University 27

Interprocedural Optimization

Complications of interprocedural optimization

* Compiler needs access to all the code being improved
¢ Conflicts with separate compilation
¢ Alternatives: whole program compile, link-time optimization, or some system
where the compiler can “see” source code
* Resulting object code depends in subtle ways on rest of code
¢ Safety based on data-flow facts in the rest of the code
¢ Remote changes can invalidate optimization decisions

¢ Must recompile all code after each edit, or analyze the dependences to reduce
the amount of recompilation

Easiest route is to perform interprocedural optimization at runtime

COMP 512, Rice University 28

Decision Procedures

Of course, the hard part is deciding what to do ...
* Decision for one call affects behavior at other sites
* Difficult to predict effects

¢ Demand for registers can cause increased spilling
¢ Inlined code can have much larger name space (analysis)

¢ Quality of global optimization may fall with procedure size

* MIPSPro computes a quantitative score
¢ Gives a yes or no answer based on potential and size
* Some decisions are obvious
¢ Inline small procedures (< linkage size)
¢ Inline procedures called only once (leaf procedures)
* Still room for experimental work
¢ See Cooper, Hall, & Torczon [99] or Davidson & Holler or Waterman 2008

Jack W. Davidson and Anne M. Holler, “A Study of a C Function Inliner”, S—P &E, 18(8), August 1988, pages 775-790.
Keith D. Cooper, Timothy J. Harvey, and Todd Waterman, “An Adaptive Strategy for Inline Substitution”, CC ‘08/ETAPS ‘08, March, 2008.

