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Classic Compilers

Compiler design has been largely fixed since 1960

Front End Middle End Back End

* Front End, Middle End, & Back End
* Series of filter-style passes (number of passes varies)

* Fixed order for passes
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Classic Compilers

1957: The FORTRAN Automatic Coding System [26, 27]
Index Code
Front . Flow Register Final
—» > ! » Merge > > > —»
End Optimizn & Analysis Alloc’n Assembly
bookkeeping
Front End Middle End Back End

* Six passes in a fixed order

* Generated good code
¢ Assumed unlimited index registers
¢ Code motion out of loops, with ifs and gotos

¢ Did flow analysis & register allocation
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Classic Compi

lers

1999: The SUIF Compiler System

Fortran 77

T~

(in the NCI)

™

C&C++

A 4
A 4
A 4

A 4

C/Fortran

A 4

/'

Alpha

Front End

Middle End

Academic research system (Stanford)

3 front ends, 3

back ends

18 passes, configurable order
Two-level IR (High Suir, Low SUIF)

Intended as research infrastructure
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Back End

Data dependence analysis
Scalar & array privitization
Reduction recognition
Pointer analysis

Affine loop transformations
Blocking

Capturing object definitions
Virtual function call
elimination

Garbage collection




Classic Compilers

2000: The SGI Pro64 Compiler, now “Open 64"

T~ TN TN
Fortran
\ |Interpr.| || | Loop | || | Global | | | | Code
C & Cit / Ana.l. & Ne.:st Optim’n Gen.
Optim’n Optim’n
Java
Front End Middlé End Back
Interprocedural
Open source optimizing compiler forlA 64 Classic analysis
e 3 front ends. 1 back end Inlining (user & library code)

Cloning (constants & locality)
* Five-level IR Dead function elimination

. . Dead variable elimination
* Gradual lowering of abstraction level -
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Classic Compilers

Even a modern JIT fits the mold, albeit with fewer passes

\ 4
\ 4

bytecode —»

Middle Back End
End

Java
Environment

* Front end tasks are handled elsewhere
* Few (if any) optimizations

¢ Avoid expensive analysis

¢ Emphasis on generating native code

¢ Compilation must be profitable
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Classic Compilers

Front End Middle End Back End

Most optimizing compilers fit this basic framework

* What’s the difference between them?
¢ More boxes, better boxes, different boxes
¢ Picking the right boxes in the right order
* To understand the issues

¢ Must study compilers, for big picture issues } In 512, we try

¢ Must study boxes, for detail issues to do both

* We will look at some of the great compilers of yesteryear
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Fortran H Enhanced (the “new” compiler)

Improved Optimization of Fortran Object Programs [307]
R.G. Scarborough & H.G. Kolsky

Started with a good compiler — Fortran H Extended

* Fortran H — one of 15t commercial compilers to perform systematic
analysis (both control flow & data flow)

* Extended for System 370 features

* Subsequently served as model for parts of VS Fortran
— not a great compiler

Authors had commercial concerns Fortran H had 3 paths:

* Compilation speed -00, -01, and -O2.

* Bit-by-bit equality of results The paper describes
) . improvements in the
* Numerical methods must remain fixed P L

-O2 optimization path

COMP 512, Rice University 8




Fortran H Extended (the “old” compiler)

Some of its quality comes from choosing the right code shape

Translation to quads performs careful local optimization
* Replace integer multiply by 2% with a shift
* Expand exponentiation by known integer constant

* Performs minor algebraic simplification on the fly

¢ Handling multiple negations, local constant folding

Classic example of “code shape”
* Bill Wulf popularized the term [356] (probably coined it)
* Refers to the choice of specific code sequences

* “Shape” often encodes heuristics to handle complex issues
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Fortran H Extended (old)

Some of the improvement in Fortran H comes from choosing
the right code shape for the target & the compiler’s optimizations

* Shape simplifies the analysis & optimization

* Shape encodes heuristics to handle complex issues

The rest came from systematic application of a few optimizations

* Common subexpression elimination

Code motion

Strength reduction

Register allocation Not many optimizations, by

Branch optimization modern standards ...
(e.g., SUIF, OPEN 64, GCC, LLVM)
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Classic Compilers

Scan Build Re Final

CFG | | CSE | |Code]| | OSR &
-+ & M > > ;™ — Alloc. > Assy. >

& Mot'n

Parse
Dom

Front Middle End Back End

End

Summary
* This compiler fits the classic model

* Focused on a single loop at a time for optimization

* Worked innermost loop to outermost loop

* Compiler was just 27,415 lines of Fortran + 16,721 lines of asm

COMP 512, Rice University The parser was written in Fortran 66! 11




Fortran H Enhanced

This work began as a study of customer applications

Fortran H Extended was already an eff
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Found many loops that could be better

Project had clear, well-defined stopping poin

Project aimed to produce hand-coded quality

Project had clear, well-defined standards & goals

compiler

Little decrease in
useful ops

Huge decrease in
overhead ops

Another 35%

Instruction Fortran G1 _{© H Extended Z Enhanced

Type count /% count pct cgunt pct

Integer 70.21‘§,/83.5 7.120| 38.3] "f.372 11.4
Float 10.994| 13.1| 9.976| 53.7| v.207| 76.4
Control 1.456 1.7]  1.435 7.7| 1.435] 1.9
Others 1.459 1.7| 0.044 02| 0.044] 04
Totals 84.126| 100.0] 18.575| 100.0| 17058| 100.0

Aggregate operations for

srrh{hysics code, in millions

78% reduction
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Fortran H Enhanced (new)

How did they achieve this 35% improvement?

The work focused on four areas

* Reassociation of subscript expressions
* Rejuvenating strength reduction

* Improving register allocation

* Engineering issues

Note: this is not a long list !

COMP 512, Rice University

13




Reassociation of Subscript Expressions

Don’t generate the standard address polynomial

For those of you educated from EaC, a history lesson is needed

* Prior to this paper (& much later in the texts) the conventional wisdom was
to generate the following code, following Horner’s rule:

For a 2-d array A declared as A(low;:high,,low,:high,)

The reference A(i,,i,) generates the polynomial

Ay + ((1i, - low,) X (high; - low; + 1) + i; - low;) X W

Length of dim 1
Precompute it

* This form of the polynomial minimizes total ops

¢ Good for operation count, bad for common subexpression elimination, strength
reduction, instruction scheduling, ...

COMP 512, Rice University Column-major order because the paper is about FORTRAN 14




Reassociation of Subscript Expressions

For a 2-d array A declared as A(low,:high,, low,:high,)

The referencea(i,,1i,) generates the polynomial

Ay + ((1i, - low,) X (high; - low; + 1) + i; - low;) X W
* This form of the polynomial minimizes total ops

¢ Good for operation count, bad for common subexpression elimination, strength
reduction, instruction scheduling, ...

¢ Witha(i+1,j)andAa(i+1,j+1) the difference is bound into the expression
before the common piece can be exposed

* Now, imagine a typical “stencil” computation

a‘(llj) = (a(i_llj) +a(ilj) +a(i+llj) +a(ilj_1) +a(ilj+1))/5

Surrounding loops (on i, then j) move the stencil
over the entire array, adjusting the value of the
central element ...

Typical stencils include 5, 7, 11 points

COMP 512, Rice University Still column-major order 15




Reassociation of Subscript Expressions

For a 2-d array A declared as A(low;:high,,low,:high,)

The reference A(i,,1i,) generates the polynomial

A,+ ((i, - low,) x (high; - low,; +1) +i; - low,) x W
* This form of the polynomial minimizes total ops

¢ Good for operation count, bad for common subexpression elimination,
strength reduction, instruction scheduling, ...

¢ Witha(i+1,j)andA(i+1,j+1) the difference is bound into the
expression before the common piece can be exposed

* Now, imagine a typical “stencil” computation

a(i = 1—]‘ +a(1+@ ‘j 1)+‘]+1

And the subexpressmns found (or hidden) inside it ..

Still column-major order
COMP 512, Rice University 16




Reassociation of Subscript Expressions

Don’t generate the standard address polynomial
... Forget the classic address polynomial ...

* Break polynomial into six parts
¢ Separate the parts that fall naturally into outer loops
¢ Compute everything possible at compile time
* Makes the tree for address expressions broad, not deep

* Group together operands that vary at the same loop level

The point
* Pick the right shape for the code (expose the opportunity)
* Let other optimizations do the work

Tradeoff driven by CSE versus

* Sources of improvement strength reduction

¢ Fewer operations execute

¢ Decreases sensitivity to number of dimensions FORTRAN H chooses the shape based on

local analysis of the subscript, trading off
possible CSE & LICM against OSR.

COMP 512, Rice University Read pp 665ff in the paper carefully.




Reassociation of Subscript Expressions

Distribution creates different expressions
w+y * (x+2) =>w+y *rx+y * 2z

More operations, but they may move to different places

Consider A(i,j), whereAisdeclaredA(0:n,0:m)
Standard polynomial: @A + (i *m + J) * w
Alternative: @A + i *m*w + J *w

Does this help?
* In a typical loop nest, the i part and j part vary in different loops

* Standard polynomial pins j in the loop where i varies

Can produce significant reductions in operation count

General problem, however, is quite complex
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Operator Strength Reduction (OSR)

Their OSR was not particularly effective at the start of the study

* Many cases had been disabled in maintenance
¢ Almost all the subtraction cases turned off

* Fixed the bugs and re-enables the corresponding cases

* Caught “almost all” the eligible cases

. Increases the cost, but has less
Extensions practical impact than asymptotic
. analysis would suggest.
* |terate the transformations Y &8

¢ Avoid ordering problems (i+7j)*4
¢ Catch secondary effects

* Capitalize on user-coded reductions (shape)

* Eliminate duplicate induction variables

¢ Explicit xform to shift address calculations to common induction variables

In this context, OSR refers to the general optimization,
COMP 512, Rice University not the specific Cooper-Simpson-Vick algorithm [107]. 19




Register Allocation

Original Allocator

* Divide register set into local & global pools

o ”
¢ “Global” means a |OOp nest Best’s algorithm is also known as

* Different mechanisms for each pool “bottom-up local” in EaC2e and as
Belady’s MIN algorithm for optimal
¢ Local based on Best’s algorithm offline page replacement.

¢ Global based on frequency counts

Problems

* Bad interactions between local & global allocation

* Unused registers dedicated to the procedure linkage
* Unused registers dedicated to the global pool

* Extra (unneeded) initializations

Remember the 360
¢ Two-address machine

COMP 512, Rice University ¢ Destructive operations *20




Register Allocation

New Allocator
* Remap to avoid local/global duplication N

* Scavenge unused registers for local use All symptoms arise from

> not having an actual global
register allocator

®* Remove dead initializations

* Section-oriented branch optimizations

Plus ...

* Change in local spill heuristic from frequency to distance

Can allocate all FOUR floating-point registers

Bias register choice by selection in inner loops

Better spill cost estimates

Better branch-on-index selection
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Engineering Issues

Increased the name space used in analysis

Was 127 slots (80 for variables & constants, 47 for compiler)

Increased to 991 slots

Constants no longer need slots

“Very large” routines need < 700 slots (remember inlining study?)

Again, sounds as if it would

Common subexpression elimination (CSE) cause asymptotic problems,
but it did not, in practice.

* Removed limit on backward search for cses

* Taught csE to avoid some substitutions that cause spills

Extended constant handling to negative values
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Results

Hand-coding no longer improved the inner loops.

They stopped working on the optimizer.

—> Produced a significant change in ratio of flops to instructions

Fortran H Extended is the classic Fortran optimizing compiler

Instruction Fortran G1 H Extended H Enhanced

Type count pct count pct count pct

Integer 70.216 83.5 7.120 38.3 1.372 11.4
Float 10.994 13.1 9.976 53.7 9.207| 76.4
Control 1.456 1.7 1.435 7.7 1.435 11.9
Others 1.459 1.7 0.044 0.2 0.044 0.4
Totals 84.126| 100.0] 18.575| 100.0] 12.058| 100.0

Aggregate operations for a plasma physics code, in millions

COMP 512, Rice University
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The PL.8 Compiler (ten years after Fortran H)

First RISC Compiler [24, 90, 74, 75]
* Original target was IBM 801 minicomputer

_ . _ _ Hardware/software
* Tight coupling of architecture & compiler co-design

* Later targets included S/370, MC680x0, & others
® Basis for XL compiler series for R$/6000 & POWER machines

Research compiler

* Compilation speed was not critical

* Emphasis on code quality, methodology, & theory
* Several breakthrough ideas

* Underlying philosophy governs RISC compilers today
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The Language

A PL/I Subset

* Threw out ON conditions (exception handling)

* Permanently enabled subscript range checking

* Replaced unrestricted pointers with offsets & areas
* Bit string lengths fixed and restricted

* New declarations for call-by-value

* No internal static variables

* Relaxed implicit conversion rules

* Simplified rules governing arithmetic precision

Eventually built other front ends

® Pascal, Fortran, & C

COMP 512, Rice University

(80/20 rule)
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Compiler Summary

Intermediate Representation

Linear, low-level, abstract machine code

Byte addressable storage

* Unlimited set of symbolic or virtual registers [ MAX
* High-level operations to encapsulate control flow < m\la
CHECK

Optimization ~
* Use global (whole procedure) techniques
* Expose every detail to uniform optimization
Structure

. e L. Register Final

—> —>
Translation Optimization Allocation Assembly
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Principles

Assumptions
* Register allocator does a great job (separation of concerns)
* Instruction set has limited number of alternatives

* Little or no special case analysis

* Broad set of optimizations covers the IR

. As a matter of timing, PL.8
Doctrine came out at a time when DF

) . . analysis was well developed
Data-flow analysis pays off, so do it when needed S

* Passes are independent but complementary

Code is shaped for optimization

Optimize, elaborate, optimize As in FORTRAN H, BLISS 11,
and other classic optimizers

Finite machine is the allocator’s problem
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Philosophy

PL.8 followed a somewhat rigid set of guidelines that influenced its
successors, down to the present day.

* |t used an IR with two distinct levels of abstraction

¢ Macro-like expansion from abstract to detailed

* |t repeated optimizations multiple times for best effect
¢ Trade compile time directly for performance

¢ Acknowledgement that “phase ordering” affects actual performance

* It relied heavily on separation of concerns & a single point of control
¢ CSE and OSR inserted new code, DCE removed (now) unused code

¢ GCRA worried about register pressure and copies, other passes did not

* |t repeated analysis rather than trying to update it after change to the IR
¢ Incremental updates are tricky and easy to break; re-analysis simply reuses code
¢ Repetition allows passes to be reordered and repeated.

This slide is redundant, but as my friend SKw says: tell them what you
COMP 512, Rice University are going to tell them, tell it to them, and tell them what you told them. 28




Translation Phase

Simple front end
LALR(1) parser

Bottom-up generation of IR

No significant analysis during translation

Some machine-specific detail creeps in

Shape the code for optimization

Front end does not
* Build a control-flow graph
* Analyze the content for special cases

* Pre-assign registers (other than the ARP)

COMP 512, Rice University

(branch ranges)

(syntactic & local )
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Optimizer

Structure

A 4

A 4

A 4
A 4

(conceptual)

®* Many passes
¢ Independent & interdependent
¢ Single point of control
¢ Repeats some passes multiple times
* IR is definitive representation
¢ Re-derive rather than update
* Insert & eliminate rather than replace
¢ Rely on dead code elimination

COMP 512, Rice University

Dead code elimination
Global CSE

Code motion

Constant folding
Strength reduction
Value numbering

Dead store elimination
Code straightening
Trap elimination
Algebraic reassociation

30




PL.8 had the first graph-coloring register allocator [74, 75].

Register Allocator

Graph coloring allocator (see Chapter 13, EaC2e)
* Constructs precise interference graph
* Use interference graph to coalesce copies (unlike Chow )

* Machine-specific constraints modeled in graph

Use smallest degree last coloring

Allocator handles all spill decisions

Effectiveness - compiling the compiler

* ForS/370 (16 GPRs): little more than 50% of values spill
* For 801 (32 GPRs): over 95% do not spill
* Coloring works better with larger register sets (spill heuristic)
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Scheduling & Final Assembly

Schedule Twice
* Pre-allocation scheduling to avoid constraints

* Post-allocation scheduling to place spill code

Final assembly

* Convert allocated, scheduled IR to object code

* Two passes with some local fix-up (peephole)

* Generate debugging information, tags for link-time checking

* Added tailored procedure prologs and epilogs

Schedule-Allocate-Schedule contradicts their description of Allocation as the 3™ major phase and Scheduling
as the 4. | would attribute the discrepancy to the fact that they seemed to reconfigure the compiler often.
For example, the two papers seem to describe somewhat different setups for the compiler.
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Miscellany

Range checking

* One goal was to decrease overhead of checking

Lots of intellectual effort invested in this problem

Area + offset could be checked, pointer could not

Cocke & P. Markstein report 5% to 10% overhead
¢ V. Markstein reports (eventually) getting that down to 2% [257]

Reliability
* PL.8 was built with PL.8
* Daily use improved actual & perceived reliability

COMP 512, Rice University

(V. Markstein )
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Results (From Cocke & Markstein)

Optimization Level

Transformation -1 0 1 2 3
Dead code elimination X X X X
Value numbering X X X X
Local constant propagation X X
Global commoning, code motion X X X
Strength reduction X X X
Macro expansion X X X X X
Dead code elimination X X
Value numbering X X
Local constant propagation X X
Register allocation (k =r—4) X
Register allocation (k = r+4) X

PL.8 compiler option flags
COMP 512, Rice University 34




B

3 X
Results (From Cocke & Markstein) lg \
Optimization Level
Program -1 0 | ] | 2 3
USEDEF Compile time 19.7 19.7 31.7 34.2 51.2
(360 lines) |Code Space 12,138 5,386 6,390 6,098 5,942
Run time 0.720 0.230 0.134 0.129 0.124
Puzzle Compile time 6.2 5.7 9.3 10.2 14.7
(154 lines) |Code Space 2,790 1,682 1,778 1,782 1,698
Run time 1.330 0.730 0.670 0.670 0.620
IPOO Compile time 9.8 10.3 15.5 17.3 20.5
(295 lines) |Code Space 4,908 3,404 3,232 3,216 3,156
Run time 5.880 4.250 3.610 3.590 3.510
Heapsort Compile time 2.2 1.9 2.3 2.5 2.5
(84 lines) |Code Space 1,024 432 384 368 368
Run time 5.600 2.260 2.120 2.020 2.020
Heapsort Compile time 0.83 0.96
(in PL/1) Code Space 740 700
Run time 4.310 4.000
Heapsort Compile time 0.26 0.33 0.38
(in Fortran) |Code Space 674 490 442
Run time 4.830 2.880 2.880

Spill code

COMP 512, Rice University

System 370, times in seconds
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Notes on Results Slides

* Level 0 pays for itself (smaller code)
* Global code motion & cse lengthen live ranges (level 0 to 1)

* Biggest payoff is level -1 to O, then 0 to 1; global optimization compensates for
longer lifetimes

* Level 3 only helps with spill code (made obsolete by Briggs)

* Spilling increases code space, but increased optimization makes up for it (zero wait
state memory)

® USEDEF references complex data structures in nested loops

* Tests exclude reassociation; Cocke & Markstein report that reassociation removes
up to 50% of the code in USEDEF’s inner loops; helps with spilling & speed

* No linear function test replacement

* Constant propagation underperformed expectations; initial values not represented
in the IR

* Heapsort doesn’t show off Fortran H, because it doesn’t use the loop index variable
as a subscript index!
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Key Points

Strong philosophical influence on later compilers
* Single point of control

Repeat optimizations

Two-level IR

Separation of concerns (strong back end)

Reanalyze rather than update incrementally

Scope of optimization

* Notice large improvement from -1 to O (local optimization)
* Design emphasizes global analysis and optimization

* Results show a payoff (smaller than local, but, ...)

* Contrasts with Fortran H’s emphasis on loop nests

Hardware/software co-design
* 801 ISA designed as target for this compiler

COMP 512, Rice University
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Key Points

Graph coloring register allocation
* Precise interference graph
* Uniform approach to spilling (no local RA)

* Powerful method for coalescing copies (vs. Chow)

Reassociation
* Recognized the potential & worked on the problem

* In the end, method did not work as promised  (Hopkins, private communication)

Triumph of global analysis & optimization
* Decade of new algorithms
* This compiler showed that, in practice, it all worked

* Did well against mature S/370 compilers (not just on 801)
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